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FOCUS: object-centric world
models for robotic manipulation

Stefano Ferraro1*†, Pietro Mazzaglia1†, Tim Verbelen2 and
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Understanding the world in terms of objects and the possible interactions with

them is an important cognitive ability. However, current world models adopted

in reinforcement learning typically lack this structure and represent the world

state in a global latent vector. To address this, we propose FOCUS, a model-

based agent that learns an object-centric worldmodel. This novel representation

also enables the design of an object-centric exploration mechanism, which

encourages the agent to interact with objects and discover useful interactions.

We benchmark FOCUS in several robotic manipulation settings, where we found

that our method can be used to improve manipulation skills. The object-centric

world model leads to more accurate predictions of the objects in the scene

and it enables more e�cient learning. The object-centric exploration strategy

fosters interactions with the objects in the environment, such as reaching,

moving, and rotating them, and it allows fast adaptation of the agent to sparse

reward reinforcement learning tasks. Using a Franka Emika robot arm, we

also showcase how FOCUS proves useful in real-world applications. Website:

focus-manipulation.github.io.

KEYWORDS

world models, object-centric representation, neuro robotics, object-centric
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1 Introduction

In our daily lives, we effortlessly interact with objects to accomplish a wide range

of tasks. Through these interactions, we instinctively infer an object’s identity, spatial

position, 3D structure, appearance, and texture, effectively building a generative model of

how objects are formed (Parr et al., 2021). For robot manipulators, replicating these tasks

presents a significant challenge due to the intricate and dynamic nature of interactions

between the agent and its environment.

In recent years, deep reinforcement learning (RL) has shown to be a promising

approach for dealing with complex manipulation scenarios (Levine et al., 2016; OpenAI

et al., 2019; Kalashnikov et al., 2018; Lu et al., 2021; Lee et al., 2021; Ferraro et al., 2022a).

Among RL algorithms, model-based approaches aspire to provide greater data efficiency,

compared to the model-free counterparts (Fujimoto et al., 2018; Haarnoja et al., 2018).

Adopting world models (Ha and Schmidhuber, 2018; Hafner et al., 2021), i.e. generative

models that learn the environment’s dynamics by reconstructing sensory observations,

model-based agents have shown impressive performance across several domains (Hafner

et al., 2021; Rajeswar et al., 2023; Hafner et al., 2023), including real-world applications,

such as robotic manipulation and locomotion (Wu et al., 2022). However, world models

that indistinctly reconstruct all information in the environment can suffer from several

failure modes. For instance, in visual tasks, they can ignore small, but important features
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for predicting the future, such as small objects (Seo et al., 2022).

They also tend to waste the model capacity on visually rich, but

irrelevant features, such as static backgrounds (Deng et al., 2022).

In the case of robotic manipulation, this is problematic because the

agent strongly needs to acquire information about the objects to

manipulate to solve a given task.

Another challenge in RL for manipulation is engineering

reward functions that drive the agent’s learning toward task

completion. Attempting to design dense reward functions easily

leads to faulty reward designs (Amodei et al., 2016; Clark

and Amodei, 2016; Krakovna et al., 2020; Popov et al., 2017).

One solution is to adopt sparse reward feedback, providing a

positive reward only for successful task completion. However, these

functions are challenging to optimize with RL, due to the difficulty

of finding such rewards in the environment. Thus, they require

appropriate exploration strategies, for which previous work has

resorted to artificial curiosity mechanisms (Oudeyer et al., 2007;

Schmidhuber, 1991) or entropy maximization strategies (Mutti

et al., 2021; Liu and Abbeel, 2021). In Liu and Abbeel (2021),

exploration emerges by maximizing the entropy over the full

latent representation, resulting in the agent potentially focusing on

exploring irrelevant aspects of the scene (Burda et al., 2018b).

Humans, on the other hand, tend to develop a structured

mental model of the world by interacting with objects registering

specific features associated with objects, such as shape, color, etc.

(Hawkins et al., 2017; Ferraro et al., 2023). Since infancy, toddlers

learn this by actively engaging with objects and manipulating them

with their hands, discovering object-centric views that allow them

to build an accurate mental model (Smith et al., 2018; Slone et al.,

2019; Ferraro et al., 2022b).

In this work, we present an approach inspired by the principle

that objects should be of primary importance in an agent’s world

model, and motivated by the above issues regarding: i) the

complexity of modeling object entities in the environment, and

ii) the necessity of autonomously discovering interactions with

such objects. We introduce FOCUS, a model-based RL agent that

learns an object-centric representation of the world. Unlike holistic

scene representations, an object’s latent vector allows the agent to

prioritize information about objects. Leveraging the object-centric

representation, it’s possible to design an exploration strategy that

focuses on the interactions where objects are involved. Crucially,

the proposed focused exploration strategy allows for improved

performance on sparsely rewarded tasks when compared to the

state-of-the-art.

Our contributions in this work can be summarized as:

• an object-centric world model, which learns the latent

dynamics of the environment where the information about

objects is discriminated into distinct latent vectors;

• an object-centric exploration strategy, which encourages

interactions with the objects, bymaximizing the entropy of the

latent object’s representation;

• empirical evaluation of the approach, showing how object-

centric models improve the agent’s understanding of the

objects in the scene and how the object-centric exploration

strategy fosters interaction with the objects. This leads the

agent to more efficiently solve robotic manipulation tasks in

several settings and tasks, including ManiSkill2 (Gu et al.,

2023), robosuite (Zhu et al., 2020) and Metaworld (Yu et al.,

2019) environments.

• a deployment on a real robotic platform, showcasing the

possibility of successfully applying our approach to a

hardware-based setup.

2 Background

2.1 Reinforcement learning and world
models

In RL, the agent receives inputs x from the environment

and can interact through actions a. The objective of the agent

is to maximize the discounted sum of rewards
∑

t γ
trt , where

t indicates discrete timesteps. In order to do so, RL agents

learn an optimal policy π(a|x) outputting actions that maximize

the expected cumulative discounted reward over time, generally

estimated using a critic function, which can be either a state-

value function or an action-value function (Haarnoja et al., 2018;

Fujimoto et al., 2018). In addition, model-based RL methods learn

a model of the transition dynamics of the environment and use

it to select actions (Hansen et al., 2022) or to optimize the actor-

critic networks (Janner et al., 2021). Recently, world models (Ha

and Schmidhuber, 2018) have adopted deep generative models

(Goodfellow et al., 2016) to learn the dynamics of the environment,

capturing the environment dynamics into a latent space, which can

be used to learn the actor and critic functions using imaginary

rollouts (Hafner et al., 2021, 2023) or to actively plan at each

action (Schrittwieser et al., 2020; Rajeswar et al., 2023; Song et al.,

2024). Given that world model-based RL has been shown to be

more efficient than model-free RL (Hafner et al., 2023) and the

importance of sample-efficiency in robotic manipulation, we base

our work on world models and RL for learning behaviors from

interactions.

2.2 Exploration

Solving sparse-reward tasks is a hard problem in RL

because of the difficulty of exploring the environment and

identifying rewarding states. Inspired by artificial curiosity

theories (Schmidhuber, 1991; Oudeyer et al., 2007), several works

have designed exploration strategies for RL (Pathak et al., 2017;

Mazzaglia et al., 2022; Rajeswar et al., 2021). Other exploration

strategies that have shown great success are based upon the

ideas of maximizing uncertainty (Pathak et al., 2019; Sekar et al.,

2020), or the entropy of the agent’s state representation (Liu

and Abbeel, 2021; Seo et al., 2021; Mutti et al., 2021). One

issue with exploration in visual environments is that these

approaches can be particularly attracted by easy-to-reach states

that strongly change the visual appearance of the environment

(Burda et al., 2018a). In robotic manipulation, this can cause

undesirable behaviors, e.g., a robot arm exploring different

poses in the proximity of the camera but ignoring interactions

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1585386
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Ferraro et al. 10.3389/fnbot.2025.1585386

FIGURE 1

Overview of FOCUS. The agent learns a structured world model (left) that disentangles information in the environment by learning to reconstruct

masked information about each observed object, thanks to an object-centric decoder (center). The learned object-centric state representation is

used to train a policy that incentivizes object-centric exploration (right), maximizing the entropy of the object representation as a form of intrinsic

reward.

with the objects in the workspace (Rajeswar et al., 2023).

Our method, instead, leverages object-centric representations to

encourage agents to interact with the objects present in the

scene. By designing an object-centric exploration strategy, we

provide a better alternative to curiosity mechanisms for robotic

manipulation, which have no specific targets for exploration in

the environment.

2.3 Object-centric representations

Decomposing scenes into objects can enable efficient reasoning

over high-level building blocks and ensure the agent focuses on the

most relevant concepts (Dittadi et al., 2021). Several 2D object-

centric representations, based on the principle of representing

objects as separate entities within the model, have recently emerged

(Locatello et al., 2020; Greff et al., 2020; Burgess et al., 2019;

Nakano et al., 2023). Due to computational and quality constraints,

these object-centric representations have not been extended to

more complex scenarios, where the interaction with an agent is

also to be modeled. Related work investigated the usefulness of

object-centric representations for control, using model-free RL

(Diuk et al., 2008; Janner et al., 2019; Kipf et al., 2020; Yoon

et al., 2023). Inspired by these approaches, we propose an object-

centric world model which allows us to learn behaviors efficiently

by leveraging model-based RL. The object-centric representation

improves the agent’s predictions about objects and can be used both

to enable more accurate control, e.g. to solve dense-rewards RL

tasks, and to foster interactions with objects using a new object-

centric exploration strategy, e.g. in sparse-rewards RL tasks. The

closest work in literature to our approach (Sancaktar et al., 2022)

is an object-centric exploration strategy based on graph-structured

models for control. However, this approach requires already precise

information about objects, e.g. the position, which is generally

available only in simulation. Instead, our approach is designed

to work well for common visual manipulation settings, where

information about the scene is provided to the agent only through

camera images.

3 Object-centric world model

The agent observes the environment through the inputs xt =

{ot , qt} it receives at each interaction, where we can distinguish the

(visual) observations ot , e.g. camera RGB, from the proprioceptive

information qt , e.g. the robot joint states and velocities. This

information is processed by the agent through an encoder model

et = f (xt), which can be instantiated as the concatenation of the

outputs of a CNN for high-dimensional observations and an MLP

for low-dimensional proprioception.

The world model aims to capture the dynamics of the inputs

into a latent state st . In previous work (Hafner et al., 2021), this

is achieved by reconstructing the inputs using an observation

decoder. With FOCUS, we are interested in separating object-

specific information into separate latent representations s
obj
t . For

this reason, we instantiate two object-conditioned components:

an object latent extractor and an object decoder. We first describe

the structure and loss of the world model (in Figure 1, left)

before delving into more details about the novel object-centric

components of FOCUS (in Figure 1, center).

3.1 World model

Overall, the learned world model is composed of the following

components:

Encoder: et = f (xt),

Posterior: pφ(st+1|st , at , et+1),

Prior: pφ(st+1|st , at),

Proprio decoder: pθ (q̂t|st),

Object latent extractor: pθ (s
obj
t |st , c

obj),

Object decoder: pθ (ô
obj
t , l

obj
t |s

obj
t ).

which are trained end-to-end by minimizing the following loss:

Lwm = Ldyn + Lproprio + Lobj. (1)
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We explain each component in details in the following

paragraphs.

For the dynamics component, i.e., prior and posterior, we adopt

a recurrent state-space model (RSSM) (Hafner et al., 2019), which

extracts a latent state st made of a deterministic and a stochastic

component. The parameters of the RSSM modules are collectively

denoted as φ. The dynamics minimize the Kullback-Leibler (KL)

divergence between posterior and prior:

Ldyn = DKL[pφ(st+1|st , at , et+1)||pφ(st+1|st , at)]. (2)

All parameters of the decoding units of the network are

represented by θ . Proprioceptive information q̂t is decoded out

of the latent state st , using an MLP. The proprioceptive decoder

learns to reconstruct proprio states, by minimizing a negative

log-likelihood (NLL) loss:

Lproprio = − log pθ (q̂t|st) (3)

3.2 Object-centric modules

The latent state of the world model tends to compress all the

information from the environment in a unique latent structure.

Our intention in FOCUS is to disentangle such information into

separate latent structures, learning an object-centric world model.

For each object in the scene, the object latent extractor receives

the model latent state st and a (one-hot) vector identifying the

object cobj, and extracts an object-centric latent s
obj
t . Given such

an object latent, the object decoder reconstructs object-related

observation information by outputting two kinds of information:

one-dimensional “object logits” l
obj
t , which are used to build a

segmentation mask of the scene, and object-specific observation

ô
obj
t , where the information that is irrelevant to the object is

masked out through the segmentation. How is the segmentation

mask learned? The object decoder outputs one-dimensional “object

logits” l
obj
t , which represent object-specific per-pixel logits. These

logits are aggregated in a scene by applying a softmax among all

object weights. The overall segmentation mask is obtained as:

m̂t = softmax(l1t , ..., l
N
t ) (4)

with N being the object instances. Object-specific masks can be

obtained by taking the corresponding object’s channel mask in

the segmentation. Defining object-specific masks as m
obj
t , we can

multiply the observation by these masks, to obtain object-specific

observations ô
obj
t that focus only on the obj-th object information. 1

The object decoder loss is defined as follows:

Lobj = − log p(m̂t)
︸ ︷︷ ︸

mask

− log

N
∑

obj=0

m
obj
t pθ (x̂

obj
t |s

obj
t )

︸ ︷︷ ︸

masked reconstruction

(5)

By minimizing the NLL of the masked reconstruction term,

the object-decoder ensures that each object latent si focuses on

1 The scene, with objects masked out, is also considered a "special object".

N is a chosen parameter, related to the objects of interest in the scene.

capturing only its relevant information, as the reconstructions

obtained from the latent are masked per object. Furthermore,

objects compete to occupy their correct space in the scene (in pixel

space), through themask loss.

How are the segmentation mask targets for the mask loss

obtained? In order to discriminate object information into different

latent vectors, the object-centric components leverage an object

discrimination process that entails learning to segment the scene

observations. Some simulated robotic environments make this

information available, however, the same process is non-trivial in

real-world settings.

The increasing availability of large pre-trained models for

segmentation offers an opportunity to avoid the problem. Thus,

in our experiments, we adopt an efficient implementation of the

Segment AnythingModel (fastSAM; Kirillov et al., 2023; Zhao et al.,

2023). At the beginning of each episode, per object segmentation

instances are generated with fastSAM, using box or text prompts.

For subsequent frames, segmentation maps are produced by a

tracking model, for which we ground on the XMem model (Yang

et al., 2023). This strongly simplifies the process of obtaining

segmentation masks in robotic workspaces.

4 Object-centric exploration

State maximum entropy approaches for RL (Mutti et al., 2021;

Seo et al., 2021; Liu and Abbeel, 2021) learn an environment

representation, on top of which they compute an entropy estimate

that is maximized by the agent’s actor to foster exploration. Given

our object-centric representation, we can incentivize well-directed

exploration toward object interactions and the discovery of novel

object views, by having the agent maximize the entropy over the

object latent state representation.

In order to estimate the entropy value over batches, we apply a

K-NN particle-based estimator (Singh et al., 2003) on top of the

object latent representation. By maximizing the overall entropy,

with respect to all objects in the scene, we derive the following

reward for object-centric exploration:

rexpl =

N
∑

obj=0

r
obj

expl

where r
obj

expl
(s) ∝

K
∑

i=1

log
∥
∥
∥sobj − s

obj
i

∥
∥
∥
2

(6)

where sobj is extracted from s using the object latent extractor,

s
obj
i is the i-th nearest neighbor to sobj.

Crucially, as we learn an (object-centric) world model we can

use it to optimize actions by learning actor and critic in imagination

(Hafner et al., 2021), so that the latent states in Equation 6 are

states of imaginary trajectories, generated by the world model by

following the actor’s predicted actions.

Learning actor-critic in imagination allows one to efficiently

learn actions by generating hypothetical trajectories in the agent’s

latent state space. This can be done by applying RL for learning

an actor policy π(at|st) that outputs actions that maximize the

following bootstrapped λ-returns (Hafner et al., 2023):

Rλ
t = rt + γ ((1− λ)v(st+1)+ λRλ

t+1) (7)
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with the value function v(st) learning to approximate Rλ
t .

Given the above, we can learn an exploration actor-critic:

Exploration actor: πexpl(at|st), Exploration critic: vexpl(st),

(8)

that learns to maximize the exploration reward in Equation 6.

FOCUS acts at two levels: it explores to find useful interactions,

and consequently it learns to perform downstream tasks using the

sparse rewards found in the environment.

Indeed, as the agent explores the environment, it may

encounter important information that may be a source of (sparse)

reward, (e.g. opening a drawer). To exploit such information, while

we keep exploring, we concurrently train a task reward predictor

rtask(st) and actor-critic, which can be used for solving the pre-

defined task after exploring the environment, in a zero-shot or

few-shot fashion.

The task actor-critic is defined as follows:

Task actor: πtask(at|st), Task critic: vtask(st). (9)

and it is trained by maximization of the expected reward

predicted. Thanks to the world model, the reward is inferred in

imagination, so the learning of the task actor-critic can happen fully

in imagination, while the agent keeps exploring the environment

(Sekar et al., 2020).

5 Experiments

We argue that the FOCUS object-centric world model

and exploration strategy can be used to improve control in

robotic manipulation, especially in sparse-reward settings. The

experiments aim to empirically validate our argument by evaluating

(i) the exploration performance of FOCUS compared to the state-

of-the-art in world models and exploration, (ii) performance on

sparse reward manipulation tasks, after an exploration stage. (iii)

We validate the performance of the object-centric world model on

dense reward tasks and present an additional analysis of the model,

e.g. visualizing the reconstructions of the world model. Finally, we

deploy FOCUS to a real-world setup.

5.1 Exploration-adaptation in
sparse-reward tasks

We adopt 10 tasks from three robotic manipulation

benchmarks (shown in Figure 2): ManiSkill2 (Gu et al., 2023),

robosuite (Zhu et al., 2020) and Metaworld (Yu et al., 2019).

Both ManiSkill and robosuite provide segmentation masks as an

(optional) input for the agent, while Metaworld does not. Thus, we

adopted fastSAM (Zhao et al., 2023) to extract segmentation masks

in those tasks, an evaluation setting that serves us the purpose

of a test field for real-world experiments. The object of interest

is prompted using text (Cheng et al., 2023), providing the name

of the object in the scene. The masking produced by the SAM

model is treated as the object masking, while the negative of it as

background masking.

We compare FOCUS against three exploration strategies:

Plan2Explore (P2E) (Sekar et al., 2020), Active Pre-training (APT)

(Liu and Abbeel, 2021) and Random actions. For fairness with

P2E and FOCUS, both APT and Random are implemented on

top of a DreamerV2 world-model-based agent, following (Rajeswar

et al., 2023) and using their open-source code. The hyperparameters

are the same used for DreamerV2 (Hafner et al., 2021), with the

exception of the batch size and sequence length, both equal to 32.

For the implementation of FOCUS, we introduced an

object latent extractor unit consisting of a 3-layer MLP with a

dimensionality of 512. The object-decoder network resembles the

structure of the Dreamer’s decoder, the depth factor for the CNN is

set to 72. The K-NN filter adopted for the entropy approximation

uses a K-nearest neighbors factor of K = 30.

5.1.1 Exploration
To compare the performance of different exploration strategies

for manipulation, we chose a set of metrics that are related to

interactions with objects:

• Contact (%): average percentage of contact interactions

between the gripper and the objects over an episode.

• Positional displacement (m): cumulative position displacement

of all the objects over an entire episode.

• Angular displacement (rad): cumulative angular displacement

of all the objects over an entire episode.

In Figure 3, we observe that FOCUS interacts with objects

much more assiduously than the other approaches, with the

exploration performance consistently increasing over time. APT

and P2E perform similarly and they only slightly perform better

than Random, showing the importance of focussing on objects

when exploring a robotic manipulation environment.

5.1.2 Sparse reward tasks fine-tuning
During the exploration stage, all agents explore different

actions in the environment, discovering the dynamics and reward

function for a given task. However, the agents make no use of

the task rewards during the exploration stage. After exploring

the environment for 2M environment steps, we adapt the task

actor-critic, using the rewards found during the exploration stage

and allowing an additional (smaller) number of environment

interactions for fine-tuning the agent and perfecting the task. The

adaptation curves for six tasks, showing episode rewards over time,

are presented in Figure 4.

The results show that FOCUS is the method that makes the

most significant progress across all tasks. This proves that the agent

consistently found sparse rewards in the environment, making

adaptation to a given task easier. In support of this hypothesis,

the fine-tuning performance starts increasing almost immediately

in all tasks despite the sparse nature of the rewards. As for the

other methods, we observe that Plan2Explore and APT were able

to consistently find rewarding interactions only in a few tasks

(Drawer Open, Door Close), where they perform well and similarly

to FOCUS. Given a sparse reward signal, and not a dense one, it

makes it hard for the methods with a limited exploration strategy to
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FIGURE 2

Manipulation environments. The 10 tasks we adopted are part of ManiSkill2 (MS), robosuite (RS) and Metaworld (MW). From left–right: Red cube (RS),

RG cubes (RS), Faucet (MS), Banana (MS), Master Chef Can (MS), Door Open (MW), Door Close (MW), Disassemble (MW), Drawer Open (MW), Peg

Insert (MW).

FIGURE 3

Exploration performance. Comparing exploration metrics across 10 tasks from ManiSkill2, robosuite and Metaworld. Experiments are run with three

seeds per task and aggregated in a statistically sound way using RLiable (Agarwal et al., 2021).

achieve good performance when deployed for fine-tuning. Instead,

Random, being the most naive exploration strategy, barely found

any rewards, making fine-tuning in sparse rewards settings difficult.

5.2 Additional analysis

We have developed object-centric world models to improve

the way objects’ information is represented in the world model,

by leveraging a structured latent representation. We perform an

additional analysis, to show that objects’ prediction improves when

employing object-centric structured world models, compared to

using a “flat” latent structure, and to validate the information

contained in the latent object states.

5.2.1 Comparison to “flat” world models
Objects’ size in the workspace is generally smaller than other

elements, e.g. the robot, the table, and the background.When using

a “flat” representation of the world, as Dreamer (Hafner et al.,

2021) does, visual information about objects might be lost in the

compression due to the encoding-decoding process of the world

model. Qualitative reconstructions from the decoder of FOCUS are

compared to reconstructions of Dreamer in Figure 5. Thanks to the

explicit object’s modeling FOCUS is able to reconstruct accurately

any objects in the scene. Dreamer fails in many of these scenarios,

especially in case of small objects, with poor visual contrast with

respect to the background. In both Master Chef Can and Banana

environments, Dreamer approximates each object in the scene with

a cloudy presence, reflecting the lack of significant error signal

to achieve a detailed reconstruction. To quantify the different

performances in objects’ predictions, we show the prediction error

in the image area surrounding objects, in Figure 6. FOCUS is

consistent in delivering more accurate object predictions.

Do better object predictions yield better manipulation

performance? In order to isolate the problem of learning

manipulation tasks from exploration, we compare FOCUS

and Dreamer performance on a set of six dense-reward tasks:

Drawer Open, Door Open, Door Close, Lift Cube, Stack Cube,

and Turn Faucet. This comparison allows us to determine
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FIGURE 4

Sparse task fine-tuning performance. Comparing fine-tuning performance across tasks from ManiSkill2 (Faucet, Banana, Master Chef Can) and

Metaworld (Drawer, Disassemble, Door). Experiments are run with three seeds.

FIGURE 5

Visualizing reconstructions. Comparing reconstructions details of FOCUS’s object-centric model and DreamerV2’s world model on di�erent

environments (RG cube, Master Chef can, Banana, Real World cube). Images and reconstructions are provided with the same resolution as in the

models, which is 64x64.

whether the improved object prediction performance is enough

to generally improve performance in these tasks, independently

of the exploration performance. We consider three baselines

for these tasks: Dreamer, with the same set of observations

provided to FOCUS, Dreamer (w/ object pos), with additional

object position information (x,y,z), and Multi-CNNs (Yoon et al.,

2023) from the OCRL implementation (Yoon et al., 2023), as a

model-free RL baseline using an object-centric representation.

MultiCNNs extracts an object-centric representation from single

observations (no temporal information), and it uses it to train a

model-free PPO agent (Schulman et al., 2017). In Dreamer (w/

object pos), we concatenate object position to the proprioception

of the agent. To account for the difference in dimensionality

between this low-dimensional vector (proprioception + object

position) and the large image matrix (64x64x3), we scale

the proprioception loss term by a factor of 100. In Figure 7,

we compare the final normalized performance in terms of

episode rewards.

We observe that FOCUS obtains the highest median and

mean performance. This supports the hypothesis that object-

centric representations for world models generally improve RL

performance for manipulation. When positional information is

provided to Dreamer, this helps to improve performance since it

is easier for the system to track objects’ positions. Still, FOCUS

shows an edge in performance, given the higher amount of

implicit information available (e.g. orientation, contact, color,

...). Multi-CNNs struggle compared to the other approaches. We

speculate this is linked to the lack of temporal consistency in the

representation and to the adoption of a less efficient model-free

learning strategy.

5.2.2 Information partitioning
We assess whether FOCUS is correctly partitioning the

information about each object into their respective latent while

storing no additional information from the other elements in the
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FIGURE 6

Object prediction errors. For each task, MSE is computed over the

masked RGB image. Masking is obtained by dilatation (3 pixels) of

the object’s segmentation mask. Results are averaged over the 10

evaluation episodes.

FIGURE 7

Dense reward performance. Results of dense reward experiments

across 6 tasks. Experiments are run for 2M steps with three seeds

per task and aggregated using RLiable (Agarwal et al., 2021).

scene. To get a glimpse into the information separation of FOCUS,

we decode the information from the object’s latent and we report

some examples in Figure 8.

It is evident that the object latent is storing visual information

about the object, capturing only a small amount of information

from the rest of the image. The “leaked” information is present

mostly in the area surrounding the object and we believe is due to

the segmentation masks’ quality. In the last two columns, we also

show examples of occlusion behaviors (partial and full occlusion)

by the robotic arm. Despite not seeing the object fully, FOCUS

disentangles the object information from the robotic arm and can

reconstruct the full unmasked object from the occluded views.

5.3 Real-world object-centric world model

We deploy FOCUS on a Franka Emika robot arm setup.

The main issue in the real world comes from the absence of

segmentation masks. Similarly to how we did for the MetaWorld

experiments, we can adopt the fastSAM model (Kirillov et al.,

2023; Zhao et al., 2023) to obtain segmentation masks, given a text

prompt (Cheng et al., 2023).

To evaluate the performance of the object-centric world model

in a real-world setting, we designed a simple environment featuring

a yellow brick placed on a tabletop, as shown in Figure 9. The

cube, attached to the robot’s end-effector by a string, serves as the

primary interactive element. Each episode lasts for 100 steps, after

which the robot resets to a designated position, bringing the cube

back to approximately the center of the workspace. The robotic

arm operates within a constrained 2D plane, indicated by the blue

FIGURE 8

Object reconstructions. Unmasked and Masked objects

reconstructions of FOCUS. Environments considered are Red cube,

Banana, and Faucet. Images and reconstructions are provided with

the same resolution as in the models, which is 64 × 64.

FIGURE 9

Real-world exploration. Top-Left: Real-world setup with delimited

workspace. Top-Right: Positions reached by the cube during the

finetuning phase for each method. Bottom: number of interactions

between the manipulator and the cube, over 3 training seeds.

dotted line in Figure 9, with its end-effector height fixed above the

tabletop. The robot’s gripper remains closed and is not controllable,

enabling it to interact with the cube exclusively through pushing

movements. The restrictions imposed are for safety reasons due

to the nature of exploration, but also to reduce the action space

and therefore the amount of data collection required to model the

environment.

In order to warm up the training of the world model, we pre-

train all agents using a dataset of observations collected by using

random actions (50 k interactions, approx 24 h of robot time).

We use this dataset to pre-train each world model and exploration

strategy for 500 k training steps (both the world model and the

policy are updated at every step).

In Figure 6 (second to last histogram), we compare the

object reconstruction error of Dreamer and FOCUS for the

real-world scenario after pre-training. In general, the implicit

segmentation knowledge makes it for more dynamically consistent

reconstructions when compared to Dreamer. The latter can
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sporadically present artifacts (as depicted in the last column of

Figure 5) in the reconstruction, especially for trajectories where

there is interaction between the objects and the manipulator.

5.3.1 Exploration evaluation
To evaluate the exploration capabilities of FOCUS in a real-

world robotic setting, we fine-tune the pre-trained model for real-

time exploration on a robotic arm. The finetuning process spans

10k steps, with each episode consisting of 100 steps. We compare

FOCUS against the same exploration baselines proposed during

the simulation experimentation, thus P2E, APT, and Random.

Results are shown in Figure 9. To confirm what was seen during

the simulation experiments, FOCUS has the highest interaction

score with the object. The performance gap in terms of interaction

between FOCUS and the other baselines is smaller compared to the

simulated experiments due to the more simplistic setup adopted for

the real-world scenario. The distribution of the object’s position

achieved during the fine-tuning phase is shown in the top-right

part of Figure 9. FOCUS has the highest coverage of positions in

the workspace, with the highest concentration around the center of

the workspace.

6 Discussion

We presented FOCUS, an object-centric model-based agent

that eagerly discovers interactions with objects, enabling one to

learn manipulation tasks more efficiently. In our evaluation, we

found that not only FOCUS enable solving more sparse reward

tasks, but also that the object-centric representation generally

improves objects’ prediction and manipulation performance.

6.1 Limitations

In our exploration experiments we interact with the

environment for 2M steps. All methods require first learning

an adequate world model for the explorative agent to be able

to robustly imagine which action is going to give the maximum

explorative outcome. Indeed, FOCUS starts to show an edge over

the other methods after 500 K explorative steps. This consistent

amount of training steps makes it challenging to have a full

deployment in a complex real-world environment. Nonetheless,

exploration approaches can be applied in real-world setups,

by simplifying the environment drastically, e.g. restricting the

action space (Pathak et al., 2019) or employing high-level actions

(Mazzaglia et al., 2024).

The primary limitation of FOCUS is its scalability when applied

to scenes containing multiple objects of interest, e.g., more than

2. Since the model depends on segmentation masks to isolate the

information for each object, each object reconstruction requires an

additional output map, both for the segmentation weights and the

RGB channels. This approach results in a larger computational and

memory footprint that, despite providing higher performance, is

less scalable. For future work, it would be interesting to investigate

methods to isolate object information that use more compute-

efficient representations, such as deep latent particles (Daniel

and Tamar, 2022; Haramati et al., 2024), doing so would retain

the benefits of the object-centric approach, while relaxing the

computational requirements.
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