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In common graph neural network (GNN), although incorporating social network 
information effectively utilizes interactions between users, it often overlooks the deeper 
semantic relationships between items and fails to integrate visual and textual feature 
information. This limitation can restrict the diversity and accuracy of recommendation 
results. To address this, the present study combines knowledge graph, GNN, and 
multimodal information to enhance feature representations of both users and items. 
The inclusion of knowledge graph not only provides a better understanding of the 
underlying logic behind user interests and preferences but also aids in addressing the 
cold-start problem for new users and items. Moreover, in improving recommendation 
accuracy, visual and textual features of items are incorporated as supplementary 
information. Therefore, a user recommendation model is proposed that integrates 
hierarchical graph attention network with multimodal knowledge graph. The model 
consists of four key components: a collaborative knowledge graph neural layer, 
an image feature extraction layer, a text feature extraction layer, and a prediction 
layer. The first three layers extract user and item features, and the recommendation 
is completed in the prediction layer. Experimental results based on two public 
datasets demonstrate that the proposed model significantly outperforms existing 
recommendation methods in terms of recommendation performance.
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1 Introduction

In the era of rapid information expansion, users are increasingly overwhelmed by vast 
amounts of digital content, leading to issues such as information overload and difficulty in 
efficiently locating relevant content. This challenge is particularly pronounced on emerging 
short video, social media, and e-commerce platforms, where the volume and diversity of data 
far exceed users’ cognitive and processing capacities. Consequently, intelligent recommendation 
systems have become essential tools for filtering massive datasets and delivering personalized 
content to users ((Liu et al., 2024; Wu et al., 2024; Yamada, 2021) and limited representation 
capacity, all of which hinder their performance in dynamic and complex environments (Zhang 
et al., 2019; Gao et al., 2022). With the rise of deep learning, the landscape of recommendation 
systems has evolved significantly. Techniques such as convolutional neural network (CNN) 
and recurrent neural networks (RNN) have shown strong capabilities in feature extraction and 
modeling temporal user preferences (Han et al., 2024; Wang et al., 2024, 2025, Yan et al., 2025).

Traditional recommendation approaches—such as content-based filtering (CBF), 
collaborative filtering (CF), and hybrid recommendation (HR)—primarily rely on users’ 
historical interactions (e.g., purchases or browsing records) and similarity computations to 
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provide recommendations (Javed et al., 2021; Wu et al., 2023). While 
these methods have achieved moderate success, they struggle with key 
issues such as the cold start problem, data sparsity, and limited 
representation capacity, all of which hinder their performance in 
dynamic and complex environments (Zhang et al., 2019).

With the rise of deep learning, the landscape of recommendation 
systems has evolved significantly. Techniques such as convolutional 
neural network (CNN) and recurrent neural networks (RNN) have 
shown strong capabilities in feature extraction and modeling temporal 
user preferences (Steck et al., 2021; Bandyopadhyay et al., 2024). For 
example, Visa et al. proposed a CNN-based feature extraction method, 
which uses matrix multiplication between users and items to uncover 
latent relationships, effectively solving the sparsity issue of similarity 
matrices and optimizing recommendation results (Visa and Patel, 
2021). Cho et al. designed an RNN-based recommendation system that 
analyzes temporal data to precisely capture dynamically changing user 
needs, providing more accurate recommendations (Cho et al., 2014). 
More recently, graph neural networks (GNNs) have demonstrated 
remarkable effectiveness in capturing intricate relationships between 
users and items by modeling them as graph structures (Jiang et al., 
2023). For instance, the GraphRec model proposed by Fan et  al. 
constructs a user information model that combines social network data 
with user characteristics and uses a multilayer perceptron to extract 
features of target items, improving recommendation accuracy (Fan 
et  al., 2019). Chen et  al. improved the recommendation system’s 
efficiency by leveraging social neighbor network information and using 
heterogeneous GNN methods (Chen and Wong, 2021).

Parallel to these advances, knowledge graphs (KG) have emerged as 
a promising auxiliary resource for enhancing recommendation 
performance. By formally encoding entities and their semantic 
relationships, KGs enable richer user-item interaction modeling. 
Existing KG-enhanced recommendation strategies include embedding-
based, path-based, and joint learning approaches. These techniques have 
demonstrated improved interpretability and accuracy by incorporating 
external structured knowledge into recommendation pipelines (Guo 
et  al., 2020; Zhang et  al., 2024). Oramas et  al. (2016) proposed a 
recommendation system that combines semantic and collaborative 
characteristics by extracting information from KG using both entity-and 
path-based strategies, transforming it into linear features. Path-based 
recommendations involve establishing user-item relation graph to 
uncover connections between entities, measure node similarity, and 
recommend content. Path analysis in KG reveals complex relationships 
between entities, allowing for precise exploration of user preferences 
through specific meta-paths, enhancing the interpretability of the 
recommendation system (Sun et al., 2020). Ma et al. (2019) developed 
the RuleRec algorithm, which extracts rules from an item-centric KG to 
identify various associations and provides recommendations using these 
inferred rules. Joint recommendation methods integrate path analysis 
and knowledge graph embedding approaches, where user interests are 
first captured via a propagation mechanism across the entire knowledge 
graph and then extracted through graph embedding techniques, 
ultimately completing the recommendation process (Yang et al., 2022). 
Wang X. et al. (2019) proposed the model, which combines user-item 
bipartite graph with knowledge graph and performs iterative diffusion 
in shared knowledge graph via GNN, enriching entity embeddings. Shi 
et  al. (2021) introduced the method, modeling a heterogeneous 
information network, extracting multi-dimensional similarity matrices 
using different meta-paths, and integrating this information through 
deep learning network to complete the recommendation process.

Furthermore, multimodal recommendation systems—which 
integrate visual, textual, and sometimes audio data—have received 
growing attention for their ability to address the limitations of single-
modal systems and further refine personalization (Li et al., 2019). By 
leveraging the complementary nature of different data types, 
multimodal methods can offer more comprehensive user 
representations and deeper insights into user preferences.

Motivated by the limitations of traditional and single-modal 
recommendation methods, this study proposes a novel recommendation 
framework that integrates hierarchical graph attention networks with a 
multimodal knowledge graph (HGAN-MKG). The model consists of 
four major components: a collaborative knowledge graph neural layer, 
an image feature extraction layer, a text feature extraction layer, and a 
prediction layer. Specifically, the collaborative KG layer captures deep 
user-item interactions via attention mechanisms and gated recurrent 
unit (GRU); the image layer applies a multi-path attention structure to 
analyze visual user behavior; the text layer uses multi-head self-attention 
and CNN to extract contextual features; and the prediction layer fuses 
all modalities to generate accurate recommendations. Experiments 
conducted on two benchmark datasets confirm the effectiveness of the 
proposed model, which outperforms several state-of-the-art baselines.

The remainder of this study is organized as follows: Section 2 
introduces the underlying theory, Section 3 describes the design 
details of the algorithm, Section 4 presents experimental validation, 
and Section 5 concludes the research work.

2 Theoretical foundations

2.1 K-means clustering algorithm

The K-Means algorithm is an effective data clustering method that 
partitions a dataset into K clusters, with each cluster associated with 
its nearest center (Bock, 2007). This iterative algorithm continuously 
updates cluster centers and reassigns points to clusters until a 
predefined stopping criterion is met. The algorithm’s principle is 
determined by solving an optimization function, with the sum of 
squared errors serving as the evaluation metric. The objective is to 
minimize the total cost function, as defined in Equation 1.
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where ∂m represents the centroid of cluster 𝑚, 𝑥𝑛 is an element 
from the sample set, and 𝐾 denotes the number of clusters.

In the context of recommendation systems, K-Means is applied 
to group users based on behavior, converting user activity data into 
vector form, and clustering users into 𝐾 groups. This method 
identifies similarities between users, enabling personalized 
recommendations for items that users within the same group are 
likely to find interesting.

2.2 Attention mechanism technologies

2.2.1 Attention mechanism
The attention mechanism allocates different weights to various 

inputs based on their importance, prioritizing more relevant 
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information while ignoring less significant details. As depicted in 
Figure 1, each input’s Key, Value, and Query are processed as vectors, 
and the weight for each Key is determined by calculating its similarity 
to the Query. This results in a weighted sum of all Values, generating 
the final output. The calculation of similarity can be  approached 
through four distinct strategies which is presented in Equation 2.
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2.2.2 Graph attention mechanism
With the expansion of research in this field, GAN and their 

variants have emerged, becoming integral to GNN These mechanisms 
typically form the core of complex deep learning architectures 
involving multiple convolutional or pooling layers designed to handle 
graph-structured data. Each layer participates in the propagation and 
aggregation of features between nodes and their neighbors, updating 
node representations and performing classification tasks. The graph 
attention mechanism emphasizes the dynamic evaluation of relative 
importance between nodes, calculating weights accordingly. As a 
critical component of GNN, it plays a pivotal role in computing node 
weights and handling diverse graph structures and tasks.

This mechanism assigns weights based on input features, allowing 
for weighted aggregation of data for more precise and effective 
representation. By assessing similarities between nodes and their 
neighbors, attention coefficients are computed to allocate weights. 
This strategy enhances the significance of key nodes while mitigating 
noise interference. Typically, a trainable network model is used to 
determine attention coefficients, considering the unique features of 
nodes and their relative positions with neighboring nodes, ultimately 
generating attention weights. Once these weights are obtained, node 
feature vectors are combined with their corresponding weights, 
resulting in a weighted feature vector that represents either a node or 
the entire graph.

2.2.3 Multi-head self-attention mechanism
The multi-head self-attention mechanism, a critical component 

of the Transformer model, has been widely adopted across various 
domains. Within the Transformer architecture, the attention 
mechanism consists of two key parts: scaled dot-product attention 
and multi-head attention, which together form the foundation of the 
model. The computation of scaled dot-product attention is as 
follows, as defined in Equation 3:
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where Q represents the query vector, K and V are the key-value 
pairs, and dk is the scaling factor.

Both single-head and multi-head self-attention are considered 
derivative forms of the attention mechanism, with multi-head 
attention enhancing the model’s ability to manage long sequences and 
their complexity. Given an input sequence [𝑤1, 𝑤2, 𝑤3, …, 𝑤𝑇], where 
each 𝑤𝑖 represents the vector form of the thi  word in the sequence.

The final representation 𝑏=[𝑏1, 𝑏2, 𝑏3, …, 𝑏𝑟] is derived from the 
weighted aggregation of attention heads. In a single-head attention 
mechanism, 𝑞1, 𝑘1, and 𝑣1 constitute one “head.” The multi-head self-
attention mechanism multiplies specific 𝑤1 values with multiple 𝑊𝑄, 
𝑊𝐾, and 𝑊𝑉 matrices to generate multiple sets of 𝑞1, 𝑘1, and 𝑣1, which 
is presented in Figure 2.

After obtaining the outputs from all heads, these feature vectors 
are concatenated and linearly transformed to generate the final 
representation as defined in Equation 4:
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2.3 Knowledge graph

A knowledge graph is essentially a semantic structure represented 
in the form of a graph, containing multiple categories of entities and 
offering a more intuitive and transparent visualization of complex 
relationships. It effectively encodes semantic information between 
entities and provides a highly structured means of representation. 
Mapping the entities and their relations into a low-dimensional 
continuous vector space is a critical step toward knowledge modeling 
and enhancing recommendation systems. During this process, it is 
essential to preserve both the structural properties of the graph and 
the semantic consistency of the nodes, in order to minimize 
information loss or distortion.

Various techniques have been proposed for feature extraction in 
knowledge base construction, including distance-based embedding 
models, similarity-based conceptual models, and path-based relational 
learning methods. Among them, translational models have gained 
widespread adoption due to their simplicity and scalability. 
Representative distance-based translational models include TransE, 
TransR, and TransD. For instance, TransR models entities as 
collections of multi-attribute information and achieves triple-level 
embedding by projecting entities into relation-specific spaces.

FIGURE 1

Allocation of attention mechanism weight.

https://doi.org/10.3389/fnbot.2025.1587973
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Han and Dou 10.3389/fnbot.2025.1587973

Frontiers in Neurorobotics 04 frontiersin.org

In TransR, each relation r is associated with a distinct relation 
space, and a projection matrix rM  is defined to map entity vectors 
from the entity space to the corresponding relation space. Given a 
head entity h, a tail entity t, and a relation r, their representations in 
the relation space are represented in Equation 5:

 

⊥

⊥
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=

r

r
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where ∈, kh t   represents the vector representation of the entity 
in the original entity space, ×∈ d k

rM   is the projection matrix 
corresponding to the relation r, and ⊥ ⊥∈, dh t   means the embedding 
representation of the head entity and the tail entity in the relation 
space. Through the above mapping, TransR can better model the 
differential impact of different relations on entity semantics.

Figure 3 illustrates the core concept of TransR. For each triple (h+𝑟), 
the entities h and 𝑡 are mapped to the relationship space r through a 
projection matrix rW , resulting in representations h𝑟 and 𝑡𝑟. The goal is 
to ensure that (h𝑟+𝑟) closely approximates 𝑡r. The transformation of 
entities in the space is represented by the following Equation 6:

 = =,r r r rh hW t tW  (6)

The score function for determining the proximity between head 
and tail entities is given by Equation 7:

 ( ) = + − 2
2, , r rg h r t h r t  (7)

According to Equation 7, the lower the score of the triple, the 
closer the head and tail entities are in the relationship space 𝑟, which 
increases the probability of the triple being correct.

3 Methodology

The proposed recommended model HGAN-MKG, first extracts 
knowledge graph information. It then utilizes the VGG19 network to 

extract image features of items and combines multi-head self-attention 
mechanisms with CNN to extract text features. Finally, the model 
fuses these three types of information for recommendation purposes. 
The proposed model consists of four key components: the collaborative 
knowledge graph neural layer, the image feature extraction layer, the 
text feature extraction layer, and the prediction network layer. The 
model architecture is illustrated in Figure 4.

3.1 Collaborative knowledge graph neural 
layer

In the collaborative knowledge graph neural layer, the bipartite 
graph between users and items in the knowledge graph is integrated 
to connect item features, thereby forming a knowledge graph. Let 
𝑉={𝑣1, 𝑣2, …, 𝑣𝑚} represent the set of items and 𝑈={𝑢1, 𝑢2, …, 𝑢𝑛} 
represent the users. The set 𝐸={𝑒1, 𝑒2, …, 𝑒𝑜} corresponds to the set 
of entities, where 𝑜, 𝑛, and 𝑚 denote the total number of entities, 
users, and items, respectively. The matrix 𝑌𝑖𝑗 indicates the 
interactions between users and items, defined as 𝑌𝑖𝑗 =1 if an 
interaction exists, and 𝑌𝑖𝑗=0 otherwise. A knowledge graph 𝐺={(h, 
𝑟, 𝑡)|h, 𝑟=𝜀, 𝑟∈𝑅} is defined, where each triple consists of a head 
entity h, a relationship 𝑟, and a tail entity 𝑡. If there is an association 
between h and 𝑡, the elements in GGG represent entities and 
their associations.

In practice, the representation of entities and their relationships 
within a KG is typically approached using translation-based 
learning methods. These methods perform logical reasoning and 
mapping of entities and their relationships in a low-dimensional 
space for knowledge representation. In the TransE model, the triple 
(h, 𝑟, 𝑡) is expressed in vectorized form, where the relationship 𝑟 is 
understood as a translation from h to 𝑡. By fine-tuning the vector 
representations of the triples, the equation h+𝑟 ≈𝑡 is satisfied. As 
technology has advanced, derivative techniques have emerged, 
such as the TransR model, where each entity is viewed as having 
multiple facets. Different relationships correspond to different 
aspects of an entity, and each semantic space corresponds to a 
specific relationship.

Through embedding techniques, item vector representations are 
obtained, and the attention mechanism is applied to explore the 
interactions between entities within the knowledge graph. This 
method not only integrates user data but also incorporates the internal 
relationships and complex hierarchical structures between entities in 
the knowledge graph. The training process based on the attention 
mechanism involves random sampling of nodes and the calculation of 
weight scores to capture direct relationships between entities. 
Subsequently, the attention mechanism analyzes these weights to 
identify and understand first-order entity relationships, which can 
be further extended to 𝐿-order entity relationships.

This paper delves into the training methods for the initial stages 
and extends the analysis to multi-layer 𝐿-structures. In this network 
layer, Equation 8 reveals the interactions between two entities, while 
Equation 9 measures the degree to which a user prefers specific 
relationships and entity information. For a specific item 𝑣0, its 
neighboring nodes in the set 

0v

u
Uv  are described by the formula, where 

(𝑟, 𝑖, 𝑗) defines the connections between entities, and the attention 
mechanism is used to compute and evaluate the weights.

FIGURE 2

Multi-head self-attention.
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where 𝑢∈R, 𝑟𝑖,𝑗 ∈R, j∈R, and 𝑒𝑗 ∈R represent the user, entity 
connections, and tail entity vector representations, respectively, with 
www denoting the dimensionality. The structure uses a non-linear 
activation function σ and adjusts the weights 𝑊1 and bias 𝑏1∈𝑅 to 
assess the strength of user interest in different relationships and entity 
data. To construct the vectorized representation of neighboring 
entities for item 𝑣0, the vectors of adjacent entities 𝑒0 are linearly fused 
as shown in Equation 10, followed by subsequent normalization.
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To explore deeper entity information, this layer is extended from 
a single level to multiple layers, resulting in 𝐿-order vectorized 
descriptions of entities. This 𝐿 -order vector representation aggregates 
data from neighboring entities up to (𝐿−1)-order. The final vector 
representation of the item 𝑣𝐿 is obtained, where 𝑊𝐿 represents the 
weight parameters and 𝑏𝐿 denotes the bias. This is calculated precisely 
using Equation 11.

FIGURE 3

Graphical description of TransR.

FIGURE 4

User recommendation method integrating hierarchical graph attention network with multimodal knowledge graph.
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 ( )( )σ −= ⋅ + +1 vL L L U L Lv W v v b  (11)

Ultimately, a summary analysis is conducted to derive a 
representation 𝑢A, reflecting the user’s short-term interests, which is 
illustrated in Equation 12:

 
α

=
=∑ ,
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N

A i u i
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(12)

where 𝑣𝑢,𝑖 represents the user’s N-order preference {𝑣𝑢,1, 𝑣𝑢,2,…𝑣𝑢,𝑁}, 
and 𝛼𝑖 represents the attention weight coefficients. These coefficients 
are calculated based on the spatial relationships between entities in the 
knowledge graph as illustrated in Equation 13:
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To more accurately capture the user’s final interests, vectors 
generated by the embedding layer are used to represent the user’s 
long-term interests. At the same time, aggregated vectors processed 
by the attention mechanism reflect the user’s short-term interests. A 
GRU model is then applied to integrate both long-term and short-
term interests, forming a comprehensive representation of the user’s 
interest preferences. GRU is adopted due to its efficient gating 
mechanism and relatively lower computational complexity compared 
to LSTM, while maintaining comparable performance in modeling 
sequential dependencies. Unlike Transformer-based models, which 
typically require large-scale training data and extensive tuning, GRU 
provides a lightweight and effective solution for learning user 
preferences in data-constrained or latency-sensitive scenarios. The 
initial set of items interacting with the user is denoted as 𝑣𝑜.

User long-term preference representations 𝑢𝐿 are trained using 
historical interaction data. These are then combined with short-term 
preferences 𝑢𝐴 and trained through the GRU model. After training, 
the selected hidden layer undergoes normalization to produce the 
final representation of the user’s preference 𝑢𝐺. Ultimately, the long-
term preferences 𝑢𝐿 are fused with the short-term preferences 𝑢𝐴, and 
a deep GRU model is used for training. The resulting hidden layers are 
normalized to generate the final user preference expression 𝑢𝐺 as 
shown in Equation 14:

 ( )σ= +  4 4,G L Au W u u b  (14)

3.2 Image feature extraction layer

In the image feature extraction layer, K-Means clustering is first 
applied to the image features corresponding to the user’s interaction 
history, aiming to uncover latent user preference patterns. Specifically, 
image features are extracted using a pretrained VGG19 model 
(employing its static components from Conv1 to FC7 layers), and 
uniformly transformed into 4,096-dimensional vector representations. 
These feature vectors are then input into a K-Means clustering algorithm 

to generate a set of representative cluster centroids, each corresponding 
to a latent category of visual preference. The resulting clusters are utilized 
not only for modeling user interests in visual content but also as input for 
subsequent dynamic feature learning. To further capture semantic 
representations of these clustered features at the individual user level, a 
trainable feature modeling module composed of three fully connected 
layers is constructed. This module is designed to generate high-level 
semantic representations of images. The computational process is 
defined as follows, as shown in Equation 15:
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where ∈ 4096
op   denote the initial image feature vector extracted 

via VGG19, and 0s  the intermediate semantic representation. The 
matrices aW , bW , and cW , along with the corresponding biases ab , bb , 
and cb , represent the weights and biases of the fully connected layers, 
respectively. The input p refers to the feature vector obtained after 
clustering, and vp  denotes the final semantic representation vector of 
the image.

In this section, the first 18 layers of the VGG19 network are fixed 
as output 𝑝𝑜, which is used to extract the visual features 𝑝𝑣 of items. 
The images representing user-item interactions capture the user’s 
visual preferences. Since the contribution of these historical 
interaction images to capturing user preferences varies, an image 
aggregation network is employed to integrate these images 
differentially. The specific structure of the aggregation network is 
shown in Figure 5. The network utilizes a multi-channel attention 
mechanism, where the item’s image features and the initial 
representation of the target item serve as query vectors. These vectors 
are then passed through various fully connected networks to form 
individual weights and weighted vectors. The weighted vectors from 
the two channels are then aggregated to obtain a visual representation 
of the user’s historical behavior, calculated as shown in Equation 16:

 ( )ϕ ϕ= + −1 21p u uu p p  (16)

This represents the set 𝑝𝑖 of images from items previously 
interacted with by the user. The image of the thi  item is transformed 
into a vector through embedding technology, which also includes the 
embedded representation of the target item image 𝑝𝑣. The training 
parameters are denoted by 𝜑, and the formulas for 1

up  and 2
up  are as 

shown in Equation 17:

 

( )

( )

=

=

=

=

∑

∑

1

1

2

1

,

,

N

u p i v i
i
N

u p i o i
i

p g p p p

p g p p p
 

(17)

3.3 Text feature extraction layer

This layer is responsible for extracting textual features. 
K-Means clustering is first applied to the user data before 
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proceeding with further operations. For text feature extraction, 
consider a movie as an example. A movie’s textual features 
include its title, genre, and description, all of which are logically 
related. In this network layer, multi-head self-attention is 
employed to extract features from each component (movie title, 
genre, and description), which are then fused to form the final 
textual feature representation.

Regarding item categories, using movies as an example, when 
a user selects a movie for viewing in an app, they generally choose 
a broad genre, such as comedy, romance, or drama. If the user 
selects a comedy, they may further choose from sub-genres like 
slapstick, satirical, dark humor, or martial arts comedy. Similar 
patterns apply to other genres. Therefore, for category features, 
both broad and fine-grained categories are considered for feature 
extraction. During embedding, the ID is input and transformed 
into low-dimensional representations 𝑒𝑠 and 𝑒𝑑𝑠. The 
hidden category representation is then learned as shown in 
Equation 18:

 

( )
( )

= × +

= × +

ReLU

ReLU

s s
s s

ds ds
ds ds

B V e v

B V e v
 

(18)

Next, the item title is used to obtain its feature representation. This 
part involves three steps. First, the word sequence of the item title is 
transformed into a low-dimensional semantic vector sequence, 
converting the sequence of title words  

 1 2, , ,t t t
Mw w w  into a vector 

 
 1 2, , ,t t t

Mc c c . The CNN component then extracts short-range 
contextual features from the words in the movie title. Using CNN, the 
context representation of the thi  word is derived as t

ic , calculated as 
shown in Equation 19:

 ( ) ( )− +
 = × + 
 :ReLUt t

i t ti X i Xe F c b
 

(19)

where ( ) ( )− +:
t
i X i Xc  represents the concatenation of word 

embeddings from positions (𝑖−𝑋) to (𝑖+𝑋). tF  and tb  are the kernel 
and bias parameters of the convolutional neural network. The CNN 
output sequence is  

 1 2, , ,t t t
Me e e . A similar approach is applied to the 

movie description sequence.
The final step uses multi-head self-attention to model the 

relationships between components, enabling better capture of distant 

textual features. The thk  attention head’s representation of the thi  word 
is calculated as shown in Equation 20:
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(20)

where w
kQ  and w

kV  are the projection parameters of the self-
attention head, and ,

k
i ja  represents the relative importance of 

interactions between the thi  and thj  words. The multi-head 
representation w

ih  for the thi  word is obtained by concatenating the 
representations from the h independent attention heads.

Since the same word carries varying amounts of critical information 
across different item components, attention is used to assign weight 
proportions. The calculation for this is as shown in Equation 21:
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(21)

The final representation of each component is obtained by 
aggregating the weighted expressions of the words. The calculation is 
as shown in Equation 22:

 =
=∑

1

M
w w
i i

i
B a h

 
(22)

Given that different components contain varying amounts of 
information—titles and descriptions may carry more relevant details, 
while categories more accurately represent the item’s attributes—
attention is employed to balance the weights, reflecting the amount of 
information each component carries. The calculation is as shown in 
Equation 23:

 

( )
( )

( ) ( ) ( )

= × +

=
+ +

tanh

exp
exp exp exp

T h tb
tb v v v

tb
tb

sc c tb

a g U B u

a
a

a a a  

(23)

FIGURE 5

Structure of image feature aggregation.
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Similarly, the attention weights for categories and sub-categories 
are denoted as 𝑎𝑠 and 𝑎𝑑𝑠. The final representation is the weighted sum 
of the component representations, as presented in Equation 24:

 = + +tb ds s
tb ds sB a B a B a B  (24)

Structure of text feature extraction is presented in Figure 6. Lastly, 
since user preferences may be related and users tend to browse items 
with similar categories, a multi-head self-attention mechanism is used 
to capture interactions between similar items, enhancing the 
representation of the user. The thk  attention head’s representation of 
the thi  item is calculated as presented in Equation 25:
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where n
kQ  and n

kV  are the self-attention head parameters, and β ,
k
i j 

represents the similarity between the thj  and thi  items. The multi-head 
representation for the thi  item is the concatenation of the 
representations from the h independent attention heads.

The user feature extraction part is shown in Figure 7. For user 
representation, the amount of user feature information carried by 
different items varies. Therefore, an attention mechanism is employed 
to better learn the user representation. The attention weight for the thi  
item is calculated as presented in Equation 26:
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3.4 Prediction layer

After processing through the collaborative knowledge graph 
neural layer, the image feature extraction layer, and the text 

feature extraction layer, user and item features are obtained. Let 
𝑄𝑢 and 𝑄𝑣 represent the sets of user and item features, 
respectively. The calculation process is presented in Equation 27:
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These feature vectors are concatenated to form the final 
vector representation of the user and item, as expressed by 
Equation 28:
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=
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(28)

The final step involves applying the dot product of the user and 
item vectors to estimate the target user’s preference score for a specific 
item. The calculation is presented in Equation 29:

 =ˆ T
uv u vy e e  (29)

4 Experimental results and analysis

4.1 Dataset description

Two publicly available cross-domain recommendation datasets 
were employed in this study, covering the domains of movies and 
books: MovieLens-1M and Amazon-Book. The MovieLens-1M 
dataset, provided by the GroupLens research group, has been widely 
used in movie recommendation research and contains user rating 
records for movies (Harper and Konstan, 2015). The Amazon-Book 
dataset, extracted from the book subset of the Amazon Review 
Corpus, captures user rating behaviors toward book products (He 
and McAuley, 2016). To ensure experimental consistency, 
interaction records in each dataset were partitioned into a training 
set (80%), a test set (10%), and a validation set (10%, sampled from 
the training set) for model tuning. Table  1 summarizes the key 
statistics of the two datasets, including the number of users, items, 
and interactions, as well as data sparsity. Additionally, it presents 

FIGURE 6

Structure of text feature extraction.
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the corresponding KG statistics, including the number of entities, 
relations, and total triples.

From Table 1, it is observed that the Movielens-1M dataset has 
836,478 interactions and a sparsity of 96.18%, with 385,923 triples in 
its knowledge graph. The Amazon-Book dataset contains 8,477,733 
interactions, with a sparsity of 99.95% and 2,557,746 triples in its 
knowledge graph.

4.2 Performance metrics

The evaluation metrics used in this experiment are Recall and 
NDCG, both of which accurately describe recommendation performance.

4.2.1 Recall
This metric measures how many relevant items are correctly 

predicted within the top-X recommendations. It is computed as 
Equation 30:

 ( )
=

+
Recall TP

TP FN  
(30)

where TP represents the number of true positives, and FN 
represents the number of false negatives.

4.2.2 NDCG
NDCG gives more weight to higher-ranked results, reflecting the 

diminishing relevance of items further down the ranking. It is defined 
as Equation 31:

 
=
DCGNDCG
iDCG  

(31)

where 𝐷𝐶𝐺 represents the discounted cumulative gain, and the 
weights of the arrangement order are summed. The earlier it is, the 
greater the proportion; 𝐷𝐶𝐺 is the best arranged 𝐷𝐶𝐺.

4.3 Baseline models and experimental 
setup

The following five baseline models were used in the experiments:
CKE (Zhang et al., 2016): A model based on collaborative filtering, 

which integrates text, image, and structural features within a single 
framework and uses TransR to enhance matrix factorization.

RippleNet (Wang et al., 2018): A model that continuously explores 
user preferences by incorporating a knowledge graph into the 
recommendation system, mitigating the cold-start problem.

KGNN-LS (Wang H. W. et  al., 2019): This model constructs 
personalized graph representations for users using knowledge graphs, 
considering users’ unique preferences for different relations within the 
knowledge graph. It introduces label smoothing to 
improve generalization.

KGAT (Wang X. et  al., 2019): A model that uses attention 
mechanisms to aggregate higher-order information between entities, 
addressing sparsity issues and improving recommendation accuracy.

KGECF (Zhang et  al., 2021): A knowledge graph-based 
recommendation system that extracts latent features related to items, 
creating a personalized knowledge subgraph. It employs an end-to-end 
collaborative learning framework to merge knowledge graph and user 
behavior data for higher accuracy.

In light of current trends in KG-based recommendation research, 
although several emerging models have been proposed, the 
aforementioned five baseline methods remain representative in key 
aspects such as multimodal fusion, graph-based modeling, and user 
preference construction. These methods have also been extensively 
validated across various datasets, providing a solid foundation for 
comparative analysis. To further enhance readability, Table  2 
summarizes the modalities utilized and feature fusion strategies 
adopted by each model. This comparison highlights the superiority of 
the proposed method in terms of its multimodal fusion capabilities.

As shown in the table, the proposed model not only maintains 
strong collaborative modeling capabilities but also systematically 
integrates knowledge graph, image, and text modalities. By 
incorporating a more fine-grained multi-path attention mechanism 

FIGURE 7

Structure of user feature extraction.

TABLE 1 Statistics of the datasets and corresponding knowledge graphs.

Dataset User-project interaction Knowledge graph related

Users Items Interactions Sparsity Entities Relations Triples

Movielens-1M 6,040 3,623 836,478 96.18% 73,988 51 385,923

Amazon-Book 70,679 24,915 847,733 99.95% 88,572 39 2,557,746
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and a hierarchical structure, the model enables a more comprehensive 
representation of user preferences, thereby enhancing both 
recommendation accuracy and generalization performance.

The experiments were conducted on a Microsoft Windows 10 
system, with an Nvidia 3,070 GPU, 32 GB of memory, and an AMD 
R7-6800H processor. The programming language used is Python 
3.8.6, and PyTorch is utilized to implement the models. Item and user 
embedding sizes were set to 64, with a batch size of 256. The Adam 
optimizer is used with a learning rate of 0.002, and model parameters 
were initialized using the Glorot method. The training, validation, and 
test sets were split in an 80:10:10 ratio based on recommendation 
evaluation metrics.

4.4 Comparison of model performance

In this experiment, the proposed model is compared with the four 
baseline models across two datasets. Since recommendation accuracy 
is influenced by the number of recommendations, X is set to {5, 10, 
15, 20, 25}. The performance results on the Movielens and Amazon-
Book datasets are shown in Tables 3, 4, respectively.

The baseline comparison analysis for the two datasets shows that 
the recall rate (Recall) of all models increases with the number of 
recommendations (X). In this trend, the MKGAR model proposed in 
this study demonstrates the highest recall rate, significantly 
outperforming other models. This result confirms that the MKGAR 
model substantially improves the performance of 
recommendation systems.

Upon analyzing the experimental results, it is observed that the CKE 
and RippleNet models performed relatively poorly, while KGNN-LS, 
KGAT, and KGECF performed better. Specifically, the CKE model did 
not incorporate the TransR method, which led to an inability to fully 
capture the complex structure of the knowledge graph. This confirms the 
superiority of the TransR method in handling knowledge graph 
information. In contrast, RippleNet showed slight improvements over 
CKE by utilizing a knowledge graph, but it failed to fully explore higher-
order connectivity and collaborative signals from users.

For the Recall metric, CKE and RippleNet exhibited similar 
performance across both datasets, while the proposed model 

showed a significant improvement over both. On the other hand, 
KGNN-LS, KGAT, and KGECF demonstrated clear advantages. 
KGNN-LS, which combines knowledge graphs and label smoothing 
regularization, improves recommendation accuracy and 
interpretability but focuses primarily on learning local structural 
features, potentially overlooking the impact of global information. 
The KGAT model, despite aggregating information by calculating 
spatial relationships between head and tail entities, did not 
adequately account for interactions between users. The KGECF 
model utilizes an attention mechanism to efficiently extract higher-
order relational information from the knowledge graph, and 
integrates users’ long-term and short-term preferences through 
gated neural networks, significantly improving recommendation 
accuracy. However, these models do not account for the potential 
influence of text and image features on the recommendations, 
resulting in lower performance compared to the proposed model. 
The proposed model leverages multi-perspective features—
particularly textual and visual modalities—which play a crucial 
role in enhancing recommendation accuracy. This effectiveness has 
been empirically validated. For instance, in terms of Recall, the 
proposed model demonstrates significant improvements over 
KGNN-LS, KGAT, and KGECF on both the MovieLens-1M and 
Amazon-Book datasets. These results indicate that by effectively 
mining latent information from multiple modalities, the proposed 
approach exhibits strong recommendation capabilities.

Based on the results of hypothesis testing (two-sample t-test, 
n = 5, two-tailed test assuming equal variances), the p-values for the 
proposed method compared with each baseline across different recall 
positions on the two datasets are presented in Tables 5, 6. Significance 
levels are denoted as follows: p < 0.05 (*), p < 0.01 (**). The detailed 
results of the significance tests are shown below.

As observed from Tables 5, 6, the proposed method demonstrates 
statistically significant improvements over all baseline models under 
most settings, with p  < 0.01  in the majority of comparisons. In 
particular, the comparison with KGECF at Recall@15 on 
MovieLens-1M and Recall@20 on Amazon-Book yields p-values 
slightly above the 0.01 threshold but still below 0.05, indicating 
moderate significance. The only non-significant result occurs at 
Recall@25 on MovieLens-1M when compared with KGECF 

TABLE 2 Comparison of modality usage and feature fusion mechanisms across different recommendation models.

Model Collaborative 
filtering

Knowledge 
graph

Graph 
modeling

Image 
modality

Text 
modality

Modality fusion 
mechanism

CKE (Zhang et al., 2016)
✔ ✔ ✘ ✔ ✔

Multimodal joint matrix 

factorization + TransR

RippleNet (Wang et al., 

2018)
✔ ✔ ✘ ✘ ✘ KG path propagation mechanism

KGNN-LS (Wang H. W. 

et al., 2019)
✔ ✔ ✔ ✘ ✘

Label smoothing-based GCN with 

personalized aggregation

KGAT (Wang X. et al., 

2019)
✔ ✔ ✔ (GAT) ✘ ✘

Graph attention mechanism for 

high-order relations

KGECF (Zhang et al., 2021) ✔ ✔ ✔ ✘ ✘
Subgraph generation + joint 

collaborative modeling

Ours

✔ ✔
✔ (HGNN + 

GRU)
✔ ✔

Graph attention + GRU + multi-

path visual attention + multi-head 

text attention
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(p  = 0.3232). These significance testing results further verify the 
robustness and consistent performance improvements of the proposed 
model across different recall levels and datasets.

4.5 Ablation study

This section explores how user preferences related to visual and 
semantic features, derived from item images and text, can 
be integrated into item embeddings. To assess the specific impact 
of image and text features on the performance of the 
recommendation system, experiments were designed by modifying 
the user and item feature components in Equation 28. The models 
were then evaluated by removing either the image features (model 
labeled HGAN-MKG1) or the text features (model labeled HGAN-
MKG2). By comparing these ablated models with the full model 
(MKGAR) across different top-K values (5, 10, 20, 25), we can gain 
detailed insights into the contribution of each modality to the 

recommendation results. The detailed metrics including NDCG and 
Recall are reported in Table 7.

As seen from the above results, both image and text features 
contribute positively to model performance across all top-K values. 
However, the magnitude of their impact is relatively modest. This is 
attributed to the redundancy and strong expressive power of the 
knowledge graph-based structural features, which may already encode 
rich item semantics and relationships. Thus, the additional visual and 
textual modalities, though helpful, offer only incremental improvements. 
These results highlight the robustness of the knowledge-aware 
representation while also confirming that multi-modal auxiliary features 
can enhance performance, especially under sparse or cold-start conditions.

4.6 Hyperparameter experiment

In the collaborative knowledge graph neural layer, the attention 
coefficient 𝛼𝑖 plays a crucial role, as the attention score depends on the 

TABLE 3 Performance comparison on Movielens-1M dataset.

Model Movielens-1M

Recall

5 10 15 20 25

CKE 0.0506 ± 0.0012 0.0627 ± 0.0011 0.0755 ± 0.0013 0.0805 ± 0.0016 0.0953 ± 0.0016

RippleNet 0.0479 ± 0.0010 0.0650 ± 0.0013 0.0801 ± 0.0014 0.0840 ± 0.0013 0.1033 ± 0.0015

KGNN-LS 0.1165 ± 0.0023 0.1521 ± 0.0018 0.1868 ± 0.0025 0.2251 ± 0.0027 0.2626 ± 0.0028

KGAT 0.1235 ± 0.0020 0.1647 ± 0.0024 0.2005 ± 0.0024 0.2417 ± 0.0026 0.2714 ± 0.0035

KGECF 0.1364 ± 0.0019 0.1771 ± 0.0021 0.2285 ± 0.0031 0.2669 ± 0.0027 0.2980 ± 0.0038

Ours 0.1440 ± 0.0017 0.1869 ± 0.0022 0.2337 ± 0.0028 0.2772 ± 0.0024 0.3034 ± 0.0031

TABLE 4 Performance comparison on Amazon-Book dataset.

Model Amazon-Book

Recall

5 10 15 20 25

CKE 0.0438 ± 0.0010 0.0691 ± 0.0012 0.0737 ± 0.0012 0.0820 ± 0.0013 0.0888 ± 0.0013

RippleNet 0.0480 ± 0.0012 0.0674 ± 0.0015 0.0752 ± 0.0011 0.0841 ± 0.0013 0.0941 ± 0.0011

KGNN-LS 0.0852 ± 0.0014 0.1183 ± 0.0017 0.1244 ± 0.0015 0.1566 ± 0.0022 0.1775 ± 0.0024

KGAT 0.0952 ± 0.0016 0.1288 ± 0.0016 0.1389 ± 0.0018 0.1661 ± 0.0027 0.1804 ± 0.0029

KGECF 0.1068 ± 0.0016 0.1340 ± 0.0020 0.1507 ± 0.0022 0.1771 ± 0.0029 0.1849 ± 0.0026

Ours 0.1133 ± 0.0014 0.1415 ± 0.0017 0.1583 ± 0.0019 0.1850 ± 0.0027 0.1953 ± 0.0026

TABLE 5 p-values on the MovieLens-1M dataset.

Model Movielens-1M

Recall@5 Recall@10 Recall@15 Recall@20 Recall@25

CKE 0.0000** 0.0000** 0.0000** 0.0000** 0.0000**

RippleNet 0.0000** 0.0000** 0.0000** 0.0000** 0.0000**

KGNN-LS 0.0000** 0.0000** 0.0000** 0.0000** 0.0000**

KGAT 0.0000** 0.0000** 0.0000** 0.0000** 0.0000**

KGECF 0.0003** 0.0000** 0.0238* 0.0011** 0.3232
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spatial relationship between entities in the knowledge graph. To 
evaluate the impact of the attention coefficient on the model 
performance, we varied the value of 𝛼 within the range [0, 1] and 
compared the results with those obtained from the original model 
using 𝛼𝑖. The performance is evaluated using NDCG on the Amazon-
Book dataset with the number of recommendations set to 20. The 
changes in NDCG with different values of α\alphaα are shown in 
Figure 8, illustrating the impact of different attention coefficients on 
model performance.

The analysis of the data in Figure  8 shows that when the 
attention coefficient 𝛼 is set to the value of 𝛼𝑖, the NDCG reaches 
its peak at 0.3348. No value of 𝛼 within the range [0, 1] exceeded 
this performance. Specifically, as 𝛼 increases, the performance 
initially rises to a peak and then begins to decline. The highest 
NDCG is observed at 𝛼=0.4 with a value of 0.3346, while at 𝛼=1, 
the performance dropped to 0.3312. Notably, when 𝛼=1, the 
performance improved by 1.09% compared to the original 𝛼𝑖 
value. This result indicates that dynamically adjusting the 
attention coefficient based on the spatial relationship between 

entities, rather than using a static threshold, can more effectively 
enhance model performance. This is because a smaller threshold 
may introduce noise from irrelevant entities, while a higher 
threshold may excessively filter out nodes, reducing the amount 
of information. Therefore, dynamically adjusting the attention 
coefficient to align with the spatial relationships of entities is an 
effective strategy for optimizing recommendation 
system performance.

5 Conclusion

This paper introduces a recommendation method that 
combines hierarchical graph attention networks and multimodal 
knowledge graphs. The core components of the approach include 
the integration of knowledge graphs with graph neural attention 
mechanisms and multimodal feature fusion. In the collaborative 
knowledge graph neural layer, the knowledge graph serves as a 
structured representation, encompassing a wealth of entities, 
relationships, and attributes, while graph neural networks help 
uncover deeper collaborative relationships. Additionally, by 
incorporating image and text features (such as movie posters, 
book covers, names, descriptions, and categories), the model 
enhances its understanding of users’ visual and semantic 
preferences. This approach not only effectively models user 
interests but also provides more accurate recommendations. 
Extensive experiments on the MovieLens and Amazon-Book 
datasets demonstrate that the proposed model significantly 

TABLE 6 p-values on the Amazon-Book dataset.

Model Amazon-Book

Recall@5 Recall@10 Recall@15 Recall@20 Recall@25

CKE 0.00000** 0.00000** 0.00000** 0.00000** 0.00000**

RippleNet 0.00000** 0.00000** 0.00000** 0.00000** 0.00000**

KGNN-LS 0.00000** 0.00000** 0.00000** 0.00000** 0.00001**

KGAT 0.00000** 0.00001** 0.00000** 0.00000** 0.00004**

KGECF 0.00013** 0.00021** 0.00038** 0.00212* 0.00023**

TABLE 7 Comparative experimental results of ablation study.

Top-K Model Movielens-1M 
(NDCG/Recall)

Amazon-
Book 

(NDCG/
Recall)

5

HGAN-MKG1 0.1771/0.1427 0.0581/0.0628

HGAN-MKG2 0.1756/0.1425 0.0578/0.0623

MKGAR 0.1783/0.1440 0.0594/0.1133

10

HGAN-MKG1 0.2202/0.1846 0.0753/0.1395

HGAN-MKG2 0.2217/0.1841 0.0753/0.1402

MKGAR 0.2240/0.1869 0.0774/0.1415

15

HGAN-MKG1 0.2858/0.2330 0.0844/0.1568

HGAN-MKG2 0.2840/0.2321 0.0846/0.1573

MKGAR 0.2875/0.2337 0.0869/0.1583

20

HGAN-MKG1 0.3343/0.2746 0.1045/0.1840

HGAN-MKG2 0.3348/0.2754 0.1037/0.1836

MKGAR 0.3361/0.2772 0.1064/0.1850

25

HGAN-MKG1 0.3759/0.3005 0.1086/0.1939

HGAN-MKG2 0.3762/0.3009 0.1081/0.1935

MKGAR 0.3777/0.3034 0.1114/0.1953

FIGURE 8

Impact of the attention coefficient α in the knowledge graph 
attention network layer on model performance.
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outperforms other knowledge graph-based recommendation 
models in terms of performance.
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