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Refinement for small object 
detection with Deformable DETR
Donghao Shi 1,2,3†, Cunbin Zhao 1,2,3†, Jianwen Shao 1,2,3*, 
Minjie Feng 1,2,3, Lei Luo 1,2,3, Bing Ouyang 1,2,3 and Jiamin Huang 1,2,3

1 Zhejiang Key Laboratory of Digital Precision Measurement Technology Research, Hangzhou, China, 
2 Advanced Manufacturing Metrology Research Center, Zhejiang Institute of Quality Sciences, 
Hangzhou, China, 3 Key Laboratory of Acoustics and Vibration Applied Measuring Technology, State 
Administration for Market Regulation, Hangzhou, China

Small object detection is a critical task in applications like autonomous driving and 
ship black smoke detection. While Deformable DETR has advanced small object 
detection, it faces limitations due to its reliance on CNNs for feature extraction, 
which restricts global context understanding and results in suboptimal feature 
representation. Additionally, it struggles with detecting small objects that occupy 
only a few pixels due to significant size disparities. To overcome these challenges, 
we propose the Context-Aware Enhanced Feature Refinement Deformable DETR, 
an improved Deformable DETR network. Our approach introduces Mask Attention in 
the backbone to improve feature extraction while effectively suppressing irrelevant 
background information. Furthermore, we propose a Context-Aware Enhanced 
Feature Refinement Encoder to address the issue of small objects with limited pixel 
representation. Experimental results demonstrate that our method outperforms 
the baseline, achieving a 2.1% improvement in mAP.
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1 Introduction

With the continuous advancement of technology, object detection has become a critical 
research area (Tong and Wu, 2022; Wei et al., 2024; Zhao Y. et al., 2024), achieving significant 
progress in practical applications such as autonomous driving (Bogdoll et al., 2022; Song and 
Lee, 2023; Su et al., 2022), ship black smoke detection (Dimitropoulos et al., 2016; Wang et al., 
2023), and drone aerial photography (Li et al., 2024; Tang et al., 2024; Zhu P. F. et al., 2021). 
However, as the demands of these applications continue to increase, the challenges faced by 
object detection tasks have grown more complex, particularly in the case of small object 
detection (Guo et al., 2024; Li et al., 2024; Tang et al., 2024; Tong and Wu, 2022). Small objects, 
due to their size and frequent occlusion, pose a considerable challenge, significantly affecting 
detection accuracy and thus warranting further investigation.

The challenges of small object detection primarily stem from several factors. First, small 
objects often have low contrast and limited distinguishing features, making it difficult to 
differentiate them from the background. Additionally, these objects are frequently found in 
complex and cluttered environments, further complicating the task of separating them from 
surrounding noise. Finally, even minor errors in bounding box localization can result in the 
incomplete enclosure of the object, which negatively impacts detection accuracy (Hou 
et al., 2023).
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To address this issue, numerous researchers have explored 
solutions in this field. Zhu X. K. et al. (2021) tackled the challenges 
posed by significant object scale variations and the presence of dense 
and small objects in drone images. They replaced the original 
prediction head in YOLOv5 with Transformer Prediction Heads 
(TPH), significantly enhancing the model’s performance. Hou et al. 
(2023) focused on small object detection, proposing an Ensemble 
Fusion approach that integrates Cascade R-CNN (Cai and 
Vasconcelos, 2018) and CenterNet (Zhou et al., 2019). This approach 
achieved state-of-the-art results on the SOD4SB (Kondo et al., 2023) 
dataset. Gong et al. (2021) addressed the problem of information flow 
between deep and shallow layers in traditional Feature Pyramid 
Network (Lin et al., 2017) structures, introducing the novel concept 
of “fusion features” to control the information transfer from deep to 
shallow layers. Experimental results validated the effectiveness of 
their model.

The aforementioned studies made significant contributions to 
small object detection by improving classical network architectures to 
address challenges such as scale variations and dense scenes. However, 
despite their success, all of these approaches rely on CNN frameworks. 
Due to the limited receptive field, CNNs capture only local 
information in shallow layers, which hinders their ability to efficiently 
capture global context, resulting in a lack of overall image perception 
and macro-level understanding (Lv et al., 2024; Wang S. et al., 2024; 
Zhao H. et al., 2024).

To address these limitations, an end-to-end Transformer-based 
detector known as DETR (Carion et al., 2020) has been introduced. It 
is recognized for its simplified architecture and the removal of hand-
crafted components, making it especially effective for tasks where 
traditional methods struggle (Lv et al., 2024; Wang S. et al., 2024; Zhao 
H. et al., 2024). Additionally, transformers, with their enhanced ability 
to model contextual relationships, have demonstrated clear advantages 
in small object detection (Zhu X. et al., 2021). DAB-DETR (Liu et al., 
2022) and DN-DETR (Li et al., 2022) further improves performance 
by incorporating an iterative refinement scheme and denoising 
training. Zhu X. et al. (2021) proposed Deformable DETR, in which 
attention modules focus only on a small set of key sampling points 
around a reference, resulting in better performance than DETR, 
particularly for small objects. Therefore, in this paper, we  use 
Deformable DETR as the baseline to enhance the performance of 
small object detection.

Despite the progress made by Deformable DETR in small object 
detection, it overlooks key issues arising from the exclusive use of 
CNNs in the backbone for feature extraction, which fails to adequately 
capture global information, resulting in suboptimal feature 
representation. Additionally, it does not fully address the challenge 
posed by small objects, which may occupy only a few pixels in the 
image due to significant size disparities. To overcome these limitations, 
this paper introduces a Mask Attention mechanism (Fan et al., 2021) 
to enhance the backbone’s feature extraction capability, improving its 
ability to capture global context while filtering out irrelevant image 
information. Moreover, recognizing the challenge posed by small 
objects with limited pixel occupation, we further propose a Context-
Aware Enhanced Feature Refinement Encoder (CAEFRE) to further 
improve small object detection performance. Experimental results 
demonstrate the effectiveness of the proposed approach, particularly 
in enhancing the detection of small objects. To summarize, our 
contributions are three-fold.

 (1) To tackle the issue of incomplete global information extraction 
caused by the exclusive use of CNNs in the backbone, 
we introduce Mask Attention. This approach not only enhances 
the module’s information extraction capability but also 
effectively filters out irrelevant information through the use of 
the masking mechanism.

 (2) To address the issue that Deformable DETR does not account 
for small objects occupying only a few pixels, we propose the 
Context-Aware Enhanced Feature Refinement Encoder to 
mitigate this limitation.

 (3) Experimental results demonstrate the effectiveness of the 
proposed method, with improvements of 2.1% in both the 
mAP and small object mAP evaluation metrics.

2 Related work

2.1 CNN-based object detection methods

Over the past several years, CNN-based frameworks have 
consistently demonstrated remarkable performance in object 
detection tasks. These algorithms are broadly categorized into two 
main types: one-stage and two-stage detectors. In 2014, Girshick 
et  al. (2014) pioneered the two-stage detection paradigm by 
introducing R-CNN, which achieved impressive results on the 
VOC dataset. Building upon this foundation, Fast R-CNN 
(Girshick, 2015) and Faster R-CNN (Ren et  al., 2015) further 
refined the framework by optimizing region proposal generation 
and classification, significantly improving both efficiency and 
accuracy. However, despite their superior precision, two-stage 
detectors are hindered by complex architectures and long 
inference times, limiting their practicality for real-
time applications.

In contrast, one-stage detectors directly predict object bounding 
boxes and class labels from input images, bypassing the need for 
separate region proposal steps. This streamlined approach 
significantly enhances inference speed and real-time performance, 
making such models increasingly favored by researchers. Liu et al. 
(2016) introduced SSD, which employed a multi-reference detection 
strategy to improve accuracy across objects of varying scales. Later, 
Google introduced EfficientDet (Tan et al., 2020), a powerful object 
detection framework built upon EfficientNet as its backbone. 
EfficientDet incorporated several key innovations, including the 
Bi-Directional Feature Pyramid Network (Bi-FPN), which 
enhanced multi-scale feature fusion, thereby improving detection 
accuracy while maintaining computational efficiency. Meanwhile, 
the YOLO series (Bochkovskiy et al., 2020; Ge et al., 2021; Wang 
A. et  al., 2024) has emerged as one of the most influential 
CNN-based architectures, continuously evolving through iterative 
improvements to strike an optimal balance between detection speed 
and accuracy, making it a popular choice for research and 
practical applications.

Despite these significant advancements, single-stage CNN-based 
frameworks still face inherent challenges. One of their key limitations 
is their reliance on Non-Maximum Suppression (NMS) as a post-
processing technique to filter out redundant and irrelevant bounding 
boxes, which can impact detection efficiency. Additionally, 
CNN-based architectures, due to their hierarchical nature, often 
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struggle to capture global contextual information, leading to 
suboptimal performance in detecting small objects.

2.2 Advantages and advancements of 
DETRs in small object detection

Attention mechanisms (Vaswani et  al., 2017) have been 
widely adopted in computer vision tasks due to their ability to 
capture global information from input data, which significantly 
improves performance in small object detection compared to 
traditional convolutional networks. Carion et  al. (2020) first 
introduced DETR, an end-to-end detector based on Transformer, 
which has gained considerable attention because of its unique 
features. Notably, DETR eliminates the need for handcrafted 
anchors and NMS, which is believed to enhance the speed of 
object detection. This innovation has spurred considerable 
research in the field. DAB-DETR (Liu et al., 2022) formulates 
DETR queries as dynamic anchor boxes (DAB), bridging the gap 
between traditional anchor-based detectors and DETR-like 
models. Group DETR (Chen et  al., 2023) introduces multiple 
object queries, maintaining the end-to-end inference advantage 
of DETR while also leveraging the benefits of single-to-multiple 
queries during training, improving performance and accelerating 
model convergence.

Deformable DETR (Zhu X. et  al., 2021), on the other hand, 
proposes a deformable attention module, which can naturally 
aggregate multi-scale features to process feature maps and has 
demonstrated strong performance, particularly in small object 
detection. Numerous subsequent studies have focused on improving 
Deformable DETR, yielding impressive results (Caron et al., 2021; 
Oquab et al., 2023). However, despite its superior performance in 
small object detection, Deformable DETR still faces limitations. Its 
backbone only uses convolutional layers, which results in a loss of 
global feature information. Moreover, it fails to fully address challenges 
specific to small object detection, such as small pixel occupation and 
occlusion, making it necessary to refine these aspects for further 
enhancement in small object detection tasks.

3 Methodology

We first introduce the architecture of DETR, then we explain the 
overall architecture of the proposed network framework, Context-
Aware Enhanced Feature Refinement Deformable DETR (CAEFR-
DETR), which extends Deformable DETR by incorporating a Mask 
Attention mechanism and a Context-Aware Enhanced Feature 
Refinement Encoder (CAEFRE). Then, we  provide a detailed 
explanation of the Mask Attention added to the backbone, as well as 
the design of the CAEFRE module.

3.1 The architecture of DETR

The DETR (DEtection TRansformers) system employs a 
Transformer-based framework that incorporates both encoder-
decoder components and a bipartite matching mechanism via the 
Hungarian loss function to ensure individual predictions for all 

ground-truth bounding boxes. The architecture’s primary features are 
detailed below.

A standard Transformer encoder-decoder framework processes 
feature maps × ×∈ C H Wx   generated by a CNN backbone, 
transforming them into object query features. The output features from 
the decoder undergo both a three-layer feed-forward network (FFN) 
and linear projection. The regression branch, implemented through 
the FFN, outputs bounding box coordinates ( ∈  

40,1b ), comprising 
center coordinates, width, and height values. Meanwhile, the 
classification branch, realized through linear projection, generates 
class predictions.

The feature maps, containing pixel-based queries and keys, 
originate from a ResNet backbone enhanced with positional 
embeddings. The Transformer decoder receives dual inputs: feature 
maps generated by the encoder and N learnable object queries 
(typically 100). The module contains two main attention mechanisms: 
cross-attention and self-attention. Object queries within the cross-
attention module extract relevant information by treating the feature 
maps as keys. The self-attention mechanism enables object queries to 
engage in mutual interaction, identifying their relationships. With 
both queries and keys being object queries themselves, this structure 
remains feasible for handling a limited number of object queries.

3.2 Overview of the proposed method

The overall architecture, as illustrated in Supplementary Figure 1, 
comprises three primary components: a backbone incorporating Mask 
Attention and ResNet for feature extraction, a CAEFRE module 
consisting of three parallel branches designed to enhance small object 
detection capabilities, and a deformable transformer decoder that 
integrates both cross-attention and self-attention modules.

The input image’s features are initially extracted by the backbone, 
which integrates a six-layer ResNet network with the Mask Attention 
mechanism. The ResNet block is modified by incorporating the Mask 
Attention mechanism, where each block first applies convolutional 
neural network (CNN) modules, followed by the Mask Attention 
mechanism to filter out irrelevant information, and then another 
CNN layer. This sequence enhances the representation of pertinent 
features by selectively focusing on relevant information. The refined 
feature maps are then passed into a Neck module, implemented as a 
Channel Mapper that consists of CNN layers to further map and refine 
the feature representations.

After the features are processed, they undergo positional encoding 
and flattening, after which they are passed to the CAEFRE module for 
further refinement. The architecture of the CAEFRE module is 
depicted in Supplementary Figure 4. This module consists of three 
branches, each performing distinct operations to refine the feature 
representations: The first branch applies a 1 × 1 convolution to extract 
fine-grained, local features. The second branch includes a module that 
sequentially combines two 3 × 3 convolutions and three 1 × 1 
convolutions to enhance the scale information of the feature maps, 
thereby improving the model’s ability to capture medium-scale 
features. The features extracted from these two branches are then 
fused and further processed using a multi-head attention mechanism 
for feature aggregation and refinement. The third branch processes the 
multi-scale features through six Deformable DETR modules, enabling 
the extraction of richer spatial and semantic information. The outputs 
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from all three branches are then aggregated to form a comprehensive 
feature sequence.

Finally, the generated image feature sequence is passed to the 
decoder, where it is used to form object queries, culminating in the 
final object detection task.

3.3 Backbone with integrated mask 
attention

To enhance the backbone’s ability to extract global image features, 
we  integrate Mask Attention as a key component. This not only 
improves the backbone’s capability to capture global information but 
also utilizes the masking mechanism to filter out unnecessary 
pixel data.

We use ResNet50 as the base backbone architecture, making 
modifications to its block. As shown in Supplementary Figure 2, this 
is the basic block modified by us. After the input data undergoes 
convolution, it is fed into the Mask Attention module as three separate 
input sources. The three inputs are processed by three distinct linear 
transformations to produce the ( )Query Q , ( )Key K , and ( )Value V  
matrices. Subsequently, the attention weights are computed by 
performing the dot product between the Q and V  matrices, followed 
by scaling the result by the square root of the dimension of the key 
vector, denoted as Kd . The formula for this computation is as follows:

 

⋅
=

T
i j

ij
K

Q k
A

d

where ijA  represents the attention score between the thi  query and 
the thj  key.

Subsequently, a masking mechanism is applied to further refine 
the attention scores. This mask M  selectively filters out irrelevant 
information by modifying the attention matrix as follows:

 
= ⋅mask

ij ij ijA A M

Here, ijM  is a binary mask value: if ijM =0, the corresponding 
attention weight is ignored.

Finally, the attention-weighted sum of the V  vectors is computed 
to generate the output feature. The weighted sum is calculated using 
the masked attention weights:

 

= ⋅∑ mask
j ij j

j
Y A V

In this equation, jY  is the output corresponding to the query, and 
jV  represents the value associated with the thj  position.

The results obtained from the previous computation are then 
processed through a convolution operation using CNN layers, 
followed by the application of the ReLU function, generating multi-
scale image feature maps.

As illustrated in Supplementary Figure 3, the schematic of the 
Mask Attention module shows that after extracting the input feature 
data, Mask Attention selectively enhances the image features. When 
the input image features do not contain the target objects to 
be detected, the masking mechanism removes the irrelevant data, 
effectively refining the information extraction and reduction 
process from the input image.

3.4 Context-aware enhanced feature 
refinement encoder

To improve the performance of the Deformable DETR 
network in small object detection, it is crucial to address the 
challenges posed by small object sizes and scale variations within 
images. Our approach combines the deformable attention 
mechanism with convolutional layers. On one hand, small-scale 
convolutions are used to extract features from small pixel-sized 
objects, while on the other hand, convolutional layers, being more 
sensitive to texture information, help capture texture features in 
the input image. Furthermore, the deformable attention 
mechanism ensures the preservation of features across various 
object scales, thereby enhancing the stability of the 
model’s performance.

As illustrated in Supplementary Figure 4, the overall architecture 
of the designed CAEFRE is shown. Image features extracted by the 
backbone and neck modules pass through three information 
extraction branches.

In the first branch, the input x  is processed through a combination 
of a 1 × 1 convolution to capture fine-grained features from small 
objects, yielding the feature map smallF :

 ( )×= 1 1smallF Conv x

In the second branch, is processed through a sequential 
combination of two 3 × 3 convolution followed by three 1 × 1 
convolution, generating the feature map mediumF :

 
( )( )( ) ( )( )( )( )× × × × ×= ∗3 3 3 3 1 1 1 1 1 1medium Conv Conv x Conv Conv Conv xF

Where ∗ denotes the successive application of these convolutional 
layers. The feature maps smallF  and mediumF  are then combined via 
element-wise addition:

 = +combined small mediumF F F

This combined feature map is subsequently fed into a multi-head 
attention mechanism, which facilitates the modeling of relationships 
across different regions within the image:

 ( )=att combinedF MultiHeadAttention F

In parallel, the input x  is processed through six Deformable 
DETR blocks, which effectively accounts for the spatial variations of 
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objects within the image. The output of this block is the 
feature map detrF :

 ( )=detrF DeformableDetr x

Finally, the outputs from the multi-head attention mechanism and 
the Deformable DETR block are aggregated through element-
wise addition:

 = +final att detrF F F

The final feature map is then passed into the decoder for 
further processing.

4 Experiment validation and result 
analysis

4.1 Experimental data and metrics

We use a custom dataset, referred to as the Road Scene Dataset, 
which we  created by capturing road scenes with a dashcam. This 
dataset includes a diverse range of environments, such as standard 
roads, highways, urban streets, and rural areas. As shown in 
Supplementary Figure  5 the collected dataset is presented. The 
dataset also incorporates common elements of daily life, such as trees, 
pedestrians, buildings, and the sky. Furthermore, it contains numerous 
occluded and small-scale objects, adding complexity to the detection 
tasks. In total, the dataset comprises 6,480 images, which are randomly 
split into training, testing, and validation sets in an 8:1:1 ratio. 
Meanwhile, the dataset comprises a total of 69,994 annotated objects 
across 17 different object categories, reflecting the varied nature of 
road scenes.

To quantitatively assess the proposed framework, this study 
employs the mean average precision (mAP) across all classes as the 
evaluation metric. In addition, mAP values at specific intersection 
ratio (IoU) thresholds, namely mAP50 and mAP75, are also introduced 
to provide a more detailed evaluation. The mAP50 represents the mean 
average precision at an IoU threshold of 50%, reflecting the model’s 
overall detection capability. Similarly, the mAP75 represents the mean 
average precision at a higher IoU threshold of 75%, offering insights 
into the model’s precision under stricter localization requirements. 
Furthermore, to analyze the detection performance of the framework 
for objects of varying sizes, three mAP values are defined as follows:

 (1) mAPl: mean average precision value of large objects with an 
area greater than 96 × 96 pixels.

 (2) mAPm: mean average precision value of medium-sized objects 
with between 32 × 32 pixels and 96 × 96 pixels.

 (3) mAPs: mean average precision value of small objects with less 
than 32 × 32 pixels.

Based on the aforementioned size classifications, the object size 
distribution in our dataset is as follows: 33.26% of the annotated 
objects are classified as small, 42.65% as medium-sized, and 24.09% 
as large. Additionally, we have annotated the occlusion levels of the 

objects within the images. Specifically, 61.25% of the annotated objects 
exhibit some degree of occlusion, while 38.75% are fully visible. 
Among the annotated objects, 18.77% exhibit occlusion in the range 
of 0–30%, 16.70% fall within the 30–60% occlusion range, and 25.78% 
have an occlusion range of 60–100%.

The diverse characteristics of the dataset, including varied object 
sizes, occlusions, and environmental conditions, make it a challenging 
yet representative dataset for evaluating the generalization ability of 
our proposed model. These complexities ensure that the model is 
tested across different real-world scenarios, making it more robust in 
handling diverse conditions such as cluttered scenes, varying object 
scales, and partial occlusions.

4.2 Experimental setup

The experimental setup for this study is summarized in 
Supplementary Table 1. The framework was trained using the AdamW 
optimizer with an initial learning rate of 0.0001. Parameter-wise 
learning rate adjustment was applied, and input images had a 
resolution of 1920 × 1,020 pixels with a batch size of 1. The 
MultiStepLR scheduler was used to manage the learning rate, with a 
reduction by a factor of 0.1 at the 40th epoch during the 50-epoch 
training process. This setup ensures efficient training and 
model convergence.

All models in the experiments were initialized using officially 
released pre-trained weights. Specifically, DETR, SSD, Deformable 
DETR, and our proposed method were based on the MMDetection 
framework (Chen et  al., 2019), while the YOLOv8 models used 
pre-trained weights from the Ultralytics framework (Jocher et al., 
2023). Meanwhile, except for our method, all models were trained 
using their default configurations without any additional modifications.

4.3 Ablation experiments

To thoroughly evaluate the effectiveness of each module in 
CAEFR-DETR, this study conducts ablation experiments by 
incorporating single and combined modules into the baseline 
Deformable DETR. The backbone network with Mask Attention and 
the CAEFRE are individually added to the original Deformable DETR 
framework and compared against the baseline algorithm. The 
experimental results are summarized in Supplementary Table  2. 
Among them, Model 1 represents the original Deformable DETR 
algorithm, while Model 4 corresponds to the proposed CAEFR-DETR 
method. The remaining models are comparative algorithms used in 
the ablation experiments. A checkmark (“√”) in the corresponding 
position indicates the inclusion of a specific module.

Supplementary Table 2 demonstrates that incorporating the Mask 
Attention module in Deformable DETR enhances feature extraction 
and noise suppression capabilities, increasing the detection accuracy 
to 65.8%. Notably, while the Mask Attention module improves mAP50 
and mAP75 by enhancing global contextual focus and reducing 
background noise, it may slightly reduce mAPs, possibly because the 
masking mechanism suppresses subtle cues critical for detecting 
small, low-contrast objects. Similarly, the CAEFRE in Model 3 further 
improves detection accuracy, raising it to 65.5%. The proposed 
algorithm effectively addresses challenges related to occlusion and 
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small object detection, resulting in outstanding detection performance. 
On the dataset, the mean average precision (mAP) improves from 65.3 
to 66.7%, reflecting a 1.4% increase. These results validate the 
effectiveness of the proposed algorithm in enhancing object 
detection performance.

However, it is important to note that the performance gains 
from Mask Attention (Model 2) and CAEFRE (Model 3) alone are 
modest, with increases of 0.5 and 0.2% in mAP, respectively. In 
real-world object detection tasks, particularly those involving 
small and occluded objects, these modules may not show 
significant improvements in performance compared to large, 
unobstructed objects. Nonetheless, when combined, Mask 
Attention and CAEFRE in Model 4 lead to a more substantial 
performance boost of 1.4% (from 65.3 to 66.7% in mAP). This 
demonstrates that while individual modules may not provide 
dramatic improvements, their combined effect significantly 
enhances the model’s ability to address challenges related to 
occlusion and small object detection.

Furthermore, it is essential to evaluate the computational 
efficiency of the proposed algorithm. In this study, key metrics such 
as FLOPs, FPS, and model parameters are considered to evaluate the 
computational efficiency. The results show that all models maintain 
consistent computational complexity, with FLOPs at 418G and model 
parameters at 42.5 M. Notably, the FPS for all models remains steady 
at 23.3, indicating that, despite the introduction of additional modules, 
the inference speed is relatively stable and does not experience 
significant performance degradation. Therefore, while the individual 
performance gains from Mask Attention and CAEFRE are modest, 
their integration into the model enhances its robustness and detection 
performance without incurring substantial computational overhead. 
This balance between improved detection accuracy and maintained 
computational efficiency highlights the practical scalability of the 
proposed CAEFR-DETR method.

Supplementary Figure 6 presents the mAP iteration curves 
for both the baseline and our proposed model (CAEFR-DETR) 
over 50 training epochs. As illustrated in the figure, the mAP of 
the proposed model exhibits a faster growth rate during the early 
and mid-training stages compared to the baseline. Additionally, 
the curve of CAEFR-DETR appears smoother, indicating 
improved training stability and faster convergence. Both models 
experience a significant boost in mAP after epoch 40, suggesting 
a critical learning phase. By the end of training, the maximum 
mAP achieved by CAEFR-DETR reaches 0.667, surpassing the 
baseline’s 0.653 by 2.1%. This result highlights the enhanced 
learning capability of our model, leading to superior performance 
in comparison to the baseline.

4.4 Comparison with the performance of 
other algorithms

To further validate the superiority of the proposed algorithm, this 
study compares it with several classical algorithms commonly used in 
the field of object detection. These include SSD as one-stage detectors, 
YOLOv8 models (N, S, M, L, and X), and Transformer-based 
end-to-end detectors, DETR and Deformable DETR. In the 
comparison experiment, mAP, mAP50, mAP75, mAPs, mAPm, mAPl are 
used as the evaluation indicators of each algorithm, and the model 

training and test are kept unchanged on the same dataset. 
Supplementary Table 3 shows the detection results.

As shown in Supplementary Table 3, the dataset evaluation results 
demonstrate that our proposed method outperforms existing 
approaches across multiple metrics. Specifically, our model achieves a 
1.4% higher mAP compared to Deformable DETR, an 11.9% 
improvement over SSD, and a 2.8% gain relative to YOLOV8-L, which 
is one of the top-performing YOLO models in this comparison.

Notably, in small object detection, our method exhibits significant 
improvements, surpassing Deformable DETR by 1.1%, SSD by 23.9%, 
and YOLOV8-X by 16.8%. This indicates the effectiveness of our 
approach in enhancing feature extraction and localization for small-
scale objects, which are often challenging to detect.

Additionally, our method demonstrates strong performance in 
medium-scale and large-scale object detection, achieving a 
competitive mAPm of 0.677 and an mAPl of 0.817. While YOLOV8-L 
achieves the highest mAPl, our model still performs robustly across all 
object sizes, making it a well-rounded and highly effective detection 
framework. These experimental results highlight the overall 
superiority of our approach, particularly in handling small object 
detection while maintaining strong generalization across different 
object scales.

To illustrate the effectiveness of the training process, we plotted 
the training loss curves for various models, as shown in 
Supplementary Figure 7. Given the differences in loss functions used 
by different architectures, we adopted classification loss as a common 
metric for comparison. This provides a clear insight into the learning 
efficiency and convergence behavior of each model.

The figure reveals several key observations. SSD exhibits the 
highest loss values throughout training, indicating greater difficulty in 
optimizing its classification predictions. DETR and YOLOV8-X show 
relatively stable convergence, but their loss values remain consistently 
higher than ours. In contrast, our proposed method demonstrates the 
lowest classification loss, reflecting its superior learning efficiency and 
more effective feature extraction.

Furthermore, our model exhibits a faster convergence rate, with a 
steep decline in loss during the initial epochs, suggesting that it rapidly 
learns discriminative features. Over the later epochs, our method 
maintains a consistently lower loss compared to other models, 
highlighting its ability to achieve a more optimized classification 
process with improved generalization.

These findings reinforce the effectiveness of our approach in 
object detection, showing that it not only optimizes classification 
performance more effectively but also achieves more stable and 
efficient training compared to the other models.

As shown in Supplementary Figure 8, the figure presents a 
comparison of object detection results for the same scene using 
different methods. Supplementary Figure  8A represents the 
ground truth, while Supplementary Figure 8B displays the object 
detection results obtained using the DETR method. 
Supplementary Figure  8C illustrates the results from the 
YOLOV8-X method, and Supplementary Figure 8D shows the 
results using the method we proposed. The confidence threshold 
for all methods is set to 0.5. In these images, we have highlighted 
three small objects with significant differences in predictions 
across the methods to better showcase the results.

In Supplementary Figure 8B, which presents the DETR-based 
object detection results for the street scene, a comparison with the 
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ground truth in Supplementary Figure 8A reveals that the bicycle in 
area d is not detected, while the anchor boxes in areas e and f appear 
excessively redundant. Supplementary Figure 8C shows the object 
detection results using the YOLOV8-X method. Compared to 
Supplementary Figure 8B, YOLOV8-X correctly predicts the object in 
area g, and the anchor boxes in areas h and i are no longer redundant. 
However, when compared to the ground truth, it is evident that 
YOLOV8-X fails to detect the small objects in areas h and i, resulting 
in the absence of corresponding anchor boxes.

Supplementary Figure 8D illustrates the object detection results 
using our proposed method. As shown, our method successfully detects 
the objects in areas j, k, and l, with no redundant anchor boxes. The 
experimental results demonstrate that our proposed method effectively 
improves model performance, offering a significant advantage in 
detecting small objects.

Beyond mAP, the Recall metric is indispensable for evaluating 
model performance. Recall, defined as the ratio of correctly identified 
objects to the total number of actual objects, provides a critical measure 
of a model’s ability to detect all relevant instances within a given scene. 
It is especially vital in applications where missing an object could lead 
to significant consequences. Mathematically, Recall can be expressed as:

 
=

+
TPRecall

TP FN

Where TP  denotes true positives (correctly detected objects) 
and FN  represents false negatives (missed objects). In complex 
environments like road scenes, a high Recall minimizes the risk 
of missing critical objects, thereby improving the model’s 
reliability for safety-critical tasks.

To demonstrate the robustness of our method in autonomous 
driving scenarios, we compare our approach with the baseline by 
calculating the Recall values for both models. As shown in 
Supplementary Figure  9, which presents the Confusion Matrix 
Comparison between Deformable DETR and Our Proposed Method, 
(A) represents the confusion matrix of Deformable DETR, while (B) 
represents the confusion matrix produced by our method. The x-axis 
represents the predicted object labels, and the y-axis represents the 
ground truth labels. Our method shows significant improvements in 
Recall, particularly for small objects.

Moreover, as shown in Supplementary Table 4, our method 
significantly improves the Recall for small objects. However, the 
improvements for larger objects, such as buses and trucks, are less 
pronounced. Our method achieves a Recall of 0.899 for bicycles, 
improving from 0.887  in the baseline. Additionally, for small 
trucks, Recall increases from 0.949 to 0.983, further highlighting 
the advantage of our method in detecting small objects. These 
improvements are most pronounced in categories where the 
objects are smaller and more prone to occlusion, underscoring 
the effectiveness of our approach in addressing the challenges 
posed by small object detection.

Finally, to illustrate the effectiveness of our model, we present 
qualitative results showcasing object detection outcomes generated 
using the proposed approach. The dataset includes 17 common road 
objects, such as pedestrians, bicycles, SUVs, and cars. Each detected 
object is categorized, and the final predicted confidence scores for 
each class are provided. As shown in Supplementary Figure 10, these 
results visually demonstrate the model’s ability to accurately identify 
and classify objects in complex road environments.

5 Conclusion

In this paper, we propose CAEFR-DETR, an improved Transformer-
based object detection model designed to address the challenges of 
small object detection in complex environments. By integrating Mask 
Attention into the backbone, our approach enhances global feature 
extraction while effectively suppressing background noise. Additionally, 
the Context-Aware Enhanced Feature Refinement Encoder (CAEFR) 
improves multi-scale feature representation, significantly enhancing the 
detection of small objects with limited pixel coverage.

Extensive experiments validate the effectiveness of our proposed 
model. Compared to the baseline, CAEFR-DETR achieves a 2.1% 
improvement in mAP, demonstrating its superior detection 
performance. Our method also outperforms existing models, including 
Deformable DETR, SSD, and YOLOV8 variants, with particularly 
notable improvements in small object detection, where it surpasses 
Deformable DETR by 1.1%, SSD by 23.9%, and YOLOV8-X by 16.8% 
in mAPs. Additionally, our model shows significant improvements in 
Recall, particularly for small objects such as bicycles and small trucks, 
with Recall values of 0.899 and 0.983, respectively, outperforming 
Deformable DETR. Furthermore, the loss convergence analysis reveals 
that CAEFR-DETR exhibits faster and more stable convergence, 
achieving lower classification loss compared to other models. This 
underscores its optimization efficiency, improved feature learning, and 
enhanced robustness in complex detection scenarios.

Overall, our proposed CAEFR-DETR demonstrates excellent 
performance in small object detection, making it well-suited for real-
world applications such as autonomous driving and ship black smoke 
detection. The improvements in both accuracy and training efficiency 
highlight its potential for broader deployment in scenarios requiring 
precise and reliable small object detection in dynamic and cluttered 
environments. Future work will explore further enhancements in 
computational efficiency and generalizability across diverse datasets 
to expand its applicability in real-world tasks.
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