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Design and analysis of combined
discrete-time zeroing neural
network for solving time-varying
nonlinear equation with robot
application

Zhisheng Ma* and Shaobin Huang

College of Computer Science and Technology, Harbin Engineering University, Harbin, Heilongjiang,

China

Zeroing neural network (ZNN) is viewed as an e�ective solution to time-

varying nonlinear equation (TVNE). In this paper, a further study is shown by

proposing a novel combined discrete-time ZNN (CDTZNN) model for solving

TVNE. Specifically, a new di�erence formula, which is called the Taylor di�erence

formula, is constructed for first-order derivative approximation by following

Taylor series expansion. The Taylor di�erence formula is then used to discretize

the continuous-time ZNN model in the previous study. The corresponding

DTZNNmodel is obtained, where the direct Jacobianmatrix inversion is required

(being time consuming). Another DTZNN model for computing the inverse of

Jacobian matrix is established to solve the aforementioned limitation. The novel

CDTZNN model for solving the TVNE is thus developed by combining the two

models. Theoretical analysis and numerical results demonstrate the e�cacy of

the proposed CDTZNN model. The CDTZNN applicability is further indicated by

applying the proposed model to the motion planning of robot manipulators.

KEYWORDS

discrete-time zeroing neural network, time-varying nonlinear equation, Taylor

di�erence formula, matrix inversion, robot manipulators

1 Introduction

Nonlinear equation (NE) has an important implication in many fields of science and

engineering, such as signal and image processing, pattern recognition, and robot motion

planning. Many solutions for the NE have been reported (Liao et al., 2020; Wu et al., 2021;

Zeng et al., 2024; Mathews and Fink, 2004; Ramos andMonteiro, 2017; Sharma et al., 2017;

Zhang and Yi, 2011; Xiao and Lu, 2015; Zhang et al., 2017). The Newton method, which

possesses the quadratic convergence, was the classic iteration method to find the solution

of the NE (Mathews and Fink, 2004). On the basis of Newton method, a new approach was

developed by Ramos and Monteiro (2017) to solve the NE. A class of multipoint methods

for solving the NE was presented by Sharma et al. (2017). Different from these iteration

methods, the methods based on recurrent neural network (RNN) were designed to solve

theNE. The gradient neural network (GNN), which possesses the exponential convergence,

was the classic RNN model for determining the roots of the NE (Zhang and Yi, 2011). As

shown by Xiao and Lu (2015), the GNN was accelerated to finite convergence through a

special activation function. Another typical RNNmodel termed the zeroing neural network

(ZNN) was provided by Zhang et al. (2017), and it was indicated to have a connection to

Davidenko method in solving the NE. Notably, the abovementioned studies were reported

on computing the static NE.
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Focusing on solving the time-varying NE (TVNE), a

continuous-time ZNN (CTZNN) model was developed by Zhang

et al. (2012a), of which the effectiveness was substantiated by

theoretical analysis and simulations. The nonlinearly-activated

CTZNN model with finite-time convergence was designed by Xiao

(2016) to solve the TVNE. Considering the existence of noise in

the process of solving the TVNE, Jin et al. (2017b) presented an

integration-enhanced CTZNN model, Li et al. (2020) provided a

finite-time convergent and noise-rejection CTZNNmodel, and Dai

et al. (2024) developed a norm-based CTZNN model with strong

robustness. For possible digital hardware implementation, the

discrete-time ZNN (DTZNN) model was investigated by Zhang

et al. (2015) using the Euler difference formula to discretize the

original CTZNN model. The DTZNN model was theoretically

analyzed to have a square characteristic. That is, the steady-state

computational error (SSCE) was expressed in the form of O(σ 2),

where σ denotes the sampling gap. Furthermore, the Broyden

method was utilized to avoid the matrix inversion involved in the

DTZNN model, and the modified DTZNN model was presented

by Zhang et al. (2012b). This model was immune to singularity and

still had the square characteristic.

Being different from the Euler difference formula, various

Taylor-type difference formulas have been constructed (Liao et al.,

2016; Guo et al., 2018; Xiang et al., 2019; Tang and Zhang, 2023;

Cang et al., 2024; Chen et al., 2024; Xiang et al., 2025; Guo et

al., 2025). For example, the Taylor difference formula with the

O(σ 2) truncation error was presented in Liao et al. (2016), while

the one with O(σ 3) truncation error was provided in Tang and

Zhang (2023). These difference formula have been proven to be

effective on the ZNN disretization. Specific for the TVNE solving,

the Taylor difference formula in Guo et al. (2018) was used to

discretize the CTZNN model (Zhang et al., 2012a). The resultant

DTZNN model was developed, of which the SSCE is expressed

in the form of O(σ 4) (Guo et al., 2018). In Cang et al. (2024),

the DTZNN model with the O(σ 5) SSCE mode was designed to

solve the TVNE. Notably, the shortcoming of such two DTZNN

models is the requirement of calculating the inverse of Jacobian

matrix, which could be (very) time consuming. In this sense, the

DTZNN models in Guo et al. (2018) and Cang et al. (2024) may

be less effective for the online solution of TVNE. Thus, an effective

DTZNNmodel with great computational performance but without

requirement of direct Jacobian matrix inversion should be designed

and studied.

In this paper, motivated by the inspiring studies (Zhang et

al., 2015, 2012b; Guo et al., 2018; Cang et al., 2024), a further

investigation is provided by proposing a novel combined DTZNN

(CDTZNN) model to solve the TVNE. Specifically, for the possible

discretization of a continuous-time model, a new difference

formula, which is called the Taylor difference formula, is developed

by following Taylor series expansion (Mathews and Fink, 2004).

Using the new formula to discretize the original CTZNN model

(Zhang et al., 2012a) yields the resultant DTZNN model. On the

basis of Guo et al. (2017), another DTZNN model is established

for the Jacobian matrix inversion. With the combination of two

models, the novel CDTZNN model for solving the TVNE is thus

developed. Such a model does not require calculating the inverse

of Jacobian matrix and can thus reduce the amount of calculation.

Theoretical analysis and numerical results substantiate the efficacy

of the proposed CDTZNNmodel.

In recent years, robot manipulators have attracted considerable

attention in engineering applications (Li et al., 2020; Guo et al.,

2018; Cang et al., 2024; Guo et al., 2017; Jin et al., 2017a, 2024; Yan

et al., 2024; Zhang et al., 2025; Li et al., 2019; Xiao et al., 2019). The

motion planning of robot manipulators, as a fundamental issue, has

been widely investigated. Mathematically, the purpose of motion

planning can be achieved when the corresponding TVNE is solved

(Li et al., 2020; Guo et al., 2018; Cang et al., 2024). In consideration

of this point, the proposed CDTZNN model is further studied to

the motion planning of robot manipulators through solving the

TVNE. On the basis of a DOBOT manipulator (Xiao et al., 2019),

the simulation results are provided to validate the applicability of

the proposed CDTZNNmodel.

The rest of the paper consists of five parts. Section 2 presents

the previous studies on TVNE solving. Section 3 shows the Taylor

difference formula. Section 4 describes the CDTZNN model and

analyzes its computational performance. Section 5 provides the

numerical results of the proposed CDTZNN model and applies

such a model to robot manipulators. Section 6 concludes the study.

The main contributions are listed as below.

1) A new Taylor difference formula is developed via the Taylor

series expansion. Such a formula differs from the formulas

used in Zhang et al. (2015, 2012b); Guo et al. (2018); Cang et

al. (2024) for the original CTZNNdiscretization on solving the

TVNE.

2) On the basis of the new Taylor difference formula, a novel

CDTZNN model is proposed and studied to solve the TVNE.

To the best of the authors’ knowledge, such a CDTZNNmodel

has not been reported yet.

3) The computational performance of the proposed CDTZNN

model is analyzed theoretically. The CDTZNN efficacy is

further substantiated by numerical results. The results also

express the O(σ 4) mode in the SSCE of the proposed model.

4) The proposed CDTZNN model is effectively applied to the

motion planning of robot manipulators. The simulations

under the DOBOTmanipulator show the potential application

of CDTZNN.

2 Previous studies on TVNE solving

This section shows the problem formulation of solving the

TVNE. Then, the CTZNN and DTZNN models in the previous

studies are presented.

2.1 Problem statement

In this study, the following TVNE is considered (Zhang et al.,

2012a):

f(x∗(t), t) = 0 ∈ R
n, ∀t ∈ [0,+∞), (1)

where f(·) :Rn → R
n denotes a differentiable nonlinear mapping

and x∗(t) ∈ R
n denotes the theoretical solution of Equation 1.
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This study aims to find the numerical solution x(t) ∈ R
n that

holds the TVNE (Equation 1) true; specifically, as time t evolves,

x(t) → x∗(t).

2.2 CTZNN model

To effectively solve the TVNE (Equation 1), the following error

function must converge to zero as time evolves:

e(t) = f(x(t), t) ∈ R
n. (2)

In Zhang et al. (2012a), the decay formula ė(t) = −γ e(t) is

used, and the CTZNN model for solving the TVNE (Equation 1) is

designed as follows:

ẋ(t) = −J−(x(t), t)
(

ft(x(t), t)+ γ f(x(t), t)
)

, (3)

where ė(t) and ẋ(t) correspond to the time derivatives of e(t) and

x(t), J−(x(t), t) ∈ R
n×n denotes the inverse of Jacobian matrix

J(x(t), t) = ∂f/∂x, ft(x(t), t) = ∂f/∂t ∈ R
n denotes the system

time-derivative vector, and γ > 0 ∈ R denotes the parameter for

scaling the CTZNN convergence rate.

Lemma 1 (Zhang et al., 2012a). When a solvable TVNE

(Equation 1) is considered, the state vector x(t) of the CTZNN model

(Equation 3), starting from an initial state x(0) close sufficiently to

x∗(0), converges to the theoretical solution x∗(t) of (Equation 1). That

is, x(t) → x∗(t) as t evolves.

2.3 DTZNN models

To discretize the CTZNN model (Equation 3), the following

Euler difference formula (Mathews and Fink, 2004) can be used:

ẋk = ẋ(tk = kσ ) =
xk+1 − xk

σ
+O(σ ), (4)

where xk = x(tk = kσ ) with the subscript k ∈ N and

sampling gap σ ∈ (0, 1), and O(σ ) ∈ R
n denotes the truncation

error vector with every element as O(σ ). By using Equation 4 to

discretize Equation 3, the Euler DTZNN model for solving the

TVNE (Equation 1) is formulated as follows (Zhang et al., 2015):

xk+1 = xk − J−(xk, tk)
(

σ ft(xk, tk)+ hf(xk, tk)
)

, (5)

where h = γ σ ∈ R denotes the step size with γ defined as in

Equation 3.

To avoid the calculation for the inverse of Jacobian matrix,

the Euler DTZNN model (Equation 5) is improved in Zhang et al.

(2012b) by using Broyden method (Broyden, 1965). Specifically,

J−(xk, tk) is calculated and approximated through a matrix Mk =

M(tk = kσ ) ∈ R
n×n, where the recursion for updatingMk is given

by

Mk = Mk−1 +
(uk−1 −Mk−1vk−1)u

T
k−1

Mk−1

uT
k−1

Mk−1vk−1

, (6)

with uk−1 = xk−xk−1 ∈ R
n and vk−1 = f(xk, tk)−f(xk−1, tk) ∈ R

n.

On the basis of Equation 6, replacing J−(xk, tk) byMk in Equation 5

yields the modified DTZNNmodel as follows:

xk+1 = xk −Mk

(

σ ft(xk, tk)+ hf(xk, tk)
)

. (7)

For further discussion, on the basis of the error function

e(t) in Equation 2, the SSCE is defined as limk→∞ ‖ek‖2 =

limk→∞ ‖f(xk, tk)‖2, where ‖ · ‖2 returns the Euclidean norm of

a vector. Then, the computational performances of the DTZNN

models (Equations 5, 7), are shown by the following lemma.

Lemma 2 (Zhang et al., 2015, 2012b). When a solvable TVNE

(Equation 1) is considered, the SSCE of each of the DTZNN models

(Equations 5, 7) is of O(σ 2).

Being different from the Euler difference formula, the following

Taylor difference formulas are constructed (Tang and Zhang, 2023;

Guo et al., 2017):

ẋk =
8xk+1 + xk − 6xk−1 − 5xk−2 + 2xk−3

18σ
+O(σ 3), (8)

ẋk =
24xk+1 − 5xk − 12xk−1 − 6xk−2 − 4xk−3 + 3xk−4

48σ
+O(σ 3),

(9)
where sampling gap σ ∈ (0, 1), and O(σ 3) ∈ R

n denotes the
truncation error vector with every element as O(σ 3). In Cang et al.
(2024), another Taylor difference formula is expressed as follows:

ẋk =
110xk+1 + 42xk − 89xk−1 − 102xk−2 + 12xk−3 + 44xk−4 − 17xk−5

276σ
+O(σ 4),

(10)

where O(σ 4) ∈ R
n denotes the truncation error vector with

every element as O(σ 4). By using Equation 8 – 10 to discretize the

CTZNN model (Equation 3), the following three Taylor DTZNN

models for solving Equation 1 are obtained:

xk+1 =−
1

8
xk +

3

4
xk−1 +

5

8
xk−2 −

1

4
xk−3

− J−(xk, tk)
(9

4
σ ft(xk, tk)+ hf(xk, tk)

)

,

(11)

xk+1 =
5

24
xk +

1

2
xk−1 +

1

4
xk−2 +

1

6
xk−3 −

1

8
xk−4

− J−(xk, tk)
(

2σ ft(xk, tk)+ hf(xk, tk)
)

,

(12)

xk+1 =−
21

55
xk +

89

110
xk−1 +

51

55
xk−2 −

6

55
xk−3 −

2

5
xk−4

+
17

110
xk−5 − J−(xk, tk)

(138

55
σ ft(xk, tk)+ hf(xk, tk)

)

,

(13)

where step size h are given by h = 9γ σ/4 ∈ R, h = 2γ σ ∈ R,

and h = 138γ σ/55 ∈ R, respectively. Hereafter, Equation 11, 12,

13 are termed the Taylor DTZNN-I, DTZNN-II, and DTZNN-III

models, respectively. Besides, the computational performance of

such three models on solving the TVNE (Equation 1) is presented

by the following lemma.

Lemma 3 (Guo et al., 2018; Cang et al., 2024).When a solvable

TVNE (Equation 1) is considered, the SSCE of the Taylor DTZNN

models (Equations 11, 12, 13) are of O(σ 4), O(σ 4), and O(σ 5),

respectively.
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According to Lemmas 2 and 3, the Taylor DTZNN models

(Equations 11, 12, 13) can possess better computational

performance than the DTZNN models (Equations 5, 7) in

solving the TVNE (Equation 1) [in terms of O(σ 4) and O(σ 5) vs.

O(σ 2)]. However, the Taylor DTZNN models (Equation 11, 12,

13) requires calculating J−(xk, tk) at each iteration, which could

be very time consuming. Thus, a novel DTZNN model that does

not require the direct Jacobian matrix inversion is proposed in this

work to solve the TVNE (Equation 1).

3 New Taylor di�erence formula

In this section, a new difference formula termed the Taylor

difference formula is constructed to further investigate on

discretizing a continuous-time model.

3.1 Scalar-valued form

The new Taylor difference formula depicted in a scalar-valued

form is presented via the following theorem.

Theorem 1. For effectively approximating the first-order

derivative of the function φ(·), the new Taylor difference formula is

expressed as follows:

φ̇(tk) =
36φ(tk+1)− φ(tk)− 18φ(tk−1)− 27φ(tk−2)+ 10φ(tk−3)

78σ

+ O(σ 3),

(14)

with the subscript k = 3, 4, 5, · · · and sampling gap σ ∈ (0, 1).

Proof. Assuming that φ ∈ C4[a, b] and that tk+1, tk, tk−1, tk−2,

and tk−3 ∈ [a, b]. By following Taylor series expansion Mathews

and Fink (2004), the expressions are obtained as follows:

φ(tk+1) = φ(tk)+ σ φ̇(tk)+
σ 2

2!
φ̈(tk)+

σ 3

3!

...
φ(tk)+ O(σ 4), (15)

φ(tk−1) = φ(tk)− σ φ̇(tk)+
σ 2

2!
φ̈(tk)−

σ 3

3!

...
φ(tk)+ O(σ 4), (16)

φ(tk−2) = φ(tk)−2σ φ̇(tk)+
4σ 2

2!
φ̈(tk)−

8σ 3

3!

...
φ(tk)+O(σ 4), (17)

φ(tk−3) = φ(tk)−3σ φ̇(tk)+
9σ 2

2!
φ̈(tk)−

27σ 3

3!

...
φ(tk)+O(σ 4), (18)

where the symbol ! denotes the factorial operator, and φ̇(tk),

φ̈(tk), and
...
φ(tk) denote the first-, second-, and third-order

derivatives of φ(t) at time tk, respectively.

Using “36× (15)− 18× (16)− 27× (17)+ 10× (18)” yields

the following expression:

36φ(tk+1)− 18φ(tk−1)− 27φ(tk−2)+ 10φ(tk−3) = φ(tk)

+ 78σ φ̇(tk)+ O(σ 4),

of which the reformulation is given by

φ̇(tk) =
36φ(tk+1)− φ(tk)− 18φ(tk−1)− 27φ(tk−2)+ 10φ(tk−3)

78σ

+ O(σ 3).

(19)

The expression (Equation 19) is exactly the Taylor difference

formula (Equation 14). The proof is thus completed. �

Theorem 1 shows that the new Taylor difference formula

(Equation 14) is constructed for first-order derivative

approximation, and it further indicates that (Equation 14)

has a truncation error of O(σ 3).

Remark 1: On the one hand, the new Taylor difference formula

(Equation 14) has a smaller truncation error than the Euler

difference formula (Equation 4), that is, O(σ 3) vs. O(σ ). Then,

the DTZNN model derived by Equation 14 can exhibit a better

computational performance than the DTZNN model derived by

Equation 4 in solving the TVNE (Equation 1) under the same

condition (which can be found in Section 5). On the other hand,

though the mathematical derivation is similar (i.e., via Taylor

series expansion), the new Taylor difference formula (Equation 14)

has a different structure from those formulas (Equation 8, 9, 10),

thereby possessing different truncation errors. By summarizing

the Taylor difference formulas (Equation 8, 9, 10, 14), the link

between Taylor series expansion and numerical differentiation

can be obtained. The corresponding DTZNN models with great

computational performances are established to solve the TVNE

(Equation 1) by utilizing such difference formulas (see Sections

2 and 4). This finding can offer the possibility of developing

more DTZNNmodels to solve different time-varying mathematical

problems (Zeng et al., 2024; Zhang and Yi, 2011).

3.2 Vector- and matrix-valued forms

Many continuous-time models are depicted in vector- or

matrix-valued forms. Thus, extending the new Taylor difference

formula (Equation 14) in Theorem 1 to the vector- and matrix-

valued forms is necessary.

Specifically, with regard to the approximation of a vector ẋk =

ẋ(tk = kσ ) ∈ R
n, (Equation 14) is reformulated as follows:

ẋk =
36xk+1 − xk − 18xk−1 − 27xk−2 + 10xk−3

78σ
+O(σ 3), (20)

whereO(σ 3) ∈ R
n denotes the vector with every element asO(σ 3).

With regard to the approximation of a matrix Ṁk = Ṁ(tk = kσ ) ∈

R
n×n, Equation 14 is reformulated as follows:

Ṁk =
36Mk+1 −Mk − 18Mk−1 − 27Mk−2 + 10Mk−3

78σ
+O(σ 3),

(21)

where O(σ 3) ∈ R
n×n denotes the matrix with every element as

O(σ 3).

Evidently, each of the difference formulas (Equations 20, 21)

has the truncation error of O(σ 3) and is better than the

conventional difference formulas (Mathews and Fink, 2004).
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Therefore, on the one hand, Equation 20 is used to discretize the

CTZNN model (Equation 3) for solving the TVNE (Equation 1).

On the other hand, by following Guo et al. (2017), Equation 21

is used to establish another DTZNN model for Jacobian matrix

inversion. Based on the combination of such two models, the novel

CDTZNNmodel is developed for solving (Equation 1) in this study.

4 Novel CDTZNN model

This section proposes the novel CDTZNN model to solve the

TVNE (Equation 1) and analyzes the proposed CDTZNN model

theoretically.

4.1 Model formulation

Discretizing the CTZNN model (Equation 3) via the difference

formula (Equation 20) leads to the following expression:

xk+1 =
1

36
xk +

1

2
xk−1 +

3

4
xk−2 −

5

18
xk−3

− J−(xk, tk)
(13

6
σ ft(xk, tk)+ hf(xk, tk)

)

+O(σ 4),

(22)

where step size h = 13γ σ/6 ∈ R with γ defined as in Equation 3,

andO(σ 4) ∈ R
n denotes the vector with every element asO(σ 4). By

eliminatingO(σ 4) from Equation 22, the following DTZNNmodel

for solving the TVNE (Equation 1) is obtained:

xk+1 =
1

36
xk +

1

2
xk−1 +

3

4
xk−2 −

5

18
xk−3

− J−(xk, tk)
(13

6
σ ft(xk, tk)+ hf(xk, tk)

))

,

(23)

of which the truncation error isO(σ 4).

Furthermore, to avoid the calculation for J−(xk, tk) in Equation

23, another DTZNN model for Jacobian matrix inversion is

established on the basis of Guo et al. (2017). Such a model is given

by

Mk+1 =
1

36
Mk +

1

2
Mk−1 +

3

4
Mk−2 −

5

18
Mk−3

−
13

6
σMk J̇(ẋk, xk, tk)Mk − hMk

(

J(xk, tk)Mk − I
)

,

(24)

where Mk denotes the state matrix that can converge to J−(xk, tk)

with k being sufficiently large (which will be presented in Section

5), J̇(ẋk, xk, tk) ∈ Rn×n denotes the time derivative of J(xk, tk), and

I ∈ R
n×n denotes the identity matrix. Notably, ẋk is required for

calculating J̇(ẋk, xk, tk), and ẋk is determined by ẋk = f(xk, tk) +

ft(xk, tk). For completeness, the derivation of the DTZNN model

(Equation 24) is presented in the Appendix, which also indicates

that Equation 24 has a truncation error ofO(σ 4).

Therefore, replacing J−(xk, tk) in Equation 23 with Mk and

combining Equation 23 with Equation 24 yield the expression as

follows:

xk+1 =
1

36
xk +

1

2
xk−1 +

3

4
xk−2 −

5

18
xk−3

−Mk

(13

6
σ ft(xk, tk)+ hf(xk, tk)

)

,

Mk+1 =
1

36
Mk +

1

2
Mk−1 +

3

4
Mk−2 −

5

18
Mk−3

−
13

6
σMk J̇(ẋk, xk, tk)Mk − hMk

(

J(xk, tk)Mk − I
)

,

(25)

which is the proposed CDTZNN model to solve the TVNE

(Equation 1). Evidently, the proposed CDTZNN model

(Equation 25) does not require calculating J−(xk, tk) at each

iteration. Thus, the model can reduce the amount of calculation.

Algorithm Procedure of CDTZNNmodel (Equation 25) for

solving TVNE (Equation 1)

Set up time duration T, sampling gap σ , and step size h.

Step 1: Initialize t0 , x0 , andM0 .

Initialization Receive f(x0 , t0), ft(x0 , t0), and J(x0 , t0).

Compute ‖e0‖2 = ‖f(x0 , t0)‖2 .

Compute ẋk = f(xk , tk)+ ft(xk , tk), and J̇(ẋk , xk , tk).

Step 2: Compute xk+1 andMk+1 through (Equation 26).

First Loop Receive f(xk+1 , tk+1), ft(xk+1 , tk+1), and J(xk+1 , tk+1).

(k = 0, 1, 2) Compute ‖ek+1‖2 = ‖f(xk+1 , tk+1)‖2 .

Compute ẋk = f(xk , tk)+ ft(xk , tk), and J̇(ẋk , xk , tk).

Step 3: Compute xk+1 andMk+1 through (Equation 25).

Second loop Receive f(xk+1 , tk+1), ft(xk+1 , tk+1), and J(xk+1 , tk+1).

(k = 3, · · · ,T/σ ) Compute ‖ek+1‖2 = ‖f(xk+1 , tk+1)‖2 .

Step 4: Save state vector xk and computational error ‖ek‖2 .

Output Plot the corresponding figures.

For the proposed CDTZNN model (Equation 25), with the

given initial states x0 and M0, three states (i.e., x1, x2, and x3) for

the first recursion and three states (i.e., M1, M2, and M3) for the

second recursion are obtained via the following computation:



































x1 = x0 −M0
(

σ ft(x0, t0)+ hf(x0, t0)
)

,

M1 = M0 − σM0 J̇(ẋ0, x0, t0)M0 − hM0
(

J(x0, t0)M0 − I
)

,

x2 = x1 −M1
(

σ ft(x1, t1)+ hf(x1, t1)
)

,

M2 = M1 − σM1 J̇(ẋ1, x1, t1)M1 − hM1
(

J(x1, t1)M1 − I
)

,

x3 = x2 −M2
(

σ ft(x2, t2)+ hf(x2, t2)
)

,

M3 = M2 − σM2 J̇(ẋ2, x2, t2)M2 − hM2
(

J(x2, t2)M2 − I
)

.

(26)

In addition, for better understanding, the procedure of using

the proposed CDTZNN model (Equation 25) to solve the TVNE

(Equation 1) is presented in the Algorithm.

4.2 Theoretical analysis

This subsection theoretically analyzes the proposed CDTZNN

model (Equation 25) to solve the TVNE (Equation 1) via the

following theorems.

Theorem 2. The proposed CDTZNNmodel (Equation 25) is zero

stable and consistent and thus possesses the convergence property.

Proof. For the proposed CDTZNN model (Equation 25), the

characteristic polynomials of the first and second recursions are the
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same as each other, which are written as the following unified form:

P̃1(ϑ) = ϑ4 −
1

36
ϑ3 −

1

2
ϑ2 −

3

4
ϑ +

5

18
.

The roots of P̃1(ϑ) = 0 are given by

ϑ1 = −0.5211+ i0.4694,

ϑ2 = −0.5211− i0.4694,

ϑ3 = 0.2372+ i0.8065,

ϑ4 = 0.2372− i0.8065,

where i denotes the imaginary unit. All the roots lie in the unit

disk. According to Griffiths andHigham (2010), Equation 25 is zero

stable.

On the basis of Section 4.1, the DTZNN models (Equation 23,

24) have the truncation error of O(σ 4). With the combination of

such two models, the proposed CDTZNN model (Equation 25)

is derived. This statement shows that the truncation error of

(Equation 25) isO(σ 4). According to Griffiths and Higham (2010),

the proposed CDTZNN model (Equation 25) is consistent. The

zero stability and consistency ensure the convergence property of

Equation 25. The proof is thus completed. �

Theorem 3. The proposed CDTZNN model (Equation 25) is a

linear convergent method for solving the TVNE (Equation 1).

Proof. Let 1xk = xk+1 − xk and x∗
k
= x∗(tk = kτ ) be the

theoretical solution of Equation 1 (i.e., f(x∗
k
, tk) = 0). Considering

the truncation error, the first recursion of the proposed CDTZNN

model (Equation 25) is rewritten as follows:

1xk =−
35

36
1xk−1 −

17

36
1xk−2 +

5

18
1xk−3

−Mk

(13

6
σ ft(xk, tk)+ hf(xk, tk)

)

+O(σ 4),

which is equivalent to the following expression:

1xk =
7

13
1xk −

35

78
1xk−1 −

17

78
1xk−2 +

5

39
1xk−3

−Mk

(

σ ft(xk, tk)+
6

13
hf(xk, tk)

)

+O(σ 4).

(27)

It follows from Taylor series expansion (Mathews and Fink,

2004) that

f(xk+1, tk+1) = f(xk + 1xk, tk + σ )

= f(xk, tk)+ J(xk, tk)1xk + σ ft(xk, tk)+O(σ 2),

(28)

with O(||1xk||
2
2) being absorbed into O(σ 2). Let us

assume that Mk computed by the second recursion of

FIGURE 1

Numerical results of using the Broyden-aided DTZNN model (Equation 7) with σ = 0.01 and h = 0.2 for solving the TVNE (Equation 33). (A) State

trajectory. (B) Computational error ‖ek‖2. (C) Computational error ‖Ek‖F.
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Equation 25 is exactly equal to J−(xk, tk), that is, satisfying

J(xk, tk)Mk − I. Then, substituting Equation 27 into Equation

28 yields

f(xk+1, tk+1) =J(xk, tk)(
7

13
1xk −

35

78
1xk−1 −

17

78
1xk−2 +

5

39
1xk−3)

+ (1−
6

13
h)f(xk, tk)+O(σ 2)+O(σ 4).

(29)

Notably, Theorem 2 and its proof indicate that xk computed

by Equation 25 would converge to x∗
k
. In addition, when k is

sufficiently large, xk = x∗
k
+ O(σ 4), and f(xk, tk) = f(x∗

k
, tk) +

O(σ 4). In view of that f(x∗
k
, tk) = 0, J(xk, tk)(421xk − 351xk−1 −

171xk−2 + 101xk−3)/78 + O(σ 2) = αf(xk, tk) + O(σ 4),

with α ∈ R denoting the correction parameter and k being

sufficiently large. Thus, the reformulation of Equation 29 is

given by

f(xk+1, tk+1) = (1−
6

13
h+ α)f(xk, tk)+O(σ 4). (30)

The error function e(t) defined in Equation 2 is recalled, and the

following result is obtained from Equation 30:

ek = f(xk, tk) = (1−
6

13
h+ α)ek−1 +O(σ 4)

= (1−
6

13
h+ α)((1−

6

13
h+ α)ek−2 +O(σ 4))+O(σ 4)

= (1−
6

13
h+ α)2ek−2 + (1−

6

13
h+ α)O(σ 4)+O(σ 4)

...

= (1−
6

13
h+ α)ke0 + βO(σ 4),

(31)

where e0 ∈ R
n denotes the initial error and β > 0 ∈ R denotes

a constant. As presented in Theorem 2, the proposed CDTZNN

model (Equation 25) possesses the convergence property, which

means that the error function ek is convergent. With regard to

Equation 31, the convergence of ek implies that−1 < 1− 6h/13+

α < 1. Therefore, on the basis of Equation 30,

lim
k→∞

‖ek+1‖2

‖ek‖2
= |1−

6

13
h+ α| < 1, (32)

which shows the linear convergence of the sequence {xk} computed

by Equation 25. Thus, the proposed CDTZNNmodel (Equation 25)

FIGURE 2

Numerical results of using the proposed CDTZNN model (Equation 25) with σ = 0.01 and h = 0.2 for solving the TVNE (Equation 33). (A) State

trajectory. (B) Computational error ‖ek‖2. (C) Computational error ‖Ek‖F.
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is a linear convergent method for solving the TVNE (Equation 1,

which completes the proof. �

Theorem 4. When a solvable TVNE (Equation 1) is considered,

the SSCE of the proposed CDTZNNmodel (Equation 25) is of O(σ 4).

Proof. Theorem 3 and its proof indicate that−1 < 1−6h/13+

α < 1. Then, limk→∞(1−6h/13+α)k = 0. Therefore, the following

result is obtained:

lim
k→∞

‖ek‖2 = lim
k→∞

‖f(xk, tk)‖2 = lim
k→∞

‖βO(σ 4)‖2 = O(σ 4),

which indicates that the SSCE of the proposed CDTZNN model

(Equation 25) is of O(σ 4). The proof is thus completed. �

In summary, Theorems 2 through 4 theoretically guarantee the

computational performance of Equation 25 in solving the TVNE

(Equation 1). That is, the proposed CDTZNNmodel (Equation 25)

can effectively generate an exact solution of Equation 1)

5 Numerical verification and robot
application

In this section, comparative numerical experiments are

conducted to demonstrate the efficacy of the proposed CDTZNN

model (Equation 25). Moreover, such a model is applied to the

motion planning of robot manipulators to show the applicability

of CDTZNN.

5.1 Model comparison

This subsection shows the comparative results of using the

Broyden-aided DTZNN model (Equation 7) and the proposed

CDTZNNmodel (Equation 25) to solve the following TVNE:

f(x(t), t) =











ln(x1(t))− 1/(t + 1)

x1(t)x2(t)− sin(t) exp(1/(t + 1))

x21(t)− sin(t)x2(t)+ x3(t)− 2

x21(t)− x22(t)+ x3(t)+ x4(t)− t











= 0. (33)

The theoretical solution to Equation 33 is

x∗(t) =











exp(1/(t + 1))

sin(t)

2− exp(2/(t + 1))+ sin2(t)

t − 2











,

which is given to validate the effectiveness of Equations 7, 25.

Notably, the DTZNNmodels (Equations 5, 12) for solving Equation

33 have been investigated and compared in Guo et al. (2018),

and their studies are thus omitted in this paper. The numerical

results using Equations 7, 25 to solve Equation 33 are provided in

Figures 1–4.

Figure 1 presents the results of using the Broyden-aided

DTZNN model (Equation 7) with σ = 0.01 and h = 0.2,

where the computational error ‖Ek‖F is obtained by ‖Ek‖F =

FIGURE 3

Numerical results of using the Broyden-aided DTZNN model (Equation 7) with σ = 0.001 and h = 0.2 for solving the TVNE (Equation 33). (A) State

trajectory. (B) Computational error ‖ek‖2. (C) Computational error ‖Ek‖F.
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FIGURE 4

Numerical results of using the proposed CDTZNN model (Equation 25) with σ = 0.001 and h = 0.2 for solving the TVNE (Equation 33). (A) State

trajectory. (B) Computational error ‖ek‖2. (C) Computational error ‖Ek‖F.

‖J(xk, tk)Mk − I‖F with ‖ · ‖F denoting the Frobenius norm

of a matrix. As presented in Figure 1a, each state vector xk of

Equation 7 converges to the theoretical solution of Equation 33,

that is, xk → x∗
k

= x∗(t = kσ ) as k evolves. As presented in

Figure 1b, each computational error ‖ek‖2 of Equation 7 presents

the convergence characteristic, and the corresponding SSCE is of

the order 10−3. Notably, Figure 1c shows the computational error

‖Ek‖F via the Broyden method (Equation 6) during the process of

solving (Equation 33) for illustration and investigation. As shown

in Figure 1c, ‖Ek‖F at steady state is of the order 10
−3. These results

indicate that the Broydenmethod (Equation 6) is effectively utilized

to replace J−(xk, tk) in Equation 5, and they verify that the Broyden-

aided DTZNN model (Equation 7) can effectively solve the TVNE

(Equation 33).

Figure 2 shows the results of using the proposed CDTZNN

model (Equation 25) with σ = 0.01 and h = 0.2. As shown

in Figure 2a, each state vector xk of Equation 25 is convergent

to x∗
k
of Equation 33. As shown in Figure 2b, each computational

error ‖ek‖2 of the first recursion in Equation 25 also shows the

convergence characteristic, and the corresponding SSCE is of the

order 10−7. As shown in Figure 2c, each computational error

‖Ek‖F of the second recursion in Equation 25 at steady state

is of the order 10−7. These results verify that Equation 24 is

successfully combined with Equation 23, and they substantiate that

Equation 25 can effectively solve Equation 33. The comparison

of Figure 1b with Figure 2b shows that the SSCE of Equation

25 is approximately 1, 000 times smaller than the SSCE of

Equation 7. In addition, the comparison of Figure 1c with Figure 2c

reveals that the DTZNN model (Equation 24) is more effective

than the Broyden method (Equation 6) in replacing J−(xk, tk)

at each iteration. These comparative results indicate that the

proposed CDTZNN model (Equation 25) is advantageous over the

Broyden-aided DTZNN model (Equation 7) in solving the TVNE

(Equation 33).

The Broyden-aided DTZNN model (Equation 7) and the

proposed CDTZNNmodel (Equation 25) are studied by decreasing

σ from 0.01 to 0.001 and fixing the value of h. The related numerical

results are presented in Figures 3 and 4, which demonstrate the

effectiveness of Equation 7, 25 in terms of the state vector xk
converging to x∗

k
and the computational errors ‖ek‖2 and ‖Ek‖F

being sufficiently small. In particular, by observing Figures 1–4,

the decrease in σ leads to the decrease in SSCEs. In addition, by

decreasing σ , the performance of Equation 25 is improved more

effectively than that of Equation 7. That is, when σ decreases

by 10 times, ‖ek‖2 of Equation 25 at steady state decreases by

10, 000 times (i.e., from 10−7 to 10−11), and ‖ek‖2 of Equation 7

at steady state decreases only by 100 times (i.e., from 10−3 to 10−5).

Therefore, the proposed CDTZNNmodel (Equation 25) is superior

to the Broyden-aided DTZNNmodel (Equation 7).

The abovementioned numerical results in Figures 1–4

substantiate the efficacy of the proposed CDTZNN model

(Equation 25) in solving the TVNE (Equation 33).
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5.2 E�ect of σ and h

In this subsection, the effect of σ and h on six different DTZNN

models (Equations 5, 7, 11, 12, 13, 25) is studied. Table 1 shows

the corresponding numerical results, where the initial state is x0 =

0.2 ∈ R
4.

It follows from Table 1 that the computational errors ‖ek‖2 at

steady state, i.e., SSCE, are sufficiently small, and the effectiveness

of Equations 5, 7, 11, 12, 13, 25) in solving Equation 33 is

thus validated. By observing the numerical results in Table 1, the

following summary is obtained.

1) The computational performance of four different DTZNN

models (Equations 5, 7, 12, 25) is improved by decreasing the

value of σ , which shows the importance of σ in such models.

2) The SSCE of the Euler DTZNN model (Equation 5) and

the Broyden-aided DTZNN model (Equation 7) is expressed

in the mode of O(σ 2). That is, the decrease in σ by 10

times results in the decrease in SSCE by 100 times. This

phenomenon indicates the O(σ 2) mode of Equations 5 or 7

in solving Equation 33, which coincides with Lemma 2.

3) The SSCEs of the Taylor DTZNN-I model (Equation 11) and

the Taylor DTZNN-II model (Equation 12) are expressed

in the mode of O(σ 4). That is, the decrease in σ by 10

times results in the decrease in SSCE by 10, 000 times. This

phenomenon indicates the O(σ 4) mode of Equation 12 in

solving Equation 33, which coincides with Lemma 3.

4) The SSCE of the Taylor DTZNN-III model (Equation 13) is

expressed in the mode of O(σ 5). That is, the decrease in σ

by 10 times results in the decrease in SSCE by 100, 000 times.

This phenomenon indicates the O(σ 5) mode of Equation 12

in solving Equation 33, which coincides with Lemma 3.

5) The SSCE of the proposed CDTZNN model (Equation 25) is

also expressed in the mode of O(σ 4). That is, the decrease in

σ by 10 times results in the decrease in SSCE by 10, 000 times.

This phenomenon indicates the O(σ 4) mode of Equation 25

in solving Equation 33, which coincides with Theorem 4.

6) The computational performance of four different DTZNN

models (Equations 5, 7, 11, 12, 13, 25) is further improved

in solving Equation 33 with the appropriate increase in h.

On the basis of these results, a small value of σ (e.g., σ = 0.01)

and a relatively large value h (e.g., h = 0.2) can ensure the

superior computational performance of the proposed CDTZNN

model (Equation 25).

Remark 2: With regard to the existing DTZNN models

(Equation 5, 11, 12, 13) that require calculating J−(xk, tk) at each

iteration, they have at least the computational complexity of O(n3).

In this sense, the proposed CDTZNN model (Equation 25) has the

same computational complexity as Equations 5, 11, 12, 13. Notably,

the direct calculation of J−(xk, tk) is not required in Equation 25,

and the amount of calculation can thus be effectively reduced.

Compared with the Broyden-aided DTZNN model (Equation 7),

more multiplications and more additions are needed for the

proposed CDTZNN model (Equation 25). However, Equation 25

has a better performance than Equation 7 in solving Equation 1,

TABLE 1 SSCE of six di�erent DTZNNmodels (Equation 5, 7, 11, 12, 13,

25) with di�erent σ and h for solving the TVNE (Equation 33).

# h σ = 0.01 σ = 0.001 Mode

Euler DTZNN (Equation

5)

0.10 1.399× 10−3 1.414× 10−5

0.15 9.385× 10−4 9.422× 10−6 O(σ 2)

0.20 7.056× 10−4 7.070× 10−6

Broyden-aided DTZNN

(Equation 7)

0.10 3.660× 10−3 4.616× 10−5

0.15 2.397× 10−3 3.066× 10−5 O(σ 2)

0.20 2.109× 10−3 2.927× 10−5

Taylor DTZNN-I

(Equation 11)

0.10 4.554× 10−7 4.945× 10−11

0.15 3.173× 10−7 3.299× 10−11 O(σ 4)

0.20 2.420× 10−7 2.474× 10−11

Taylor DTZNN-II

(Equation 12)

0.10 6.612× 10−7 7.059× 10−11

0.15 4.569× 10−7 4.712× 10−11 O(σ 4)

0.20 3.472× 10−7 3.535× 10−11

Taylor DTZNN-III

(Equation 13)

0.10 1.260× 10−8 1.447× 10−13

0.15 8.913× 10−9 9.763× 10−14 O(σ 5)

0.20 6.837× 10−8 7.618× 10−14

CDTZNN (Equation 25) 0.10 4.874× 10−7 5.184× 10−11

0.15 3.362× 10−7 3.456× 10−11 O(σ 4)

0.20 2.554× 10−7 2.592× 10−11

which can be concluded by Table 1. In summary, the proposed

CDTZNN model (Equation 25) is advantageous over the existing

DTZNN models (Equations 5, 7, 11, 12, 13) in solving the TVNE

(Equation 1).

5.3 Application to robot manipulators

In general, the motion planning of a robot manipulator is

described as that the joint configuration q(t) ∈ R
n should be

determined when giving the end-effector path r(t) ∈ R
n (Li et al.,

2019). Mathematically, the purpose of the robot’s motion planning

can be achieved by effectively solving the TVNE as follows:

f(q(t)) = r(t), (34)

where f(·) denotes the differentiable nonlinear mapping with

known parameters for a specific robot manipulator.

By extending the proposed CDTZNN model (Equation 25) to

solve Equation 34, the following expression is obtained:

qk+1 =
1

36
qk +

1

2
qk−1 +

3

4
qk−2 −

5

18
qk−3

+Mk

(13

6
σ ṙk − h(f(qk)− rk)

)

,

Mk+1 =
1

36
Mk +

1

2
Mk−1 +

3

4
Mk−2 −

5

18
Mk−3

−
13

6
σMk J̇(q̇k, qk)Mk − hMk

(

J(xk)Mk − I
)

,

(35)
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FIGURE 5

Simulation results of using the new motion planning scheme (Equation 35) with σ = 0.01 and h = 0.2 for the DOBOT manipulator to track the

tetracuspid path. (A) Motion trajectories. (B) Joint configuration. (C) End-e�ector positioning errors.

where the joint configuration qk = q(t = kσ ), and the desired

end-effector path rk = r(t = kσ ) with Prk as its time derivative.

Therefore, the newmotion planning scheme (Equation 35) without

need for direct Jacobian matrix inversion is derived for robot

manipulators.

It is worth mentioning here that the calculation procedure of

the new motion planning scheme (Equation 35) is similar to that

in the Algorithm. With the combined initial state {q0,M0}, the

three other combined states required for Equation 35, namely,

{q1,M1}, {q2,M2}, and {q3,M3}, are obtained via the calculation

that is similar to Equation 26. Then, on the basis of the iterative

calculation in Equation 35, the sequences of joint configuration

{qk} are obtained, where k = 4, 5, · · · ,T/σ . Given that {qk} is

determined, the motion planning of robot manipulators is realized

by Equation 35.

The following simulation results under the DOBOT

manipulator (Xiao et al., 2019) are presented for validating

the new motion planning scheme (Equation 35). In the

simulations, the initial DOBOT joint configuration is

q0 = [0;π/6;−π/4] rad, and the motion task duration is

T = 10 s.

Figure 5 presents the results of using the new motion planning

scheme (Equation 35) with σ = 0.01 and h = 0.2 for the

DOBOT manipulator to track a tetracuspid path, where the end-

effector planning error is obtained as εk = f(qk) − rk ∈ R
3.

As shown in Figures 5a, b, the DOBOT joint configuration {qk}

during the duration is determined via (Equation 35). Therefore,

the motion planning task is successfully fulfilled. As shown in

Figure 5c, the end-effector planning error is of order 10−8 m, which

means that the DOBOT end-effector trajectory and the desired

path match well. Notably, the initial point of the desired path is

calculated and confirmed by f (q0), which means that the end-

effector planning error εk at the initial time instant, i.e., ε0, is zero.

Because of intrinsical DOBOT nonlinearity as well as the transient

error computed by Equation 35, εk will increase in the transient

phase. Since Equation 35 has the property of convergence, the

magnitude of εk can be kept within the region of a small value, as

presented in Figure 5c. These simulation results substantiate that

the new scheme (Equation 35) is effective in the motion planning

of the DOBOT manipulator.

The new motion planning scheme (Equation 35) is tested

with the decrease in σ , and Figure 6 presents the related
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FIGURE 6

Simulation results of using the new motion planning scheme (Equation 35) with σ = 0.001 and h = 0.2 for the DOBOT manipulator to track the

tetracuspid path. (A) Motion trajectories. (B) Joint configuration. (C) End-e�ector positioning errors.

simulation results. As presented in Figure 6, the DOBOT end-

effector successfully follows the desired tetracuspid path with the

maximal planning error being of order 10−12 m, which indicates

the effectiveness of Equation 35). Moreover, the comparison of

Figure 5c with Figure 6c shows that the decrease in σ by 10 times

leads to the decrease in the maximal planning error by 10, 000

times (i.e., from 10−8 m to 10−12 m). This phenomenon shows

the important role of σ in the new motion planning scheme

(Equation 35), and it expresses the O(σ 4) form in the planning

error via Equation refmp.new. Thus, σ in Equation 35 can be set as

a small value to realize the required precision in robot applications.

Based on these simulation results, the new motion planning

scheme (Equation 35) with σ = 0.01 and h = 0.2 is applied

to the practical DOBOT manipulator, and the related experiment

results are shown in Figure 7. Evidently, Figure 7 indicates that

the DOBOT end-effector successfully tracks the desired tetracuspid

path. Thus, the new motion planning scheme (Equation 35) is

implemented effectively on the practical ROBOT manipulator.

Remark 3: As indicated by Figures 5, 6, the new motion

planning scheme (Equation 35) possesses the O(σ 4) form in the

planning error. Then, even the sampling time σ is selected as a

large value (e.g., 0.1 s), the robot’s planning error can be small

enough (may be of order 10−4 m). Such a accuracy is still acceptable

for robot manipulators. In practice, the sampling time σ of robot

manipulators is generally selected to be 0.01s (and/or 0.02 s), as

presented in Figure 7. With regard to this value of σ , the robot’s

planning error is kept within a sufficiently small value (e.g., of

order 10−7 m or 10−8 m). In this sense, the planning accuracy

and real-time feasibility can be both guaranteed by the new scheme

(Equation 35) for the motion planning of robot manipulators.

In summary, the above simulation and experiment results

in Figures 5–7 validate the efficacy of the new motion planning

scheme (Equation 35) and show the applicability of the proposed

CDTZNNmodel (Equation 25) to robot manipulators.

6 Conclusions

This study proposes a novel CDTZNNmodel (Equation 25) for

solving the TVNE (Equation 1) on the basis of the discretization

of the CTZNN model (Equation 3) using a new Taylor difference

formula (Equation 14). Such a model is the combination of two
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FIGURE 7

Experiment results of using the new motion planning scheme (Equation 35) with σ = 0.01 and h = 0.2 for the DOBOT manipulator to track the

tetracuspid path.

DTZNN models (Equation 23) and Equation 24, and it does

not require calculating the inverse of Jacobian matrix (thus

reducing the amount of calculation). Theoretical analysis shows

that the proposed CDTZNN model (Equation 25) possesses the

convergence property, and it can generate the exact solution of

Equation 1) Numerical results verify the efficacy of Equation 25

and show the O(σ 4) form in the SSCE of Equation 25. Simulation

results under the DOBOT manipulator demonstrate the efficacy

of the new motion planning scheme (Equation 35) and the

applicability of the proposed CDTZNN model (Equation 25). One

future research direction is to extend the proposed CDTZNN

model (Equation 25) to solve the TVNE with constraints (Guo

et al., 2025). Another direction is to design new CDTZNN

models to solve the TVNE with noise (Liao et al., 2022; Wei

and Jin, 2024). By following this work, the proposed CDTZNN

model (Equation 25) will be studied by implementing on practical

robot manipulators. Besides, the CDTZNN method can be further

investigated and extended to underwater acoustic sensor networks

(Liu J. et al., 2024), multirobot systems (Liu M. et al., 2024), inter-

robot management (Liao et al., 2024), and portfolio management

(Cao et al., 2025).
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Appendix

In this appendix, the derivation of the DTZNN model

(Equation 24) for Jacobian matrix inversion is provided.

In Guo et al. (2017), the following CTZNN model is presented

for computing the inverse of a time-varying matrix A(t) ∈ R
n×n:

Ṁ(t) = −M(t)Ȧ(t)M(t)− µM(t)
(

A(t)M(t)− I
)

, (36)

where M(t) ∈ R
n×n denotes the state matrix with Ṁ(t) as its time

derivative, Ȧ(t) denotes the time derivative of A(t), and µ > 0 ∈ R

denotes the design parameter for scaling the convergence rate of

Equation 36.

Using the difference formula (Equation 21) for discretizing the

CTZNNmodel (Equation 36) yields the expression as follows:

Mk+1 =
1

36
Mk +

1

2
Mk−1 +

3

4
Mk−2 −

5

18
Mk−3

−
13

6
σMkȦ(tk)Mk − hMk

(

A(tk)Mk − I
)

+O(σ 4),

(37)

where O(σ 4) ∈ R
n×n denotes the matrix with every element

beingO(σ 4). By eliminatingO(σ 4) from Equation 37, the following

DTZNNmodel for time-varying matrix inversion is obtained:

Mk+1 =
1

36
Mk +

1

2
Mk−1 +

3

4
Mk−2 −

5

18
Mk−3

−
13

6
σMkȦ(tk)Mk − hMk

(

A(tk)Mk − I
)

,

(38)

which has a truncation error ofO(σ 4).

With regard to the Jacobianmatrix inversion in this study, Ȧ(tk)

and A(tk) in Equation 38 are replaced by J̇(ẋk, xk, tk) and J(xk, tk),

respectively. Thus, the formulation is obtained as follows:

Mk+1 =
1

36
Mk +

1

2
Mk−1 +

3

4
Mk−2 −

5

18
Mk−3

−
13

6
σMk J̇(ẋk, xk, tk)Mk − hMk

(

J(xk, tk)Mk − I
)

,

which is exactly the DTZNN model (Equation 24) for Jacobian

matrix inversion. On the basis of the aforementioned derivation,

the truncation error of Equation 24 isO(σ 4).
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