AUTHOR=Alshehri Mohammed , Zahoor Laiba , AlQahtani Yahya , Alshahrani Abdulmonem , AlHammadi Dina Abdulaziz , Jalal Ahmad , Liu Hui TITLE=Unmanned aerial vehicle based multi-person detection via deep neural network models JOURNAL=Frontiers in Neurorobotics VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2025.1582995 DOI=10.3389/fnbot.2025.1582995 ISSN=1662-5218 ABSTRACT=IntroductionUnderstanding human actions in complex environments is crucial for advancing applications in areas such as surveillance, robotics, and autonomous systems. Identifying actions from UAV-recorded videos becomes more challenging as the task presents unique challenges, including motion blur, dynamic background, lighting variations, and varying viewpoints. The presented work develops a deep learning system that recognizes multi-person behaviors from data gathered by UAVs. The proposed system provides higher recognition accuracy while maintaining robustness along with dynamic environmental adaptability through the integration of different features and neural network models. The study supports the wider development of neural network systems utilized in complicated contexts while creating intelligent UAV applications utilizing neural networks.MethodThe proposed study uses deep learning and feature extraction approaches to create a novel method to recognize various actions in UAV-recorded video. The proposed model improves identification capacities and system robustness by addressing motion dynamic problems and intricate environmental constraints, encouraging advancements in UAV-based neural network systems.ResultsWe proposed a deep learning-based framework with feature extraction approaches that may effectively increase the accuracy and robustness of multi-person action recognition in the challenging scenarios. Compared to the existing approaches, our system achieved 91.50% on MOD20 dataset and 89.71% on Okutama-Action. These results do, in fact, show how useful neural network-based methods are for managing the limitations of UAV-based application.DiscussionResults how that the proposed framework is indeed effective at multi-person action recognition under difficult UAV conditions.