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Introduction: Understanding human actions in complex environments is 
crucial for advancing applications in areas such as surveillance, robotics, and 
autonomous systems. Identifying actions from UAV-recorded videos becomes 
more challenging as the task presents unique challenges, including motion blur, 
dynamic background, lighting variations, and varying viewpoints. The presented 
work develops a deep learning system that recognizes multi-person behaviors 
from data gathered by UAVs. The proposed system provides higher recognition 
accuracy while maintaining robustness along with dynamic environmental 
adaptability through the integration of different features and neural network 
models. The study supports the wider development of neural network systems 
utilized in complicated contexts while creating intelligent UAV applications 
utilizing neural networks.

Method: The proposed study uses deep learning and feature extraction 
approaches to create a novel method to recognize various actions in UAV-
recorded video. The proposed model improves identification capacities and 
system robustness by addressing motion dynamic problems and intricate 
environmental constraints, encouraging advancements in UAV-based neural 
network systems.

Results: We proposed a deep learning-based framework with feature extraction 
approaches that may effectively increase the accuracy and robustness of multi-
person action recognition in the challenging scenarios. Compared to the existing 
approaches, our system achieved 91.50% on MOD20 dataset and 89.71% on 
Okutama-Action. These results do, in fact, show how useful neural network-
based methods are for managing the limitations of UAV-based application.

Discussion: Results how that the proposed framework is indeed effective at 
multi-person action recognition under difficult UAV conditions.
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1 Introduction

Human Action Recognition (HAR) has been gaining a lot of 
attention recently in computer vision because of its numerous 
applications in sports analytics, healthcare, autonomous systems, and 
surveillance (Sultani and Shah, 2021). To improve the performance 
and safety of the smart system and to recognize how people act, this 
stage is acknowledged as crucial. We  demonstrate how this helps 
people make better decisions in difficult situations (Yadav et al., 2023). 
The adoption of HAR systems is increasing due to recent advancements 
in UAV technology, commonly known as drones. Equipped with high-
quality cameras and precise flight controls, drones capture more 
flexible and dynamic data compared to ground-based cameras. 
Modern drones play a crucial role in various applications, including 
search and rescue operations, disaster response, military surveillance, 
traffic management, and crowd monitoring. Their ability to 
autonomously access remote areas makes UAV technology a valuable 
tool for efficient monitoring and data collection.

The implementation of HAR in drone systems introduces new 
challenges. Multiple viewing points, shifting settings, and shifting light 
conditions are all part of the video that drones capture (Perera et al., 
2020; Ahmad et al., 2022). As subjects appear smaller and harder to 
distinguish from multiple camera angles, the combination of drone 
altitude and viewing angle poses challenges for action detection 
methods. Developing algorithms capable of simultaneously tracking 
multiple individuals performing tasks is essential. The integration of 
drones with HAR holds great potential for advancing smart environment 
applications, autonomous navigation systems, and public safety solutions.

Our methodology presents a framework that expands the precise 
recognition of multi-person actions in UAV videos. Our system 
combines robust preprocessing and multi-level feature extraction with 
classifiers to ensure accurate performance in diverse and dynamic 
aerial environments (Barekatain et al., 2017). The system begins with 
a preprocessing pipeline that enhances UAV footage quality by 
reducing noise, removing background elements, and isolating human 
subjects. It then extracts human silhouettes and generates skeletal 
representations of 33 keypoints using MediaPipe Pose estimation. 
These skeletal features effectively capture spatial dynamics and 
temporal action sequences.

Our approach leverages two types of feature extraction strategies: 
full-body features and keypoint-based features. The full-body features 
applied are Fourier Descriptors, Distance Transform, and AKAZE 
descriptors because they recognize body structures and movement 
patterns. Keypoint features capture meaningful data from the human 
body through discrete anatomical landmarks (keypoints). These 
features enhance the accuracy of human motion analysis by effectively 
tracking spatial and temporal keypoint relationships (Öfverstedt et al., 
2020). The process combines both feature types to maximize system 
performance. Keypoint-based features, such as 0–180° intensity 
features, keypoint-based motion histograms, and multi-point 
autocorrelation are used. For classification, we employ three deep 
learning classifiers: Deep Belief Networks (DBN), Convolutional 
Neural Networks (CNN), and Recurrent Neural Networks (RNN) 
which utilize gradient descent as optimization. Deep learning 
classifiers have been specifically chosen to efficiently analyze spatial 
and temporal features, ensuring robust classification of multi-person 
actions in UAV-captured videos. The proposed framework 
demonstrates incredible potential for applications in intelligent 

systems, such as public safety monitoring, disaster management, and 
sports performance analysis, where drones play a vital role in 
capturing actions in complex aerial scenarios.

The key contributions of this work are as follows;

 • Developed an adaptive deep learning-based framework for multi-
person action recognition in UAV-captured videos, addressing 
issues such as distinct perspectives and changing backgrounds.

 • Proposed a multi-level feature extraction approach, utilizing full-
body features (Fourier Descriptors, Distance Transform, AKAZE) 
to capture movement patterns and keypoint-based features (0–180° 
intensity features, keypoint-based motion histograms, multi-point 
autocorrelation) to analyze spatial and temporal features.

 • Implemented gradient descent optimization to fine-tune 
advanced deep learning classifiers—Deep Belief Networks 
(DBN), Convolutional Neural Networks (CNN), and Recurrent 
Neural Networks (RNN)—for accurate action classification.

 • Evaluated the framework on two benchmark datasets MOD20 
and Okutama-Action, achieving accuracies of 91.50 and 89.71%, 
respectively, demonstrating its effectiveness across aerial 
environments with diverse viewpoints and scenarios.

This approach demonstrated a major advancement in multi-
person action recognition from UAV-captured videos, tackling the 
issues posed by dynamic aerial imagery, changing viewpoints, and 
environmental complexities.

The rest of the paper is structured as follows: Section 2 includes a 
comprehensive analysis of related work in multi-person action 
recognition and UAV-based applications. Section 3 explains the 
proposed methodology. Section 4 outlines the experimental setup, 
datasets, and evaluation measures employed, followed by a detailed 
analysis of the results in Section 5. Finally, Section 6 concludes the 
paper and suggests possibilities for future work in advanced feature 
integration and scalable frameworks for multi-person action 
recognition utilizing UAVs.

2 Literature review

The latest computer vision developments help stronger 
recognition of human actions from UAV images. Researchers split 
their studies into machine learning and deep learning methods. The 
two strategies worked together to make progress in the research area.

2.1 UAV imagery over machine learning

Machine learning-based approaches for human action recognition 
in UAV imagery rely on feature extraction and classification models 
rather that automatic feature learning. A machine learning method 
designed by Abbas and Jalal (2024) uses UAV videos to recognize 
human activities through multiple features extraction and 
classification operations. Uses UAV videos to recognize human 
activities through multiple feature extraction and classification 
operations. YOLOv5 first detects humans, followed by pose 
estimation, which extracts key points representing body joints. The 
system computes angular relationships, distance values, and 3D point 
cloud features using the extracted key points. The feature space is 
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further enhanced through Linear Discriminant Analysis (LDA), 
which reduces dimensionality and improves feature separability. The 
system utilizes a multi-class Support Vector Machine as its final stage 
for action classification. The proposed method effectively identified 
human activities when tested on the Drone-Action dataset, 
demonstrating successful results. The work implements a conventional 
machine learning framework that combines manually extracted 
features alongside optimization steps instead of using automatic deep 
learning feature extraction along with optimization (Arunnehru et al., 
2022). 2D and 3D DIDGP descriptors with spatiotemporal interest 
points to create a system for detecting human activity. Prior to 
providing advantages for human action recognition, the research 
methodology combines DCT and DWT transformations and employs 
PCA-based dimension reduction in feature extraction. When 
evaluating the UT-Interaction dataset using SVM and RF classifiers, 
the verification procedure achieved high accuracy, yielding greater 
precision than previously employed techniques. According to research 
findings, robust video-based human activity detection systems can 
be effectively solved using human-developed space–time properties.

2.2 UAV imagery over deep learning

Deep learning enhances UAVs’ ability to interpret activities by 
directly analyzing video data from aerial imagery, without relying on 
specific distinguishing features. CNNs, combined with transformer-
based deep learning approaches, excel at detecting small moving 
objects, regardless of camera angle or occlusion. In drone surveillance 
applications, these methods outperform traditional machine learning 
techniques. Because of its excellent quality and low human component, 
research is increasingly concentrated on creating new architectural 
ways for UAV video analysis. Drone-HAT, a Hybrid Attention 
Transformer (HAT) framework for identifying multiple subjects’ 
behaviors from UAV surveillance video data (Khan et al., 2024). The 
study highlights the difficulties in tracking human movements in 
expansive drone photos that disperse over numerous small objects the 
size of humans. The system uses a Vision Transformer model for 
action detection, YOLOv8 for object identification, and DeepSORT 
for tracking. The study introduces a novel feature fusion technique 
that efficiently extracts highly accurate data while minimizing 
computational costs. In drone surveillance applications, transformer 
networks leverage multi-level attention mechanisms to precisely 
monitor and classify human behavior. The findings highlight how 
attention-based networks effectively handle the core video processing 
requirements for tracking multiple targets performing diverse actions 
(Gundu and Syed, 2023), a deep learning framework for UAV 
recording human activity identification is created by combining HOG, 
Mask-RCNN, and Bi-LSTM. Small moving objects in UAV 
surveillance footage move across complicated environments at varying 
speeds, making it challenging to identify human movements. The goal 
of the study is to resolve this specific problem. This approach works 
on images that detect both edges and shapes before HOG 
measurement. The Mask-RCNN model can identify individual 
subjects in drone video frames thanks to its remarkable feature map 
extraction results. In order to identify temporal–spatial activity 
patterns between frames that come before and after one another, the 
Bi-LSTM network examines video frames. The capacity of this method 
to identify various human activities on YouTube aerial footage is 

demonstrated by experience-based data. The study demonstrates how 
feature descriptors and deep learning enhance UAV systems’ capacity 
to identify human activity in the air. To develop a technique for video 
classification that efficiently extracts spatial–temporal data, the 
authors (Vrskova et al., 2023) combined 3DCNN with ConvLSTM. By 
using the well-known datasets LoDVP and UCF50, the researchers 
show the effectiveness of their approach. To fully illustrate the benefits 
of the combination of 3DCNN and ConvLSTM, the study needs 
further details on why it performs better than standard video 
categorization techniques. When the study broadened its data analysis 
methodology with authentic real-world datasets that go beyond recent 
survey results, the testing procedure would become more credible. 
Integrating 3DCNN and ConvLSTM enhances deep learning systems’ 
ability to classify videos more effectively. This approach leverages 
advanced neural network architectures to optimize performance in 
video analysis. To detect different people and recognize their 
movements during airborne security operations, (Geraldes et  al., 
2019) used deep learning techniques in their UAV-based situational 
awareness system, PAL. To detect many people and recognize their 
actions, the system uses deep learning models POINet and 
ActivityNet, which use LSTM. With the aid of the Pixel2GPS 
converter, the PAL system employs near real-time operations to 
convert UAV video feed frames into GPS locations in real time for 
individuals that have been detected. When our system was tested 
using the Okutama dataset, action identification performance held 
steady even when the UAV flight altitude and camera angle changed. 
The PAL system’s requirements are largely determined by the 
computational demands of deep learning models, making efficient 
hardware essential for optimal performance. The study demonstrates 
that deep learning is effective for UAV-based multi-person action 
recognition; nevertheless, more performance improvements and 
environmental modifications are required. MITFAS (Mutual 
Information-Based Temporal Feature Alignment and Sampling) was 
proposed by Xian et al. (2024) to recognize human actions in UAV 
recordings. This approach addresses three main issues: obscured 
items, drone shifts, and viewpoint alterations, as well as the effects of 
drone movement on backdrop elements. The method locks synchrony 
between temporal domain variables that contain action information 
by using mutual knowledge; as a result, recognition models only 
consider human motions. The suggested approach determines which 
UAV video frames provide the greatest advantages for video stream 
analysis by using joint mutual information. The suggested approach 
for evaluation in various UAV action recognition datasets is included 
into the deep learning model. Aerial Polarized-Transformer Network 
(AP-TransNet), created by Dhiman et al. (2024) used aerial video 
cameras to identify human movements. This system handles occlusion 
problems, complicated backgrounds, and various view angles by 
combining spatial and temporal information. By managing relevant 
or irrelevant information and efficiently filtering details, the Polarized 
Encoding Block (PEB) is the primary feature representation 
augmentation tool that improves action recognition performance. 
Inception pre-trained modules help in the framework’s ability to 
recognize spatial patterns, while transformer-based modeling allows 
it to comprehend temporal patterns across video shots. Functional 
tests and extensive trials have shown the system’s resilience, 
demonstrating its effectiveness and capability for drone-based HAR 
applications, especially surveillance and monitoring systems. In order 
to identify “who is doing what?” (Yang et al., 2019) proposed a new 
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algorithm that can identify several atomic visual actions in aerial 
security footage. In order to process high-resolution images and 
generate effective detection recommendations, a Clustering Region 
Proposal Network (C-RPN) functions inside an integrated framework.

The system also integrates action recognition, multi-object 
tracking, and object detection. Prior to a 3D ConvNet classification 
step, the Spatio-Temporal Attention Module (STAM) directs the target 
individuals into spatiotemporal tubes using its focus mechanism. The 
suggested framework demonstrated exceptional performance for 
simultaneous action recognition, tiny object handling, and drone 
movement on the Okutama-Action dataset.

3 Materials and methods

3.1 System methodology

The proposed UAV-captured video multi-person action 
recognition in the UAV-captured videos adopts a structural approach 
designed to address the unique challenges of aerial imagery. The 
methodology emphasizes both feature extraction strategies to 
maximize system accuracy. The pipeline begins with preprocessing 

procedures, including noise reduction through Gaussian blur and 
grayscale conversion and background removal operation. This is 
followed by segmentation using the Gaussian Mixture Model (GMM) 
to obtain human silhouettes. Subsequently, a skeletal model is 
constructed to represent the keypoints. Feature extraction is achieved 
through two methods: full-body features, which capture overall 
movement patterns, and keypoint-based features, which emphasize 
motion dynamics using landmarks within the body. A gradient 
descent optimizer is used for efficient optimization, followed by 
classification utilizing three deep learning classifiers: DBN, CNN, and 
RNN. This pipeline allows exact multi-person action recognition 
across diverse UAV scenarios. Figure  1 illustrates the proposed 
system architecture.

3.2 Pre-processing

The preprocessing stage prepares UAV-captured video frames 
which enables robust and accurate multi-person action recognition. 
During this processing stage, the system addresses essential challenges 
related to noise, dynamic backgrounds, and lighting. The 
preprocessing steps are performed sequentially as follows: Frame 

FIGURE 1

Detailed architecture of the proposed system for multi-person action recognition.
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extraction, Gaussian blur, Grayscale conversion, and background 
removal. In the first step frame extraction, video data is divided into 
distinct frames to process each image separately. This stage turns 
continuous video streams into discrete image sequences, giving a 
structured input format for future preprocessing and feature 
extraction. The retrieved frames constitute the foundation for further 
analysis. Next, Gaussian blur is applied to reduce image noise and 
smoothen the frame for better feature extraction. Gaussian blur acts 
by avenging the pixel brightness in the neighborhood of each pixel 
using a Gaussian kernel. The blurred intensity value ( ),iF x y′  at pixel 
location (x, y) is calculated as Equation 1;
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Here, σ  represents the standard deviation of the Gaussian 
function, controlling the amount of smoothing, and k determines the 
kernel size. This process eliminates high-frequency noise while 
maintaining edge details, which is essential for further segmentation 
and feature extraction.

Following noise reduction, the frames are converted to grayscale. 
The frames are transformed from RGB to grayscale, simplifying the 
data by minimizing the color channels while preserving the intensity 
information. This phase decreases computational complexity and 
guarantees the preservation of brightness changes, which is essential 
for identifying human actions. The grayscale intensity Gi(x, y) at a 
pixel position (x, y) in the frame iF ′ is computed as Equation 2;

 ( ) ( ) ( ) ( ). . ., 0.2989 , 0.5870 , 0.1140 ,iG x y R x y G x y B x y= + +
 (2)

Where, ( ),R x y , ( ),G x y , and ( ),B x y  represent the red, green and 
blue color channels of the pixel, respectively. This step reduces the 
computational complexity by retaining the luminance information 
while discarding color data.

The final steps achieve maximum noise reduction to enhance 
human visibility within UAV video recordings. The goal during this 
step is to eliminate dynamic and complex background components 
including vehicles that move along with vegetation and shadows that 
cause noticeable noise. The isolation process for human shapes 
combined with detail removal focuses the observation exclusively on 
human motion. Subject isolation becomes essential when there are 
multiple humans since it helps achieve accurate segmentation and 
feature extraction in later processing steps. The results of these 
preprocessing steps, highlighting the progressive refinement of the 
input frames, are illustrated in Figure 2.

3.3 Gaussian Mixture Model segmentation

The segmentation process employs Gaussian Mixture Model 
(GMM) analysis to partition images, to distinguish human subjects 
from background (Xing et al., 2019; Hou et al., 2023). The isolation of 
human subjects from dynamic environments with automobiles, 
plants, and shadows is necessary for UAV image-based human activity 
recognition. Image grayscale data transforms into a single-
dimensional array format as the segmentation process starts through 
treating each pixel like a distinct data value. The analysis procedure 
applies Gaussian distribution mixture models to pixel intensity values. 

FIGURE 2

Sequential depiction of preprocessing stages: (a) Original frame, (b) Gaussian Blur, (c) Grayscale, and (d) Background removed.

https://doi.org/10.3389/fnbot.2025.1582995
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Alshehri et al. 10.3389/fnbot.2025.1582995

Frontiers in Neurorobotics 06 frontiersin.org

The GMM assumes that the pixel intensities are generated from a 
mixture of K Gaussian components, and the probability density 
function for each pixel I is represented as Equation 3;

 
( ) 2

1
( | , )

K
i k i k k
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p x N xπ µ σ
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Where ( )ip x  is the probability density function for pixel i, kπ  is 
the weight of the k-th Gaussian component, 2( | , )i k kN x µ σ  is the 
Gaussian distribution with mean kµ  and variance 2

kσ  and K represents 
the number of Gaussian components. The Expectation–Maximization 
(EM) algorithm is employed to estimate the parameters 2,k kµ σ , and 

kπ  of the Gaussian components. In the E-step, the algorithm iterates 
between two main steps: the E-step and M-step. In the E-step, the 
algorithm calculated the posterior probability ikγ , which indicates the 
probability that pixel i belongs to the k-th Gaussian component. This 
probability is computed using Equation 4;
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The model runs these sequential steps through multiple iterations 
until parameters reach convergence at which point no substantial changes 
emerge. When algorithm convergence occurs, the model selects the most 
probable Gaussian distribution for assigning each pixel. A prediction 
exists for every pixel i through the model is given in Equation 5;

 
arg maxˆi ik

k
z γ=

 
(5)

Where ˆiz  represents the predicted label for pixel i, and each pixel 
is assigned to the Gaussian component with the highest responsibility.

The GMM segmentation method produces as its final result an 
image with pixel data that receives labels connected to individual 
Gaussian components. Human figure detection becomes possible 
through subsequent analysis of these segmented regions. GMM 
segmentation identifies regions of human figures through analysis of 
pixel intensity statistics and distance-level characteristics. The 

segmentation approach contributes significant value toward 
UAV-based human detection operations that face dynamic changes in 
background characteristics. Through its statistical distribution 
approach which allows pixel values to be represented by Gaussian 
distributions GMM achieves robustness against variations in the 
environment thus enabling successful human subject segmentation.

This GMM-based segmentation approach plays a key role in 
background noise reduction as well as human subject enhancement 
to optimize image processing throughout the human action 
recognition pipeline. The method facilitates optimal segmentation 
thus enabling precise extraction of human silhouettes and significant 
image features. Figure 3 shows the results of GMM segmentation for 
three different action classes.

3.4 Human silhouette extraction

The human silhouette extraction follows Gaussian Mixture Model 
(GMM) segmentation for improved human figure segmentation while 
removing background noises. The human shapes require complete 
separation at this point to achieve precise feature extraction in the 
following process (Prakash et  al., 2018; Pervaiz et  al., 2021). The 
output segments from GMM construct regions whose pixels indicate 
various brightness values for each categorized area. Human silhouette 
retrieval requires first conducting thresholding on the segmented 
image to identify human regions from other image parts. This binary 
mask is represented in Equation 6:

 
( ) ( )1, ,

,
0,

hif S x y C
B x y

otherwise
 =

= 
  

(6)

Where S (x, y) represents the segmented image, and hC  denotes 
the intensity corresponding to the human class. To remove minor 
artifacts and increase silhouette boundary clarity morphological 
processes called erosion and dilation work next to thresholding. These 
methods clean the binary mask by reducing noise and filling minor 
gaps to obtain a refined silhouette. The system selects the largest 
connected connective shape because it matches the human body 
figure. The solution separates the silhouette through a process that 
discards disconnected regions and small background elements. 

FIGURE 3

GMM segmentation results of three different action classes: (a) Rock Climbing, (b) Skiing, and (c) Standup Paddling.
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Following connected component identification, the largest visual area 
becomes the human silhouette. The generated silhouette presents a 
clean, isolated binary format of the human shape, which facilitates the 
system’s focus on human movements independent of background 
distractions. This initial outline maintains its significance throughout 
the entire action recognition process because it produces reliable 
human figure features. Figure 4 shows the results of human silhouette 
extraction for three different action classes.

3.5 Keypoint extraction

This step involves identifying and extracting key body landmarks 
from 2D image data using skeletonization techniques. A skeletal 
representation is generated by detecting key points and connecting body 
joints, defining posture and spatial orientation (Doan, 2022). Through 
the MediaPipe Pose library, a pre-trained model detects the human 
body’s 33 landmarks to generate extraction results (Ma and Tran-
Nguyen, 2024). The pose estimation algorithm detects landmarks while 
providing then as normalized 2D coordinates (x, y) along with visibility 
(v) to determine the landmarks detection accuracy. These normalized 
coordinates are calculated as in Equations 7, 8:

 

pixel
norm

x
x

width
=

 
(7)

 

pixel
norm

y
y

height
=

 
(8)

Where pixelx  and pixely  represent the pixel locations of the 
landmark in the original image, and width and height are the 
dimensions of the image. The landmarks detected are represented as 
in Equation 9:

 ( ){ , , | 1,2,3, }i i iL x y v i N= = ……  (9)

Where N is the total numbers of landmarks 33, ix  and iy  are the 
normalized coordinates of the ith landmark, iv  is the visibility score. 

Once the landmarks are detected, they are connected based on 
anatomical relations to form the human skeleton. The skeleton is 
mathematically modeled as graph G(V, E), where V is the set of 
landmarks, and E is the set of edges connecting the landmarks, as 
defined by anatomical connections. The skeletal structure develops 
through relationships between body points like shoulder-elbow joints 
or hip-knee joints and these interactions become visible through 
connecting landmarks with lines. This skeletal representation 
maintains its significance for future feature extraction and action 
classification work because it preserves normalized 2D landmark 
coordinates. The skeletal representation offers an efficient 
computational method to model human body spatial arrangements. 
Figure  5 shows the skeletal representation of three different 
action classes.

3.6 Feature extraction

Feature extraction is the primary operational stage of the proposed 
multi-person action recognition system. The technique next converts 
the preprocessed data into useful feature representations for 
categorization. The recognition system uses both full-body features to 
detect the entire body’s movement and keypoint-based features to 
track specific body spots. With its full body and keypoint-based 
feature interpretation of human movements, the identification system 
achieves strong results for complicated UAV situations.

3.6.1 Full-body features
The proposed multi-person action recognition system uses 

full-body measurements to identify human movement and shape 
characteristics. By continuously monitoring key movement 
characteristics, these monitoring features allow for a 
comprehensive understanding of human body dynamics over the 
global dimension of UAV operations. In order to distinguish 
between action-relevant motion alterations that result in accurate 
identification, the system assesses the shapes of the human body. 
Three full-body features are used by the system: AKAZE, Distance 
Transform, and Fourier Descriptor. The system can recognize 
different behaviors in complex aerial environment settings because 
of these properties, which also allows it to execute robust 
representation processing.

FIGURE 4

Results of human silhouette extraction, showcasing refined human shapes for three distinct action classes.
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3.6.1.1 AKAZE feature
AKAZE (Accelerated-KAZE) extracts robust keypoints quickly 

through its detection and description capabilities. Because the Perona-
Malik anisotropic diffusion preserves relevant image features in 
addition to noise reduction (Tareen and Saleem, 2018; Hu et al., 2020), 
AKAZE is able to create a nonlinear scale-space. The diffusion 
sequence happens following Equation 10:

 
( )( ), ,L div c x y t L

t
∂

= ∇
∂  

(10)

While the image gradient ∇L serves as a crucial component of the 
calculation, the image L(x, y, t) at various scales interacts with the 
conductivity function c(x, y, t). Because of its effective boundary 
preservation, AKAZE is able to keep edge details better than other 
descriptors, particularly in human silhouette analysis, when nonlinear 
diffusion is used instead of Gaussian blurring. In order to determine 
its position, AKAZE keypoint detection looks for regions with 
significant contrast and texture fluctuations using the Hessian matrix 
determinant value. Equation 11 uses second-order derivatives to 
calculate the determinant:

 ( ) ( )2det xx yy xyH L L L= −  (11)

Where xxL  and yyL  represent the second-order derivatives 
along the x- and y-axis, while xyL  represents the mixed derivative. 
The detection of keypoints depends on identifying local maximum 
values from the determinant function which operates across 
various scale levels for maintaining robust detection through 
transformation like scaling and rotation. AKAZE detects 
keypoints before employing its Modified Local Difference Binary 
(MLDB) method to generate descriptors through keypoint 
neighborhood intensity comparison analysis. The descriptors 
serve as matches during the comparison of images. When AKAZE 
analyzes human silhouettes, it generates effective shape 
recognition and structural information which produces 
dependable features for subsequent analysis of action recognition. 
Figure 6 shows AKAZE feature detection on human silhouettes 
for three action classes.

3.6.1.2 Distance transform feature
The Distance Transform is a mathematical algorithm that calculates 

the pixel-to-boundary distance for each point in binary images, 
determining the shortest possible edge length. It effectively detects 
spatial and geometric patterns in human silhouettes (Lindblad et al., 
2020), making it valuable for recognizing body structures and motion 
dynamics in action recognition systems (Navarro et al., 2019; Tayyab 
et al., 2025). The distance transform operates on the human silhouette 
S(x, y) which contains white human shapes with values S(x, y) = 255 
and black background pixels with value S(x, y) = 0. It calculates pixel 
distances from human silhouette edges. Each pixel obtains its distance 
value by applying the Euclidean metric as shown in Equation 12:
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( ) ( )2 2

,
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u v Boundary S
D x y x u y v

∈
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(12)

Where (u, v) represents the coordinates of the human silhouette 
boundary. The distance values undergo normalization to [0, 255] for 
feature extraction as follows as in Equation 13:
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Where minD  and maxD  are the minimum and maximum distance 
values within the computed distance map. The normalization 
technique creates uniform scaling of all distance values that maintain 
relative distances for suitable processing in subsequent stages. The 
results of the distance transform feature extraction for three different 
action classes are presented in Figure 7.

3.6.1.3 Fourier descriptor
The transformation of object boundary data into frequency 

domain through Fourier descriptors (FDs) provides an effective 
method to represent object shapes. Shape analysis uses this method 
extensively to analyze human silhouettes because it shows stability 
across translation scaling and rotational changes. Fourier descriptors’ 
primary purpose includes converting shape boundary data into 
complex number sequences following the application of discrete 
Fourier transform (DFT) to reveal meaningful shape features (Yan 
et al., 2023; Saikia et al., 2021). Processing begins by extracting the 

FIGURE 5

Skeletonized representation of three different action classes: (a) Skiing, (b) Backpacking, and (c) Rock climbing.
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boundary of the human silhouette. A representation of the boundary 
exists as a group of ordered contour points ( ),n nx y  that are placed in 
a 2D space. A sequence of complex numbers results from the 
conversion process of these points as shown in Equation 14:

 , 0,1,2,. ., 1n n nz x iy n N= + = ……… −  (14)

Where i represents the imaginary unit. To extend FD into a 3D 
mathematical framework for MOD20 and Okutama-Action datasets, 
depth information (z) is normalized relative to the overall scale and 
incorporated into the contour representation as in Equation 15:

 ( )maxn
zz z

z
= +

 
(15)

Applying the Fourier transform to this sequence yields a set of 
Fourier coefficients as shown in Equation 16:
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These coefficients represent the frequency components of the 
shape, capturing both global and local contour characteristics. The 
first Fourier coefficient (𝑍0) becomes zero to achieve translation 
invariance along with scale invariance achieved through 
coefficient normalization relative to the first non-zero coefficient 
and rotation invariance through phase alignment of Fourier 
coefficients. The transformation-invariant representation of 
objects comes from Fourier Descriptors (FDs). Translation 
invariance occurs when setting the initial Fourier coefficient value 
to zero and scale invariance results from normalizing coefficients 
relative to the first non-empty value. Human silhouette size 
variations do not affect the robustness of FDs. The contour 
reconstruction through Inverse Fourier Transform keeps 
low-frequency components to smooth noise yet maintain crucial 
shape information. FD operates on extracted 3D point clouds 
from UAV image silhouettes that come from both MOD20 and 
Okutama-Action datasets. FD provides stable and robust human 
action analysis by maintaining perspective invariant and rotation 
and scaling resistant 3D shape data representations. Silhouette 
images are processed to obtain contour data which permits FD 
computation and visualizes shape results during the 
implementation process. The technique proves efficient at 
detecting human body postures because of its capability to 

FIGURE 6

AKAZE feature detection on human silhouettes for three different action classes: (a) Standup Paddling, (b) Skiing, and (c) Rock climbing.

FIGURE 7

Distance transform feature extraction representation for three different action classes: (a) Standup Paddling, (b) Skiing, and (c) Rock climbing.
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recognize actions. Figure 8 illustrates the Fourier descriptor-based 
shape representation for human silhouettes of two distinct 
human actions.

3.6.2 Keypoint-based features
Keypoint-based features extract body movements and structural 

characteristics from human skeletal representations. The features 
derive from keypoint movements and their relative positions 
throughout a period of time to represent human movement’s 
characteristics. The proposed system implements multiple keypoint-
based elements, including a 0–180° Intensity Feature, a Keypoint-
Based Motion Histogram, and Multi-Point Autocorrelation Features. 
These features enhance the system’s ability to identify human motion 
patterns while emphasizing temporal and spatial information within 
human body movements.

3.6.2.1 0–180° intensity feature
As a keypoint feature based on the skeletal model, the 0–180° 

Intensity Feature examines the pattern of angular intensity 

distribution in the skeletal model. The technique uses a Radon 
transform to calculate the mean intensity across angles ranging 
from 0° to 180°, facilitating providing structural patterns and 
directional information for human action (Akhter et  al., 2021; 
Dwivedi et al., 2022). For a given patch centered at a keypoint, the 
Radon transform projects the intensity f(x, y) at an angle θ as 
shown in Equation 17:

 ( ) ( ) ( ), , cos sinR f x y x y dxdyρ θ δ θ θ ρ
∞ ∞

−∞ −∞
= + −∫ ∫  

(17)

Where ( ),R ρ θ  is the projection, ρ  is the radial distance, and δ  is 
the Dirac delta function ensuring projection alignment. To simplify 
interpretation, the mean intensity for each angle θ across all pixels in 
the patch is computed using Equation 18:
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FIGURE 8

Fourier descriptor representation of human silhouettes of two different action classes: (a) Skiing, and (b) Rock climbing.
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Where N is the number pixels in the patch, and ( ),iR ρ θ  
represents the Radon transform at iρ . The analysis procedure 
progressively repeats for every skeletal component leading to the 
generation of intensity measurements across a 0–180° angle range. 
The profiles get assembled into 3D data that organizes its data points 
across keypoint positions with intensity measurement scales. Figure 9 
shows 3D plot of the 0–180° intensity feature of two persons 
performing action.

3.6.2.2 Keypoint-based motion histogram
The Keypoint-Based Motion Histogram feature processes 

sequential keypoint data from human skeletal data to extract 
movement data. A simple yet discriminative motion pattern 
representation is achieved by the feature by constructing direction 
and magnitude histograms from keypoint position change data from 
frames (Wahid et  al., 2024; Bisht et  al., 2024). The first step is 
extracting keypoints from consecutive frames. Each keypoint is 
represented by its spatial coordinates ( ),i ix y . Motion vectors are 
computed to capture the displacement of each keypoint between two 
consecutive frames as shown in Equation 19:

 ( ), , 1 , , 1 , , 1 ,,i t i t i t i t i t i t i tv k k x x y y+ + += − = − −  (19)

Where ,i tk  represents the coordinates of keypoint i in the frame t. 
The magnitude of each motion vector quantifies the distance traveled 
by a keypoint as shown in Equation 20:

 
( ) ( )2 2
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 (20)

The direction of motion is determined as the angle of the motion 
vector as shown in Equation 21:
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The analysis combines directional and magnitude data points 
from all frames and keypoints to generate histograms. The magnitude 
histogram emerges from dividing all magnitude values into defined 
bins whereas direction angles fall within [0°, 360°] angular bins to 
produce direction histograms. This procedure results in an efficient 
depiction of motion dynamics. Figure  10 shows the histogram of 
magnitude and direction of motion for 33 keypoints.

3.6.2.3 Multi-points autocorrelation features
We utilized the Multi-Points Autocorrelation Function to analyze 

temporal patterns in human movement. This technique quantifies the 
self-similarity of keypoint movements over time intervals, identifying 
repetitive human actions (Gochoo et al., 2021; Ma and Zheng, 2024). 
The keypoint time-series autocorrelation measure determines the 
relationship between two points in a dataset based on a specified time 
lag. The autocorrelation for a time series signal x(t) of N points appears 
in the Equation 22:
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Where x  represents the mean of the time series, 2σ  is its variance, 
and l is the lag. This equation ensures normalization, making the 
results comparable across different keypoints.

The MediaPipe Pose model pulled keypoint motion data from 
several frames in sequence. The 33 keypoint tracks from the videos 
produce x-axis and y-axis measurement data at each point. The ACF 
analysis for each important body position proceeded up to 10 frame 
delays. This technique uses data points to determine how movement 
at one spot aligns with changes at different points later on to find usual 
movement patterns over time. The resulting ACF results appeared 
next to each keypoint to show how human movements evolve over 
time. A sequence of regular movements generates distinct 
autocorrelation patterns, whereas irregular motions remain less 

FIGURE 9

3D plot illustration of 0–180° intensity feature of two persons performing action.
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predictable in the analysis. This feature representation effectively 
captures both local and global movement patterns, enhancing the 
recognition of complex human actions based on their temporal 
behavior. In Figure 11 the autocorrelation plots for keypoint motion 
trajectories are shown, illustrating temporal dependencies in both x- 
and y-coordinates for each keypoint.

3.7 Feature optimization

The accuracy of our classification model improves when extracted 
features are optimized. Due to its efficiency optimization (Herrera-
Alcántara, 2022; Ye and Du, 2021), the gradient descent algorithm 
serves as an effective optimization tool, minimizing loss values and 

achieving stable results. The gradient descent algorithm changes the 
model parameter weights multiple times toward a loss function 
minimum. We define our loss function as Mean Squared Error (MSE) 
which measures the size of prediction errors in our study shown in 
Equation 23:

 
( )2

1
ˆ1 N

i i
i

y y
N =

= −∑
 

(23)

Here iy  represents the actual value, ˆiy  is the predicted value, and 
N is the total number of samples. The algorithm calculates how each 
model weight affects loss and uses this information to update the 
weights in the Equation 24:

FIGURE 10

Magnitude and direction histogram of motion for 33 keypoints.
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 1t tω ω η+ = − ∇ (24)

The equation uses tω  at the time t where η  controls learning speed 
and ∇ measures loss function derivatives. The learning rate supports 
the algorithm by defining its process steps while minimizing the risks 
of moving too quickly.

We applied the gradient descent approach to refine the extracted 
features and optimize them for classification. This algorithm 
iteratively adjusts model parameters to minimize the squared 
prediction errors. Our experiments set η at the best possible rate 
between stability and performance then stopped training when loss 
stopped improving. Experimental testing determined the appropriate 
learning rate value (η) from different testing conditions. The 
experimental procedure utilized values between 0.0001 and 0.01 to 
determine a learning rate which achieved stability together with 
minimum loss performance. An η value exceeding 0.005 typically led 
to system instability which caused MSE loss to oscillate or diverge. 
The training time became longer when using learning rates smaller 
than η = 0.0005 even though accuracy did not improve.

The selected learning rate for this process proved to 
be  η = 0.001 through comprehensive assessment. The chosen 
value helped the gradient descent optimizer to reach stable 

convergence while efficiently reducing the MSE loss. This 
optimization ensures that the refined features enhance action 
classification accuracy and improve overall performance in 
human action recognition. Gradient descent connects feature 
extraction and classification features to boost overall system 
performance. Figure  12 shows the plot of gradient descent 
optimizer on two datasets.

3.8 Classification

In our system, the Convolutional Neural Network (CNN) 
outperformed Deep Belief Networks (DBN) and Recurrent Neural 
Networks (RNN) for multi-person action recognition. The ability 
of CNNs to discover hierarchical spatial features in input data 
makes them optimal for this application because they successfully 
extract relevant patterns from full-body feature and keypoint-
based features. The CNN architecture (Azmat et  al., 2023a,b) 
executes its operation on multiple layers which include 
convolutional and activation and pooling and fully connected 
layers (Hossain and Sajib, 2019). CNN performs the convolutional 
process as its fundamental operation with the following 
mathematical representation in Equation 25:

FIGURE 11

Autocorrelation plots of keypoint trajectories showing temporal dependencies in x-(blue) and y-coordinates (red) across different lags.
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Where ,
k
i jz  is the activation value at position (i, j) in the k-th 

feature map, x represents the input patch, ,
k
m nω  denotes the filter 

weights, and kb  is the bias term. This operation enables the network 
to capture local spatial features.

The output from the last convolutional or fully connected layers 
passes through a SoftMax function to produce probabilities through 
logits transformation by using Equation 26:
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Where ( )|P y c x=  is the probability of the input x belonging to 
class c, cz  is the logit for class c, and C represents the total number of 
classes. This probabilistic output facilitates multi-class classification. 
During training CNN demonstrates automatic feature optimization 
capabilities as well as high classification precision which identifies it 
as the most efficient solution for human action recognition in our 
system. The experimental outcomes showed CNN achieved better 
results than DBN and RNN in terms of accuracy and precision and 
recall performance thereby validating its application in this domain. 
Figure 13 illustrates the detailed architecture of the CNN employed in 
the proposed system for multi-person action recognition.

4 Experimental setup and datasets

This section outlines the experimental setup, including dataset 
descriptions, system configuration, and evaluation metrics. A 
systematic assessment evaluates the effectiveness of UAV-based 
multi-person action recognition and compares its performance with 
existing approaches to ensure reliability. For the procedure, a 

Windows 10 PC with an Intel Core i7 processor running at 3.60 GHz, 
a Nvidia Tesla K80 with 2496 CUDA cores, and 16 GB of RAM was 
used. For both training and building the model, Python 3.6 and the 
Keras API were utilized.

The dataset was split into 80% training data along with 20% 
testing data for an accurate evaluation of model performance. Such 
data partition ensures the validation of proposed system performance 
accuracy across training data along with unseen testing data.

4.1 Datasets

For this study, we utilized two datasets: MOD20 and Okutama-
Action. The details of each dataset are provided below.

4.1.1 MOD20 dataset
The MOD20 dataset (Perera et al., 2020) is a benchmark dataset 

specifically designed for human action recognition tasks in aerial 
imagery. This dataset encompasses contains videos captured by UAVs 
across multiple environmental conditions from different aerial 
viewpoints. This dataset contains 20 different action classes, in this 
study we selected six action classes: Rock climbing, Standup Paddling, 
Cycling, Skiing, Backpacking, and Running. These classes show 
multiple dynamic activities which contain changes in movement 
patterns as well as environmental changes and camera vantage points. 
The chosen dataset achieves appropriate representation of movements 
requiring accurate feature extraction and classification because it 
includes a range of activities. Thus, it provides sufficient evaluation 
for the proposed system’s effectiveness. Figure  14 depicts a few 
examples of the MOD20 dataset.

4.1.2 Okutama-Action dataset
The Okutama-Action dataset (Marti et  al., 2017) employed 

incorporates seven distinct actions which include Carrying, 
Handshaking, Hugging, Pushing, Sitting, Running, and Walking. The 
dataset shows human actions performed in numerous outdoor 

FIGURE 12

Plots showing the gradient descent optimization process on two datasets: (a) MOD20, and (b) Okutama-Action dataset.
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situations using UAV cameras which makes it hard to recognize 
human movements because of scaling variations and changing 
viewpoints. The complexity of the dataset proves the strength of the 
proposed system to detect human activities dynamically. Figure 15 
illustrates some images from the Okutama-Action dataset.

4.2 Results and analysis

In this section, we performed several kinds of experiments to 
determine the accuracy of the proposed model’s classification across 
benchmark datasets. The aim was to verify its effectiveness by 
comparing it with other state-of-the-art methods.

4.2.1 Confusion matrix
This section evaluates the proposed system when processing two 

benchmark datasets namely MOD20 with Okutama-Action. The 
system classification accuracy appears in Tables 1, 2 through confusion 
matrix representations of the analysis results from both datasets. UAV 
imagery delivers an effective system through matrices that record true 
positive and negative results and spurious outputs for each 
class category.

4.2.2 Precision, recall, and F1-score evaluation
The proposed system’s performance evaluation section shows 

assessment results based on precision alongside recall as well as 
F1-score metrics on each benchmark dataset. The precision rate 
describes how many correct positive predictions exist among all 
positive predictions made by the system while recall shows the 
proportion of correctly identified positives versus total actual 
positives and the F1-score represents their harmonic mean.

The presented data in Tables 3, 4 provide precision and recall 
scores with F1-scores of various datasets including MOD20 and 
Okutama-Action. The system performs in a reliable manner due to 
its consistent operational capacity within environments with various 
action types.

4.2.3 Comparison with existing methods
The evaluation of system effectiveness involved performing 

classification accuracy comparison against multiple state-of-the-art 
techniques. Table 5 demonstrates an inclusive accuracy comparison 
of the analyzed approaches through benchmarks from this study.

The proposed system delivers better results than all existing 
methods in benchmark datasets which proves both its reliable 
performance and improved abilities in recognizing human actions. 

FIGURE 13

Convolutional Neural Network architecture for multi-person action recognition.

FIGURE 14

A few examples from the MOD20 dataset.

https://doi.org/10.3389/fnbot.2025.1582995
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Alshehri et al. 10.3389/fnbot.2025.1582995

Frontiers in Neurorobotics 16 frontiersin.org

The Table  6 highlights the significant accuracy achieved by our 
proposed method due to its advanced feature extraction techniques, 
gradient descent optimization, and CNN-based classification.

5 Discussion

The system’s ability to recognize human actions using UAV imagery 
is validated through experimental results. The system produced 
excellent results across all datasets that were evaluated, particularly 
when CNN was used for classification tasks. CNN consistently achieved 
the best performance results among the various classifiers, achieving 
the maximum level of accuracy across all test data sets. This discovery 
is consistent with CNN’s well-known ability to learn high-level features 
and determine spatial hierarchies from complex datasets.

CNN’s ability to recognize and extract spatial patterns in UAV footage 
with varying perspective angles, size variations, and unique surroundings 
is the key to its effectiveness in image categorization. RNN’s accuracy 
performance was lower when used for static feature-based tasks. When 
processing complex spatial interactions, CNN showed a greater degree of 
adaptation than DBN, but the results were still good. Classifier 

FIGURE 15

A few examples from the Okutama-Action dataset.

TABLE 1 Confusion matrix for multi-person action recognition accuracy over MOD20 dataset.

Classes Rock climbing Standup 
paddling

Cycling Skiing Backpacking Running

Rock climbing 92 3 2 1 1 1

Standup paddling 2 91 3 2 1 1

Cycling 3 2 92 1 1 1

Skiing 1 3 1 91 3 1

Backpacking 2 1 2 3 91 1

Running 1 2 1 3 1 92

Mean accuracy = 91.50%

Bold value in the last row indicates the mean accuracy across all classes.

TABLE 2 Confusion matrix for multi-person action recognition accuracy over Okutama-Action dataset.

Classes Carrying Handshaking Hugging Pushing Sitting Running Walking

Carrying 89 2 3 1 2 1 2

Handshaking 1 90 2 3 1 2 1

Hugging 1 1 90 2 3 1 2

Pushing 2 1 1 89 3 2 2

Sitting 2 2 1 2 91 1 1

Running 1 2 1 1 1 90 4

Walking 2 3 1 3 1 1 89

Mean accuracy = 89.71%

Bold value in the last row indicates the mean accuracy across all classes.

TABLE 3 The overall accuracy, precision, recall, and F1 score over the 
MOD20 dataset.

Classes Precision Recall F1 Score

Rock climbing 0.91 0.92 0.92

Standup paddling 0.89 0.91 0.90

Cycling 0.91 0.92 0.92

Skiing 0.90 0.91 0.91

Backpacking 0.93 0.91 0.92

Running 0.95 0.92 0.93

Mean 0.915 0.915 0.917

Bold value in the last row represents the mean values for each metric across all classes.
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performance study shows why model selection needs to be  done 
according to application requirements and dataset characteristics. CNN 
classifier integration is a crucial component of the system that maximizes 
accuracy and improves performance efficiency. Important information 
required for UAV-based action recognition is revealed by classifier 
selection techniques. Furthermore, the comparison shows that the 
suggested approach sets higher benchmarks for classification accuracy 
and UAV-based human action identification features.

5.1 Real-world challenges in UAV-captured 
videos

The proposed system shows outstanding results on benchmark 
datasets however it must tackle challenges that occur in real-world 
UAV-based operations. The view of obstacles including buildings or 
trees with other environmental elements causes reduced visibility 
which leads to possible errors in detection outcomes. The pose 
estimation techniques utilized by the system help it maintain stability 
against these obstacles because they detect skeletal keypoints instead 
of full-body silhouettes. The system successfully detects human poses 
through tracking visible keypoints including shoulders, elbows, and 
knees despite partial body obstructions.

Extreme occlusions and crowded surroundings are still obstacles. 
Future research will address these by utilizing improved occlusion-
handling techniques with predictive modeling, incorporating scene 
segmentation approaches to differentiate barriers from target humans, 
and integrating temporal information from sequence video frames to 

recover missing keypoints. Together with its excellent benchmark 
performance, these improvements will guarantee the systems 
resilience and flexibility to real-world scenarios.

5.2 Robustness to real-world scenarios

The proposed system has been evaluated on benchmark datasets 
that cover a variety of conditions with different perspectives, scales, 
and environmental elements, MOD20 and Okutama-Action. These 
datasets provide a reliable framework for evaluating the systems 
functionality under challenging conditions.

To address lighting variations, preprocessing techniques such as 
Gaussian blur and grayscale conversion are applied to improve image 
quality in different lighting conditions. These preprocessing steps 
ensure that the input data remains consistent, even when captured 
under different lighting conditions.

Also, the system is robust against occlusions by utilizing pose 
estimation techniques that identify skeleton keypoints. By capturing 
invariant information, feature extraction techniques like motion-
based histograms and Fourier descriptors allow the system to remain 
accurate even when perspective shifts and dynamic movements 
occur. These combined methods show that the system can adapt to 
difficult situations, as shown by its high accuracy on all 
benchmark datasets.

5.3 Real-time feasibility and future 
deployment

The proposed framework’s performance has been validated under 
a variety of controlled circumstances by evaluating it on pre-recorded 
benchmark datasets, including MOD20 and Okutama-Action. These 
datasets offer a solid basis for evaluating the precision, resilience, and 
computational effectiveness of the system.

While there has not been any real-time testing in a UAV context 
yet, the computational complexity analysis shows that the framework 
is callable and computational efficient. While CNN-based 
classification achieves efficient processing appropriate for real-time 
applications, preprocessing and feature extraction techniques are 
tuned to minimize overhead.

Future work will evaluate the system’s real-time feasibility under 
hardware limitation such as processor power and energy consumption 
by implementing it on UAV hardware. To guarantee compatibility 
with embedded system frequently found in UAVs, hardware-specific 
optimizations will be  investigated, improving the framework’s 
suitability for practical situations.

6 Computational complexity analysis

The computational complexity of the proposed system was 
analyzed for each stage, as shown in the Table 7.

7 Performance of different classifiers

Our system included three distinct classifiers: recurrent neural 
networks (RNN), deep belief networks (DBN), and convolutional 

TABLE 5 Comparison of multi-person action recognition accuracies over 
MOD20 and Okutama-Action datasets.

Method MOD20 Okutama-Action

Perera et al. (2020) 66.50 –

Perera et al. (2020) 74.0 –

Vrskova et al. (2023) 78.21 –

Dhiman et al. (2024) 86.13 –

Algamdi et al. (2022) – 47.50

Khan et al. (2024) – 60.76

Ahmad et al. (2022) – 75.4

Yang et al. (2019) – 85.2

Proposed 91.50 89.71

Bold value in the last row signifies the performance of the proposed system compared to 
other methods.

TABLE 4 The overall accuracy, precision, recall, and F1 score over the 
Okutama-Action dataset.

Classes Precision Recall F1 Score

Carrying 0.91 0.89 0.90

Handshaking 0.89 0.90 0.90

Hugging 0.91 0.90 0.90

Pushing 0.88 0.89 0.89

Sitting 0.89 0.91 0.90

Running 0.92 0.90 0.91

Walking 0.88 0.89 0.89

Mean 0.897 0.897 0.899

Bold value in the last row represents the mean values for each metric across all classes.
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TABLE 6 Ablation study of pipeline components on MOD20 and Okutama-Action datasets across classifier.

Experiment Preprocessing Segmentation 
(GMM)

Keypoint 
extraction

Full-body 
features

Keypoint 
based 

features

Gradient 
descent 

optimizer

Classifiers Datasets

CNN RNN DBN MOD20 (%) Okutama-
Action (%)

Baseline ✓ x x x x x x x ✓ 40.27 39.76

Baseline ✓ x x x x x x ✓ x 41. 42 40.66

Baseline ✓ x x x x x ✓ x x 61.72 49.88

Preprocessing x ✓ x ✓ x ✓ x x ✓ 46.10 42.09

Preprocessing x ✓ x ✓ x ✓ x ✓ x 44. 44 42.72

Preprocessing x ✓ x ✓ x ✓ ✓ x x 63.52 52.86

Segmentation (GMM) ✓ x ✓ x ✓ ✓ x x ✓ 47.60 45.01

Segmentation (GMM) ✓ x ✓ x ✓ ✓ x ✓ x 49. 14 46.72

Segmentation (GMM) ✓ x ✓ x ✓ ✓ ✓ x x 65.21 55.16

Keypoint extraction ✓ ✓ x ✓ x ✓ x x ✓ 50.63 49.91

Keypoint extraction ✓ ✓ x ✓ x ✓ x ✓ x 50. 59 52.48

Keypoint extraction ✓ ✓ x ✓ x ✓ ✓ x x 69.07 57.66

Full-body features ✓ ✓ ✓ x ✓ ✓ x x ✓ 53.97 50.23

Full-body features ✓ ✓ ✓ x ✓ ✓ x ✓ x 54. 09 56.39

Full-body features ✓ ✓ ✓ x ✓ ✓ ✓ x x 72.14 60.35

Keypoint based features ✓ ✓ ✓ ✓ x ✓ x x ✓ 59.27 55.09

Keypoint based features ✓ ✓ ✓ ✓ x ✓ x ✓ x 65. 40 62.44

Keypoint based features ✓ ✓ ✓ ✓ x ✓ ✓ x x 79.31 66.24

Gradient descent optimizer ✓ ✓ ✓ ✓ ✓ x x x ✓ 70.67 69.39

Gradient descent optimizer ✓ ✓ ✓ ✓ ✓ x x ✓ x 73. 54 70.07

Gradient descent optimizer ✓ ✓ ✓ ✓ ✓ x ✓ x x 85. 01 80.22

Proposed system ✓ ✓ ✓ ✓ ✓ ✓ x x ✓ 87. 17 83.29

Proposed system ✓ ✓ ✓ ✓ ✓ ✓ x ✓ x 89. 33 85.57

Proposed system ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x 91. 50 89.71

Colors associated with the tick (✓) and cross (x) symbols are used to visually distinguish between the methods applied and not applied in experiment. The red cross (x) indicates that a particular technique is not used in the experiment, while the orange tick (✓) 
signifies that the method is included. This color coding helps to quickly differentiate between the applied and non-applied techniques across the various experiments.
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neural networks (CNN). The ability of the classifiers to identify human 
action from UAV images across all benchmark datasets was the main 
focus of their evaluation. CNN analyzed all features and every detail 
across all benchmark datasets, it showed remarkable performance. 
While processing UAV data, the convolutional layers collected crucial 
feature data that proved challenging to manage due to changes in image 
scale as well as disparate sizes and perspectives. The accuracy of CNN 
models and DBN’s benchmark performance were near. The spatial 
variety found in UAV datasets is not adequately fitted by the layer-wise 
pretraining of DBN. Convolutional neural networks (CNN), deep belief 

networks (DBN), and recurrent neural networks (RNN) were the three 
classification techniques we used to test our system and evaluate its 
efficacy. The classifiers were evaluated on how well they were able to 
recognize human actions from UAV footage across all benchmark 
datasets. Because CNN efficiently extracted spatial information while 
identifying intricate details within the images, it produced the best 
results across all datasets. Even when processing UAV data, the model’s 
convolutional layers learned significant feature representations, which 
presented challenges because of shifting resolutions, sizes, and 
perspectives. As a benchmark model the DBN maintained a slight 
disadvantage in accuracy against CNN models. Its layer-wise pretraining 
method fails to adapt properly to diverse spatial features because it exists 
in UAV datasets. Despite its restrictions DBN demonstrated reliable 
performance which makes it suitable for utilization in systems requiring 
quick computation.

Our system achieved moderate results with the RNN because of its 
competency in processing sequential information which depends on 
time ordering. Due to the emphasis on static feature-based tasks in the 
system framework the RNN failed to optimally engage with temporal 
relations which led to reduced performance accuracy. Application 
success depends on using classifiers that match both extracted features 
along with their necessary specifications. The RNN structure works best 
on sequences but it showed limitations during UAV static image 
processing as part of this study. Research findings confirm that RNN 
maintains its use as an effective methodology for tasks that require 
recognizing temporal dependencies during classification. The results are 
presented in Table 8 to show the evaluation outcomes of each model for 
benchmark dataset classification accuracy. The results demonstrate that 
CNN serves as the best choice for UAV-based human action recognition 
because it shows exceptional capability in extracting and generalizing 
complex features.

A performance and efficiency analysis of the proposed system 
included DBN, CNN and RNN classifiers. Figure 16 presents the main 
metrics including training time, inference time, FLOPs, model size 

TABLE 7 Computational complexity of the proposed system.

Stage Operation Complexity

Preprocessing Gaussian Blur O(n)

Segmentation GMM Segmentation O(n)

Feature extraction AKAZE O(n)

Feature extraction Fourier Descriptor O(nlogn)

Feature extraction Distance Transform O(n)

Feature extraction 0–180° intensity O(nlogn)

Feature extraction Keypoint-based motion histogram O(n)

Feature extraction Multi-point autocorrelation O(n)

Optimization Gradient Descent O(nlogn)

Classification CNN O(nlogn)

TABLE 8 Classification accuracy of different classifiers across datasets.

Datasets CNN% RNN% DBN%

MOD20 91.50 89.33 87.17

Okutama-Action 89.71 85.57 83.29

FIGURE 16

Comparison of training time, inference time, FLOPS, model size, and accuracy across classifiers.
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and accuracy. The study demonstrates that CNN delivers maximum 
accuracy of 91.50% thus it functions as the best classification approach 
for this proposed system.

8 Conclusion

This study demonstrated the effectiveness of a comprehensive 
system for multi-person action recognition utilizing UAV imaging on 
several benchmark datasets, such as MOD20, and Okutama-Action. 
The system integrates sophisticated preprocessing with feature 
extraction approaches and deep learning classifiers to deliver accurate 
results. The CNN classifier achieved superior performance compared 
to its counterparts DBN and RNN since it demonstrated effectiveness 
in extracting spatial features from UAV imagery while handling 
according to changes in perspective and scale. The system achieves 
reliable status as a UAV-based human action recognition solution 
through these testing outcomes which also demonstrate its 
robust functionality.

Future work will focus on resolving the problem of occluded 
human actions since this issue persists in current system 
implementations. The real-world operations of UAV systems 
frequently encounter occlusions because they fly through dense 
surroundings and partially restricted viewpoints. Our future system 
development will integrate advanced methods to identify hidden 
human figures through the combination of time-related insights and 
situational context information. The system becomes more robust 
when this enhancement takes effect thus enabling broader application 
in dynamic complex situations.
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