& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY
Xianmin Wang,
Guangzhou University, China

REVIEWED BY

Han Bin,

Beijing University of Technology, China
Dongjing Shan,

Southwest Medical University, China

*CORRESPONDENCE

Xiaojun Li
xi_anlxj@126.com

RECEIVED 10 March 2025

ACCEPTED 22 September 2025
PUBLISHED 14 October 2025

CITATION

Wen J, Li X, Yao J, Kong X and Cheng P (2025)
Adaptive-expert-weight-based load balance
scheme for dynamic routing of MoE.

Front. Neurorobot. 19:1590994.

doi: 10.3389/fnbot.2025.1590994

COPYRIGHT

© 2025 Wen, Li, Yao, Kong and Cheng. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Neurorobotics

Frontiers in Neurorobotics

TYPE Original Research
PUBLISHED 14 October 2025
pol 10.3389/fnbot.2025.1590994

Adaptive-expert-weight-based
load balance scheme for dynamic
routing of MoE

Jialin Wen, Xiaojun Li*, Junping Yao, Xinyan Kong and
Peng Cheng

School of Computer Science, Rocket Force University of Engineering, Xi'an, Shaanxi, China

Load imbalance is a major performance bottleneck in training mixture-of-experts
(MoE) models, as unbalanced expert loads can lead to routing collapse. Most
existing approaches address this issue by introducing auxiliary loss functions
to balance the load; however, the hyperparameters within these loss functions
often need to be tuned for different tasks. Furthermore, increasing the number of
activated experts tends to exacerbate load imbalance, while fixing the activation
count can reduce the model's confidence in handling difficult tasks. To address
these challenges, this paper proposes a dynamically balanced routing strategy
that employs a threshold-based dynamic routing algorithm. After each routing
step, the method adjusts expert weights to influence the load distribution in the
subsequent routing. Unlike loss-function-based balancing methods, our approach
operates directly at the routing level, avoiding gradient perturbations that could
degrade model quality, while dynamically routing to make more efficient use of
computational resources. Experiments on Natural Language Understanding (NLU)
benchmarks demonstrate that the proposed method achieves accuracy comparable
to top-2 routing, while significantly reducing the load standard deviation (e.g., from
12.25 to 1.18 on MNLI). In addition, threshold-based dynamic expert activation
reduces model parameters and provides a new perspective for mitigating load
imbalance among experts.

KEYWORDS

mixture of experts, computational optimization, load balancing, routing algorithm,
natural language understanding

1 Introduction

Transformer models are currently enjoying significant success in applications such as
natural language processing (Radford et al., 2021), computer vision (Jiang et al., 2023; Zhu
et al., 2024), and multimodal (Mustafa et al., 2022). And with the rapid development of
Transformer models, the computational requirements have increased significantly. In general,
scaling model size and training data is one of the direct and effective ways to reduce
computational requirements, but it fails to better handle increasingly complex data, in this
context, the Mixture of Experts (MoE) model provides a method that can expand model
capacity and applicability without significantly increasing computational overhead, becoming
one of the most effective methods to address the high computational demands of dense models
(Mckinzie et al., 2024; Wu et al., 2024).

Mixture of experts is a sparse structure based on transformer (Lepikhin et al., 2020).
It replaces the original FFN (Feed-Forward Network) layer with an expert layer, which
consists of a gating network and various experts. Theoretically, experts can
be combinations of different neural networks. Compared to traditional dense models,
MOoE achieves significant improvements in computational efficiency. MoE achieves

01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2025.1590994&domain=pdf&date_stamp=2025-10-14
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1590994/full
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1590994/full
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1590994/full
mailto:xi_anlxj@126.com
https://doi.org/10.3389/fnbot.2025.1590994
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2025.1590994

Wen et al.

sparsity mainly through the gating network, which routes each
input to a specific subset of experts, reducing computational
demands by activating only a small number of experts for training.
However, MoE systems inherently face challenges of expert load
imbalance caused by uneven training data distributions and
divergent initial parameter preferences among experts. Expert load
balance is a combination of the overall performance, efficiency,
and robustness of the model. If some experts are over-activated
while others remain idle for a long time, the actual effective
number of parameters in the model will be lower than the
theoretical value, leading to a waste of resources; frequently
selected experts accelerated gradient updates, while underutilized
counterparts stagnate in training, potentially trapping the
optimization process in local minima and inducing a vicious cycle.
Additionally, due to the limited capacity of experts, token overflow
may occur under excessive input loads, resulting in partial data
loss (Guo et al., 2024). Thus, expert load imbalance persists as a
pervasive yet critical challenge in the MoE framework.

The current prevalent approach to mitigate expert load imbalance
involves incorporating a load-balancing loss function into the
optimization objective. This method quantifies activation frequency
disparities among experts within each training batch using variance
metrics, subsequently imposing penalty terms on the gating network’s
outputs. During backpropagation, these penalties update model
parameters to influence future token routing decisions. While
theoretically sound, this

methodology presents multiple

implementation challenges:

1. Hyperparameter sensitivity: the auxiliary loss coefficient ()
requires manual calibration, where excessive values enforce
artificial uniformity at the expense of model performance,
while insufficient values compromise load balancing efficacy.
Experiment indicates that optimal values exhibit phase-
dependent variability—higher weights are preferable during
the initial training phase, whereas later stages necessitate
gradual reduction to prioritize task-specific optimization.
Implementing dynamic « scheduling introduces nontrivial
computational overhead.

2. Inherent data distribution bias: in scenarios with naturally
imbalanced training data distributions, specific expert
subsets demonstrate persistent activation dominance, and
the balancing loss struggles to counteract such
inherent biases.

3. Delayed feedback and scalability constraints: the impact of the
load balancing loss function acts on the output weights of the
gating network, requiring multiple iterations to update the
parameters, then influences the next load distribution.
Moreover, in the trillion-parameter scale model, the auxiliary
loss function is used to make the expert utilization close to a

uniform distribution.

Another issue is that in MoE models, inputs are typically
allocated to a fixed number of experts. In tasks such as machine
translation, MoE only improves BLEU (Bilingual Evaluation
Understudy) by 0.5 compared to dense models with equivalent
parameters, indicating that different inputs may require different
numbers of experts for processing in specific downstream tasks (Xu
etal., 2023).

Frontiers in Neurorobotics

10.3389/fnbot.2025.1590994

To address the above issues, this paper proposes a dynamic
routing load balancing model based on expert weights. The main
contributions of our work are summarized as follows:

» We propose a dynamic routing load balancing algorithm based
on expert weights, abandoning the load loss function and
achieving load balancing through control expert weights directly.
Specifically, during routing, input data generates the final routing
score matrix through operations with expert weights, and the
routing probability is obtained by normalizing the routing score.
After each training batch, expert weights are continuously
updated based on the activation in the previous batch, reducing
the weight of highly loaded experts and increasing the weight of
low-loaded experts, to balance the load among experts for the
next routing. This method does not introduce a load-balancing
hyperparameter, avoids the gradient effects of the loss function,
and achieves load balancing among experts even in small-scale
parameter models by directly adjusting expert weights without
the need for multiple backpropagations, thereby improving the
model’s adaptability.

o Our method can effectively alleviate the load imbalance issue
in MoE models. In addition, dynamic routing achieves
dynamic activation of expert subsets based on data complexity,
improving computational efficiency and model performance.
To verify the effectiveness of this method, experiments were
conducted on standard datasets for natural language
understanding. The experimental results show that our
method outperforms traditional top-k methods in most tasks,
achieving an average accuracy improvement of 0.7% compared
to the top-2 routing model using loss functions on nine
different datasets, and significantly improving the load
imbalance among experts.

2 Related work
2.1 Mixture of experts model architecture

The Mixture of Experts model is a sparsely gated deep learning
model consisting primarily of some expert models and a gating
network (Xu et al., 2024). In this case, the MoE layer is composed of
the gated network G(x) and multiple experts of the same network
frame. Experts can be any identical or different models. For
example, in a Transformer-based Mixture of Experts model, the
expert network consists of several identical Feed-Forward Networks,
and the MoE structure is typically placed after the self-attention
sublayer to use the gating network to select the feed-forward
networks within the Transformer block. This setup is because, as the
model expands, the computational requirements for FFN increase
(Zhang et al., 2024). In the 540B parameter PaALM model, 90% of the
parameters are located in its FFN layer, so the MoE structure is
placed after the attention layer to reduce the number of activated
parameters (Chowdhery et al, 2023). Shazeer et al. (2017)
introduced a sparse gating strategy that reduces computational
overhead and achieves model sparsity by only computing the
weighted sum of the outputs of the top few experts without
significantly increasing the number of activated parameters in
the model.

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al.

2.2 Top-k routing in mixture of experts
models

The gating network is the core of the Mixture of Experts model
and the method for achieving sparsity, responsible for matching
tokens with experts. Top-k routing (Shazeer et al., 2017) is the most
widely used routing algorithm; however, for tasks with different
difficulties, it selects a fixed number of experts for activation. The
number of activated experts, k, as a hyperparameter in the model,
directly affects the model’s performance on different tasks and requires
extensive ablation experiments to determine the optimal k value.

As shown in Figure | (where K is the total number of experts and
k is the number of experts activated each time), different settings
result in approximately 1-5% differences in model performance. As
the model size increases, this limitation leads to wasted computational
resources. Therefore, Huang et al. (2024) proposed a threshold-based
dynamic routing method that can adjust the number of experts in the
activated expert subset each time. After performing top-k routing, if
the sum of the activation probabilities of the activated experts does
not reach the activation threshold, it indicates that more experts are
needed to jointly complete the task. This design dynamically allocates
the number of experts based on the complexity of tokens. This method
addresses the load balancing issue by using the loss function from
Switch Transformer, adding the auxiliary loss for each MoE layer
during training to the total loss of the model. Although the auxiliary
loss can alleviate load imbalance to a certain extent, for dynamic
routing, the number of activated experts is not fixed, and experts
activated more frequently are more prone to load imbalance (Xie et al.,
2024). Moreover, the contribution of each expert varies, and the loss
function introduces additional hyperparameters and disturbs the
gradient. Therefore, using a loss function requires extensive
experiments to determine the optimal hyperparameter values to
minimize its impact on the model.

10.3389/fnbot.2025.1590994

When executing top-k routing, a batch input contains several
tokens. For each token x € RD, D represents the dimension, k experts
are selected by softmax function (Riquelme et al., 2021; Fedus et al,
2022a). The mathematical representation of the routing process is
given by Equations 1-3.

E
MOoE(x): Y Gate, (x)-MLP, (x))
r=1
Gate, (x)--topk(P))
P= softmax(Wx + 5) (3)

Where the gating weights linearly combine the outputs of E

E

experts {MLPr (x)}rzl
between considering load balancing, ¢ is the load loss, and the expert

, where represents the routing probability

weights W e REPcan be trained along with other network
parameters. Equation | represents how each token selects the top k
experts based on the softmax scores as well as the outputs of the MoE
layer. Compared to the traditional multi-layer perceptron (MLP) layer,
the MoE layer can reduce the computational cost by controlling the
number of experts (Liu J. et al, 2024). Assuming each MoE layer
processes T tokens {xl,- . -,xT} cRP , Xe RT*P X is the matrix
composed of all tokens arranged by row. The MoE layer for processing
a batch of data (containing T tokens) is defined as:

E C
MoE(X): 3"y Cx[trc }MLP (X Dx[irc]]eR” (4

r=lc=1

In Equation 4, where Dy and Cx are the scheduling tensor
(responsible for assigning different tokens to different experts) and the

-@- RTE Dateset —— Average Accuracy(%)
Accuracy (%)
76 -
75 A
74 //\\
& VAR
72 A
71 4
70 T T T T T T T Expert Parameter
A I A A AR
‘g/"o‘ ‘g/"o’ ‘17,/%” ‘g/oo* ‘g/\b‘ ‘e'// ‘g/\‘o‘ N
FIGURE 1
Impact of different expert settings on accuracy on the RTE dataset.

Frontiers in Neurorobotics

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al.

combination tensor (for linearly combining outputs across experts) of
X. Cis the buffer capacity of each expert, which specifies the maximum
number of tokens that each expert can process in a small batch, to
efficiently utilize the hardware resources are generally C<KT ,
C =[T / E] orC :[ZT / E: (Csaba et al,, 2022). The output of the MoE
layer is expressed as Equations 5, 6.

Gate, (xt) ift=c,

exfircl g

> otherwise, Dx [t,r,c] : 1(CX [f>f»C] > 0) (5)

MoE(X)= iicx[t,r,c}MLPr (X Dx[sc)

r=Ilc=1
E
= YCx[trt I MLE, (X Dx []) ©)
-1
P
= ZGater (xt) -MLP, (xt)
r=1

The core of the MoE layer is to map the input X to two tensors and
obtain the final expert layer output through calculations. The whole
routing process can be simplified as Router: X —>(DX,CX) (Liu
T. et al, 2024). In the routing process, W, as the expert weight, can
directly affect the allocation of the token. Before executing the top-k
router, the similarity matrix between the expert and the token is first
constructed D softmax , as shown in Equation 7:

D softmax :softmax (XW + Lpylance) 7)

In the absence of any regularization constraints, the maximum
value of each row of the final routing score matrix may be concentrated
at certain indexes, i.e., most of the tokens are routed to a few fixed
experts, which makes some experts underutilized. Simultaneously,
due to the limited expert capacity, subsequent tokens may be lost. To
prevent this from happening, the current work is through the addition
of auxiliary loss Lpafance to mitigate (Lepikhin et al., 2020; Fedus et al.,
2022b), for a sequence of length T, the auxiliary loss is defined as the
Equation 8:

E
Lpalance = (ZZ](,PI >
i=1
E T
fi :k—ZI(Token t selects expert i), (8)
t=1
LI

p= ;Zsi,r

t=1

where E is the total number of experts, k is the number of experts
selected by each token, s;; is the routing score of the tth token at
expert i, f; represents the routing score of tokens routed to expert i, P;
represents the average routing score of expert i, and is the
hyperparameter controlling the strength of the auxiliary loss.
Although adding an auxiliary loss function can alleviate the load
imbalance, the size of the hyperparameter o affects the overall
performance of the model; a smaller @ will lead to routing collapse,
which affects the model efficiency and may result in some experts not

Frontiers in Neurorobotics

10.3389/fnbot.2025.1590994

being able to learn or utilize adequately; while a larger & will keep the
load balance in a controlled state and significantly reduce the model
performance (You et al, 2021). Therefore, our method directly
controls expert weights to avoid introducing loss functions to solve
the load-balancing issue among experts (Li et al., 2025).

2.3 Dynamic routing

Traditional top-k routing limits the number of activated experts,
leading to unnecessary waste in some cases (Yang et al., 2024).
Experiments have shown (Clark et al., 2022; Fan et al., 2024) that the
performance of MoE models can be significantly different depending
on the value of k in the top-k, and thus a large amount of computational
resources are needed to verify the optimal value of k for different
downstream tasks; secondly, top-k gating methods assume that each
token must activate the same number of experts, which does not
satisfy the task needs in practice. A fixed number of experts can
produce lower confidence when handling certain difficult tasks,
affecting output results.

Guo et al. (2024) proposed DYNMOE, an algorithm that can
automatically determine the number of activated experts during both
training and testing. By modeling the gating mechanism as a multi-
label classification problem, treating each expert as a separate category,
and independently computing the gating score for each expert, all
experts with scores exceeding the threshold are activated. This allows
different tokens to activate different numbers of experts. When a token
chooses not to activate any existing experts, it adds a new expert and
deletes any unused experts. However, without constraining the
maximum number of activated experts, tokens may activate all experts
or only a few specific experts. Activating all experts can lead to high
similarity and insufficient specialization among experts, while
activating specific experts can cause severe load imbalance. Although
DYNMOE also adds an auxiliary loss function to alleviate these issues,
computing losses for each token routing, adding and deleting experts,
introduces additional computational costs and greater memory
requirements, posing challenges for model training and testing.

3 Method design

Addressing the limitations of top-k routing, Huang et al. (2024)
argued that traditional routing ignores the variation in difficulty
among different inputs and activates a fixed number of experts at each
layer of the Transformer, ignoring differences in cross-layer
representations. Therefore, different numbers of experts are needed
for different layers. Under these conditions, they designed a threshold-
based dynamic routing strategy. By determining whether the currently
activated number of experts reaches the threshold, more experts are
activated to increase the reliability of token processing. This method
first sorts the routing probability values P to get the sorted index I,
finds the smallest set of experts S that cumulatively exceeds the
threshold p, where p is a hyperparameter with a value range of [0, 1]
and is set to 0.4 in the original experiment. A larger p-value indicates
that more experts need to be activated. Load balancing among experts
adopts the method proposed by Fedus et al. (2022b), where the
hyperparameter a requires experimental verification and cannot adapt
to different downstream tasks.

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al.

In this paper, we adopt the dynamic routing strategy proposed by
Huang et al. and design an expert weight-based dynamic routing
method, primarily optimizing load balancing. Traditional load
balancing is achieved by adding auxiliary loss functions. Since loss
functions introduce additional hyperparameters that need to
be tuned to fit the current task, and improper selection of
hyperparameters may cause the model to pay too much attention to
load balancing (Nguyen et al, 2023), which will weaken the
performance of the main task, so this paper, from the principle of
routing algorithms in the MoE gated network, alleviates the issue of
load imbalance through the adjustment of the expert weights.
Specifically, after routing each batch of data, a penalty term is set

10.3389/fnbot.2025.1590994

based on the load situation of the current round of training, reducing
the weights of highly loaded experts and increasing the weights of
low-loaded experts. The advantage of this method is that it avoids
introducing additional auxiliary loss functions, eliminating the
impact of hyperparameters on the model’s handling of different
downstream tasks. Models activate experts by routing probabilities,
where expert weights play a key role in the routing process, and
different weights determine the subset of experts activated during
dynamic routing (Fedus et al., 2022a, 2022b). The routing principle
is shown in Figure 2, which illustrates how the Mixture of Experts
model selects experts through the generated similarity matrix for
top-k routing.

@

>

& &

— E =

'%—P::—Pg
(=1 a
= =)
=n

= é

(¢]

@y

[tokenlItokeﬁ token3]

Experts

[OA[EULON+PPY j
}

2.11 3.05 0.85 0.16 0.27 0.15

2.02 -1.4 0.84 0.14 0.01 0.15

196 | -0.25 | -1.10 0.14 | 0.02 | 0.04

015 | 197 | L1 | softmax | 002 | 009 | 020 | gor

2.25 2.68 1.13 0.18 0.19 0.18

1.78 1.58 | -0.36 0.12 | 0.06 | 0.09

-0.10 | 2.25 | -047 0.02 0.12 0.08

2.44 2.89 1.02 0.22 0.24 0.11

Routing score Probability tokenl token2 token3
j22] L .
5 matrix matrix l Expert load after
% '?n dynamic routing
é e Increase/decrease expert i .
=9 weights by expert penalty Setting penalties
) _-: for expert weights
FIGURE 2

Different routing results by adjusting expert weights.

Frontiers in Neurorobotics

05

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al.

Threshold-based dynamic routing can be regarded as a
variant of top-k routing, both selecting the most suitable experts
by computing the routing score matrix through operations
between expert weights and tokens. The expert weight is a multi-
dimensional vector, with each dimension representing the degree
of specialization in different fields. A higher weight represents a
greater proportion of the expert’s processing results. The dynamic
routing design idea is to activate a corresponding number of
experts based on task difficulty. Dynamic expert activation
improves model efficiency but also brings new issues: for
example, in the bottom layer of the model and the early stage of
training, the dynamic routing will activate more experts to ensure
the reliability of the output, more experts means higher activation
rate is also more prone to imbalance load (Folino et al., 2024). To
better achieve load balancing, this paper directly adjusts expert
weights based on the load situation. The advantage of this design
is that expert weights play a decisive role in routing. Each token
needs to compute with expert weights to construct the routing
matrix. After routing each batch of data, the load situation of all
experts is counted, and the weights are updated through an
algorithm (Jiang et al., 2024), the reason for not needing to pay
attention to the load of the experts frequently is that in the
language task, the data in each batch basically come from the
same sentence or paragraph, and there is a connection between
the front and back, if it is too frequent, the expert load will
be adjusted according to the load. If expert load balancing is
pursued too frequently, it will easily lead to the loss of contextual
connection, violating the natural division of labor mechanism of
expert models, and additionally consuming
computational resources.

For the input set X, dynamic routing is performed first, and
a larger threshold is set for dynamic routing. At the initial stage
of model training, randomly assigned tokens are given to the
experts, and the expert weights will gradually show specialization
as the model is trained together, so a larger threshold is needed
to allow more experts to participate in the training. In addition,
this also helps the model acquire more shallow representations
for subsequent deep expert activation. After obtaining the routing
probability of each token, it is sorted in descending order. The
expert subset whose cumulative probability exceeds the threshold
is taken as the routing experts for this round. Subsequently, the
number of tokens assigned to each expert is counted, and the
average number is determined. The load penalty is calculated,
and the load weight of each expert at the token level is computed.
The expert weights are then updated using Equation 9.
Algorithm 1 describes the flow of this method. By optimizing the
load balancing scheme in dynamic routing, this paper achieves
dynamic expert selection based on input while balancing the task
load

improve efficiency.

among experts, leveraging model advantages to

Since ¢ represents the amount of load loss in Equation 3, the load
balancing scheme adopted by Fedus et al. makes ¢ = Lgajance > OUr
scheme proposed in this paper does not use a loss function, so makes
& =0in Equation 3, the set of all activated experts is obtained at the
end of the current batch of data routing, e; :;i—ai represents the
number of tokens processed by the i-th expert that is more (less) than
that in the balanced state (g; is the number of assigned tokens for each
expert and a; is the (¢; is the number of assigned tokens per expert, is

the average number of assigned tokens per expert), and represents the

Frontiers in Neurorobotics

10.3389/fnbot.2025.1590994

Input:
Model M, token set X, expert set E, initial activation threshold p = 0.4
Output:
for xin X do:
Using Equation 3 to compute the routing score P for each x.
Sort Index I = Descending (P)
Initialize cumulative_probability=0
for iin I do:
cumulative_probability += Pi
S=SU {e}
if cumulative_probability > p then
BREAK

SP® 3L hLNe

0: end

13: Counting the number of tokens assigned to each expertq,, and averages;,
14: Calculating load penalty e, = aT— a;

15: Calculate each expert's load weight at token level?, = ¢; /siZe(X, l)

16: Update expert weights using Equation 9
17: return M

ALGORITHM 1
Load balancing algorithm based on expert weights.

load weight deviation of the i-th expert at the token level, accordingly,
by mapping the deviation at the token level to the expert weight level,
and updating the existing expert weights through Equation 9 to
achieve the load balancing for the next route.

E
w;=w; + w,»/Zwi Xt)
i=1

Our goal is to use dynamic routing to influence the expert weights
in the next round through load weight deviations at the token level, so
that experts can include load constraints from the previous round in
the next round of routing calculations. In the expert activation
probabilities of the next round P = softmax(w,-x), after being updated
by Equation 9, the expert weights include the load conditions from the
previous round. The weight update directly affects the activation

E
probability of the expert for the input token. Among them, w; / ZWi

i=1
represents the proportion of the current expert weight in the total
weight. When ¢; is higher than the load average, it takes a negative
value, reducing the current expert weight and suppressing activation in
the next round. Conversely, it promotes load balancing between experts.

In the algorithm design, expert weights are updated after each
batch routing because, in language tasks, tokens are somewhat
correlated. Responding to load balancing in real-time would consume
significant computational resources and affect the task accuracy of
language models. For example, pronouns in the sentence often require
more experts to process them collaboratively, and at the same time,
the participating experts should also include those who deal with the
referenced pronouns. This load imbalance is due to the fact that
special tasks activate more experts, thus increasing the confidence of
the model to handle some of the difficult tasks.

4 Experimental design

Based on the aforementioned design, the Mixtral-8x7B is adopted
as the core architecture of the model, which is a Transformer-based
mixture of experts model consisting of 8 feed-forward networks (i.e.,
experts) per layer, with the parameter size of 7B for each expert, and

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al.

the number of hidden layers and attention headers both being 32.
Experiments are conducted on a natural language understanding
dataset; the main focus is on the load balancing of the model, the
average number of activations of the experts, and the accuracy of each
sub-task were evaluated. In multiple benchmark tests, its performance
reached or surpassed that of Llama 2-70B (Touvron et al., 2023),
especially demonstrating outstanding capabilities in mathematics and
multilingual understanding tasks.

4.1 Dataset

Natural Language Understanding (NLU) is a subfield of Natural
Language Processing (NLP) that focuses on making computers
understand the meaning of human language (Clark et al., 2022). The
validity of the model was verified on a publicly available dataset. In this
paper, we use the multi-tasked Natural Language Understanding
dataset GLUE (Wang et al., 2018) (General Language Understanding
Evaluation) created from New York University, University of
Washington, and other institutions. GLUE contains nine Natural
Language Understanding tasks, all in the language of English. It is used
to evaluate the performance of the model in various existing NLU
tasks. The nine tasks of GLUE involve multiple tasks, such as natural
language inference, textual entailment, sentiment analysis, semantic
similarity, etc. GLUE has nine tasks, namely CoLA, SST-2, MRPC,
STS-B, QQP, MNLI, QNLI, RTE, and WNLI, which can be categorized
into three types, namely, Single-sentence classification tasks, similarity
tasks, and inference tasks.
sentiment

tasks include:

classification (SST-2), judging whether it is grammatical or not

Single-sentence classification
(CoLA), all of which can be abstracted into a binary task to judge
whether the sentence is (or is not) grammatical; similarity tasks
include: judging whether two sentences express the same meaning
(MRPC, QQP), and judging the relevance of the two sentences to each
other (STS-B); inference tasks include: whether the sentences are
semantics are contradictory and implicit (MNLIL, RTE), whether there
is an answer to a certain question in a sentence (QNLI), and which
object is referred to by a pronoun (WNLI).

4.2 Model structure and parameter settings

Mixtral-8 x 7B is based on the Transformer architecture (Jiang et al.,
2024) with up to 32 k token length of processing context and feedforward
blocks are replaced by MoE layers. The number of Transformer layers is
set to 32, the embedding size for the feedforward network (FFN) is 4,096,
the number of Q (query) vectors is 32, and the number of K (key) and V
(value) vectors is 8. Each layer consists of 8 experts, with each expert
having 7B parameters. The top two experts are activated each time, and
the SwiGLU activation function is used in the FFN layers. The threshold
p is a hyperparameter with an initial value of 0.4. All other learnable
parameters are randomly initialized before pretraining with a standard
deviation of 0.006. In the GLUE dataset, for tasks with relatively large
amounts of training data (MNLI, SST-2, QQP, QNLI), the number of
epochs is set to 6. For tasks with limited data (CoLA, STS-B, MRPC, RTE,
WNLI), the number of epochs is increased to 10. The warmup steps value
is set to 16. Additionally, due to the limited training data of only around
six hundred samples in WNLI, the batch size for this task is set to
16 separately.

Frontiers in Neurorobotics

10.3389/fnbot.2025.1590994

4.3 Baseline

In the experimental design, we set up one dense model and two
Mixture-of-Experts (MoE) models using top-1 and top-2 routing,
respectively. The dense model follows the standard Transformer
architecture, where each Transformer layer consists of a multi-head
attention layer and a standard feedforward network (Vaswani et al.,
2017). The baseline MoE model achieves load balancing by
incorporating auxiliary loss functions. Specifically, the top-1 routing
adopts the Switch Transformer model (Fedus et al., 2022a, 2022b),
while the top-2 routing employs the Gshard model (Chen et al., 2023).
For a fair comparison, all three baseline methods are configured
identically to the method proposed in this paper, and are trained with
learning rates set to {le-3, 2e-3, 5e-3}, although only the best
experimental results are used for comparison. For the baseline MoE
models, the loss function proposed by Fedus et al. is used, which
involves the hyperparameters & =0.001.

4.4 Evaluation indicators

For the three types of downstream tasks in the GLUE dataset, the
accuracy rate (ACC) was used as an evaluation metric. The calculation
method for accuracy rate is shown in Equation 10.

TP+TN

ACC=———————
TP+TN + FP + FN

(10)

Where: TP (True Positives) refers to true cases, FP (False Positives)
refers to false positive cases, FN (False Negatives) refers to false
negative cases, and TN (True Negatives) refers to true negative cases.
Load balancing is evaluated using the standard deviation o of the
proportion of tokens P, received by each expert E; as an evaluation
index of load balancing, with the smaller standard deviation
representing the more balanced load. Evaluation metrics for load
balancing are shown in Equation 11.

1E

o= EZ(B"T’)Z

i=1

(11)

5 Results

The experiment evaluates the effectiveness of the models based on
the training and test data provided by the GLUE dataset, using the test
accuracy of each task as the metric. Table 1 presents the test accuracies
of four models, each with 8 experts, on three different types of
downstream tasks in the GLUE dataset, employing various routing
strategies and auxiliary functions.

The experimental results show that the MoE model outperforms
traditional dense models in the vast majority of tasks. This is
because the MoE model can increase model capacity under the
same parameter settings, and the number of parameters activated
at each step is significantly smaller than that of dense models,
thereby reducing inference costs. Compared with other models, the
method proposed in this paper achieves an average accuracy rate
6.1% higher than that of dense models and 0.7% higher than the
currently widely used top-2 routing, indicating that the proposed

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al. 10.3389/fnbot.2025.1590994

TABLE 1 Accuracy of the four models on the GULE dataset.

Models Single-sentence Similarity tasks Inference tasks Average
classification tasks precision
COLA SST-2 MRPC (ele]y MNLI QNLI RTE WNLI
dense 57.1 92.3 87.5 89.1 90 80.7 88.9 75.6 65.6 80.75
top-1 64.2 93.3 86.3 88.2 91.3 81.1 92.3 73.9 65.4 81.77
top-2 64.4 94 87.7 88.2 92.1 83.8 92.9 75.1 65.7 82.65
Ours 65.1 94.7 86.7 89.3 93.2 86.5 93.2 74.4 66.9 83.33
Bold indicates the best result.
TABLE 2 Load variance and accuracy of the expert layer under different dataset sizes
1st-layer 8th-layer 16th-layer ACC
RET (100%) 1.66 1.51 1.74 74.47
MRPC (100%) 1.17 1.28 1.20 86.71
RET (75%) 1.71 1.98 2.33 72.92
MRPC (75%) 1.65 2.02 2.46 85.34
RET (50%) 1.90 3.19 3.67 69.86
MRPC (50%) 1.93 2.79 4.17 82.07

TABLE 3 The impact of different batch sizes on model accuracy.

ACC
Batch_size = 8 Batch_size = 16 Batch_size = 32
RET (100%) 74.13 74.91 74.44
MRPC (100%) 86.76 87.11 86.73
QNLI (100%) 92.50 93.04 93.21

model is applicable to general natural language understanding tasks
and can achieve good performance. However, on the RTE and
MRPC datasets, the accuracy is slightly lower than that of top-2
routing, indicating that the proposed model cannot fully leverage
the advantages of dynamic routing in scenarios with limited data.
For datasets with sufficient data (such as QQP and MNLI), the
model can improve accuracy by over 1%. Both MRPC and QQP
suffer from imbalanced positive and negative sample distributions.
In QQP, negative samples account for 63% and positive samples
account for 37%. By using the load balancing method proposed in
this paper, the model can avoid token loss caused by selecting only
a portion of experts in scenarios with imbalanced positive and
negative sample distributions. Therefore, it can achieve better
results than top-2 in classification tasks, demonstrating the
robustness of this method to imbalanced sample distributions in
large datasets.

The model performs poorly on small datasets, primarily because
the training datasets for RTE and MRPC contain only 2,500 and 3,700
examples, respectively, with negative examples accounting for as much
as 65% of the total. To further investigate the impact of small datasets
on model performance, we conducted the following comparative
experiments. First, we gradually reduced the size of the training set,
using 100, 75, and 50% of the training set data to train the model.
Under the setting of batch_size = 16, we calculated the average
variance of the expert load for the first layer, the eighth layer, and the
sixteenth layer, with ACC as the evaluation metric. The experimental
results are shown in Table 2.

Frontiers in Neurorobotics

As the training data decreased, the model accuracy also
deteriorated gradually, with the highest decrease of 3.27%. From a
routing perspective, a core feature of MoE is that different experts
focus on different input subspaces. However, in small-sample datasets,
the router randomly distributes the limited samples to multiple
experts in the early stages, resulting in smaller effective sample sizes
for each expert. Due to insufficient sample size, the experts cannot
train stable patterns, leading to inaccurate routing of tokens to relevant
experts in subsequent stages. We then adjusted the batch size during
training, setting it to 8, 16, and 32, and included a large dataset with
sufficient data as a comparison (QNLI). The experimental results are
shown in Table 3. Under the condition of a constant epoch, the small
dataset performs best when batch_size = 16. This is because a smaller
batch size increases the probability of all samples within a batch
belonging to the same category, leading to an increase in the activation
frequency of certain experts. Dynamic routing then reduces the
weight of these experts, affecting the results of subsequent routing
rounds. A larger batch_size setting reduces the number of model
iterations, resulting in poor generalization performance. Through the
above comparative experiments, it was verified that the primary
reason for the poor performance of the model on small datasets is the
limited data volume and uneven data distribution. However, by
adjusting the batch size, the issue of poor model accuracy can
be mitigated, thereby enhancing the models adaptability to
limited data.

Jiang et al. found that for higher levels in the MoE model, the
continuous allocation phenomenon is significantly higher than the

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al.

10.3389/fnbot.2025.1590994

FIGURE 3

@ Expert 1
(" Expert 2

Expert 3
@ Expert 4
@ Expert 5
() Expert 6
@ Expert 7
@ Expert 8

Routing visualization results for different layers of MoE for the same sentence. (a) and (b) show the routing results in the first and last MoE layers
respectively, while (c) shows the routing result in the last layer with dynamic routing.

random allocation (Jiang et al., 2024). This implies that without load
balancing control, the model will be more likely to activate only a few
experts, which seriously affects the training and reasoning of the
model, and results in a waste of resources of free experts. The expert
allocation of the first MoE layer and the last MoE layer in the Mixtral-
8x7B model for the same sentence is verified by visualizing the expert
allocation of the first MoE layer and the last MoE layer in the
Mixtral-8 x 7B model as shown in Figure 3, which verifies that the
method proposed in this paper is effective in balancing the load of
high-level expert effectiveness.

Figures 3a,b shows the allocation of eight experts to the same
sentence in the first and last layers of MoE, respectively, from which it
is found that the last layer is more prone to successive assignment of
experts in token assignment, and the activation frequency of each
expert is counted, and there is a serious load imbalance compared to
the first layer, in which the activation rate of the expert 4 grows from
1.45 to 34.78%, and that of the experts 2 and expert 4 is only 5.8%.
Figure 3c represents the load of the last layer of experts after adopting
the load-balancing scheme of this paper. The standard deviation value
of the expert load is 1.76, compared to 9.33 in Figure 3b. Furthermore,
the variance of expert load was analyzed for other layers (from Layer
1 to Layer 7), and it was found that the proposed method outperformed
the loss function method proposed by Fedus et al. for all layers except
the first two. This is because both methods use random allocation in
the first layer, leading to similar performance and achieving uniform
allocation. Therefore, the method designed in this paper has little
impact on adjusting expert weights in the first layer. However, as the
number of MoE layers increases, the loss function fails to effectively

Frontiers in Neurorobotics

handle the consecutive allocation phenomenon, resulting in worsened
load imbalance with increasing layers.

To verify the impact of thresholds on the model in dynamic
routing, we selected the QQP, SST-2, and RTE datasets from GLUE
based on their data volume sizes. RTE based on the size of the data.
The sizes of their training sets are approximately 360 k, 67 k, and
3 k, respectively, and the threshold sizes are set to 0.2, 0.4, and 0.6,
respectively. By statistically analyzing the number of expert
activations and experimental results under different thresholds,
we verify the reasonableness of the thresholds. Figure 4 shows the
number of expert activations in the MoE layer using dynamic
routing across the three datasets at different thresholds, with
dashed lines indicating the number of top-2 routed activations. As
the dataset size decreases, the number of expert activations at
different thresholds within the same dataset also decreases, and the
rate of decrease becomes smaller. This is because, as the dataset size
decreases, it becomes increasingly difficult to quickly form highly
specialized experts. The dynamic routing strategy must balance
load balancing while meeting activation threshold requirements.
Therefore, in larger datasets, the proposed dynamic routing
strategy is highly effective in reducing the number of expert
activations. During the early stages of model training or in shallow
layers, experts have not yet reached a specialized level, and the
distribution of routing probabilities is often relatively uniform.
When the threshold is set to p = 0.2, the threshold is easily met,
and even if all experts have the same activation probability, only
two experts are needed to reach the threshold. Therefore, as
training progresses or in deeper layers of the model, a low

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al.

10.3389/fnbot.2025.1590994

4 @ p=02
@ p=04
3 p=06

Number of experts activated
8]

Number of experts activated

IS

w

N

@ p=02 5 4 @ p=02
@ p=04 @ p=04
p=06 3 p=06

Number of experts activate

1 1 T ——— e e e ..
0+ 0+ 0+
3 5 7 9 11 13 15 13 5 7 9 11 13 15 1T 3 5 7 9 11 13 15
MoE Layers in QQP MoE Layers in SST-2 MoE Layers in RTE

FIGURE 4
Average number of activated experts per MoE layer at different thresholds.

TABLE 4 The impact of different threshold settings on experimental results.

Dataset

QQP 91.7 93.2 92.9
SST-2 89.2 94.7 935
RET 73.0 74.4 743

Bold indicates the best result.

threshold causes routing to degrade into traditional top-1 routing,
and this phenomenon becomes more pronounced as the dataset
size decreases. As the threshold increases, dynamic routing
activates the corresponding number of experts based on routing
probabilities to promote specialization. In the three datasets
mentioned above, the number of activated experts in deeper layers
is significantly lower than in shallower layers. This is because, after
training, experts with higher specialization levels can meet the
threshold constraint without activating additional experts for
computation. Table 4 shows the experimental results of dynamic
routing on datasets of different sizes at different thresholds. In all
three datasets, the setting of p = 0.4 yields the best results. Thus, in
this task also validates the effectiveness of the p-value set to 0.4 by
Huang et al.

In general, the performance of a model for downstream tasks
usually depends on the number of parameters (Gao et al., 2024).
For example, top-2 routing showed significantly better performance
than top-1 routing in experiments. Zhou et al. (2020) demonstrated
that deeper representations of the model are prone to overfitting
phenomena, and therefore, good shallow representations are more
valuable than complex deep representations (Sajjad et al., 2023).
These two phenomena indicate that both the number of parameters
and shallow representations can effectively improve model
performance. The scheme proposed in this paper achieves
comprehensive feature extraction in the shallow layers through
multiple experts, and by influencing expert weights and dynamic
routing, activates fewer experts in the deep layers, thus achieving
a balanced load among experts while reducing the number of
model parameters.

WNLI is a dataset for a binary classification task, which includes 634
training samples and 146 test samples. The training set has a balanced
distribution of positive and negative samples, while 65% of the test
samples are negative. The main reason for the consistent number of
dynamically activated experts is that for more challenging reasoning
tasks, the model will activate more experts to participate. Limited

Frontiers in Neurorobotics 10

training data, uneven distribution of positive and negative samples, and
task difficulty all contribute to the model not having an advantage in the
average number of experts activated for this task. In the top layers of the
model, around two experts are also activated, and due to insufficient data
distribution and quantity, the scheme degenerates into top-2 routing in
terms of average activation number. Through experiments on nine
datasets, the proposed scheme in this paper not only activates fewer
experts (i.e., fewer parameters) while achieving load balancing, but also
obtains better shallow representations by activating more experts in the
lower layers of the model. As the number of layers increases, the number
of experts activated per token gradually decreases, effectively preventing
the model from becoming overly complex and reducing unnecessary
computations. Except for a few datasets, the proposed scheme achieves
better results than top-2 routing.

6 Ablation experiment

The ablation experiment selects five datasets from GLUE
according to the size of the data volume to verify the effect of the
method proposed in this paper on the load balancing of experts. The
load conditions of eight experts during the training process were
recorded, demonstrating that the proposed load balancing scheme
outperforms the method using a loss function on the same datasets.
The experimental results are shown in Figure 5. Figure 5a shows the
activation rates of the eight experts on different datasets when the loss
function is used to achieve load balancing, and it can be seen that
more serious load balancing occurs in each dataset. The gray dashed
line represents the ideal expert activation rate. Load imbalance is
more severe in some datasets with larger data volumes (e.g., QQP and
MNLI). This is because load balancing loss is achieved by regularizing
the selection probability distribution of the gating network, typically
using softmax or other normalization functions, whose gradients can
become very small or very large near extreme values (Wang et al.,
2024). This gradient issue may cause the selection probability of

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al. 10.3389/fnbot.2025.1590994

® Expertl © Expert2 = Expert3 ® Expert4 ® Expert5 © Expert6 ® Expert7 ® Expert8

Expert activation rate
40 -

35 1
30 A
25 1
20 |
15 1

10 A

Datasets
SST-2 MRPC QQP MNLI QNLI

(a)
® Expertl © Expert2 Expert3 ® Expert4 ® Expert5 © Expert6 ® Expert7 ® Expert8

Expert activation rate
18 1

15 1

Datasets
SST-2 MRPC QQP MNLI QNLI
FIGURE 5
Expert activation rate for two load losses under dynamic routing. (a) shows the results of using a loss function, (b) shows the results of using dynamic
routing.

Frontiers in Neurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al. 10.3389/fnbot.2025.1590994

TABLE 5 Standard deviation of expert activation for two load losses.

Dataset Standard deviation of expert activation

Based on the loss function

Based on expert weights

SST-2 8.68 0.95
MRPC 9.48 0.81
QQp 9.36 1.76
MNLI 12.25 1.18
QNLI 8.42 1.32

certain experts to increase rapidly, exacerbating the imbalance.
Secondly, after adopting dynamic routing, the number of experts
activated each time is not fixed. At the beginning of training, the
model activates more experts to obtain shallow representations, as
shown in Figure 4. This reduces the weight of the penalty term
intended to improve load imbalance among experts. Therefore, the
loss function cannot effectively improve expert load balancing,
resulting in the activation rate of some experts being much higher
than the ideal value throughout the training process. Figure 5b shows
the dynamic routing strategy using the proposed expert weight-based
dynamic routing scheme, which achieves good load-balancing effects
on different datasets. By directly modifying expert weights, it avoids
the gradient influence brought by the loss function and does not
increase the load loss as the number of training batches increases. It
also performs well on larger datasets, verifying that the proposed
method can effectively alleviate load imbalance among experts.

For the above five datasets, the standard deviation of expert
activation under two kinds of load loss is calculated as a criterion to
verify the effectiveness of the model, as shown in Table 5. The standard
deviation is reduced on all five datasets, with the most significant
improvement in load imbalance observed on the MNLI dataset.
Accordingly, in Table 1, it can be seen, the experimental accuracy of the
load balancing algorithm proposed in this paper on the MNLI dataset
has been improved by 2.7%, which is the largest accuracy improvement
in all the tasks. This also confirms that the load imbalance affects the
accuracy of the model and the training effect. In addition, our method
employs dynamic routing; the experimental results demonstrate that
this approach enables the model to activate fewer experts (parameters),
reducing the computational requirements of the model while
maintaining load balancing among experts. This further optimizes the
Mixture of Experts (MoE) model.

In MoE models, sparsity is achieved through the gating network
G(x) without significantly increasing computational costs. Although
load imbalance directly affects the optimal performance of the model
when dealing with large datasets and complex tasks, in some cases, load
imbalance may be meaningful. For example, if a certain batch of input
data is mostly of one type, the hybrid expert model was originally
designed with the intention that different experts would process
different kinds of inputs Instead of evenly distributing the same kind
of data to different experts (Xic et al., 2024), the forced equalization
may violate the natural division of labor mechanism of the model. The
current load balancing mechanism does not take into account the
imbalance of the training data itself, and only achieves the average load
balancing state through the expert weights setting, and requires the
uniform distribution of all kinds of training data in the model training
to avoid the load brought by the distribution of the data itself. In the

Frontiers in Neurorobotics

model training, all types of training data are required to be evenly
distributed to avoid the load imbalance caused by the distribution of
the data itself. If the data are naturally imbalanced distributed, the
pursuit of absolute equalization may affect the model effect (Yan et al.,
2024). Future work will focus on more realistic scenarios, addressing
how to avoid the aforementioned issues when data itself is imbalanced.
Additionally, experiments have shown that the model’s performance is
not ideal when testing on datasets with uneven label distributions (Hao
etal,, 2025). Further research is needed to address load balancing issues
arising from small sample sizes, uneven sample distributions, and other
related challenges.

7 Summarize

This paper proposes a dynamic routing algorithm based on
expert weights for load balancing, which adjusts expert weights
based on the load situation among experts during the previous
routing to influence the next routing allocation. The advantage of
this method lies
hyperparameters in the loss function and the impact of gradient

in avoiding the training settings of

changes on expert loads. Experimental validation demonstrates
that the dynamic routing algorithm based on expert weights not
only improves task accuracy but also reduces the model’s parameter
count compared to top-k routing, while achieving good load-
balancing effects. Especially in datasets with sufficient data, this
routing algorithm can better leverage its advantages.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

JW: Writing - original draft. XL: Conceptualization, Writing —
review & editing. JY: Writing - review & editing. XK: Writing — review
& editing. PC: Writing - review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen et al.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial

References

Chen, T, Chen, X, Du, X, Rashwan, A, Yang, F, Chen, H, et al. (2023) AdaMV-MoE:
Adaptive multi-task vision mixture-of-experts|C/OL]//2023 IEEE/CVF International
Conference on Computer Vision (ICCV). Paris, France: IEEE, 17300-17311. doi: 10.1109/
ICCV51070.2023.01591

Chowdbhery, A., Noam, S., Devlin, J., Bosma, M., Mishra, J., Roberts, A., et al. (2023).
PaLM: Scaling language modeling with pathways. Journal of Machine Learning Research,
24:1-113.

Clark, A., De Las Casas, D., Guy, A., Mensch, A., Paganini, M., Hoffmann, J., et al.
(2022) Unified scaling Laws for routed language models, in K. Chaudhuri Proceedings
of the 39th International Conference on machine learning. PMLR (proceedings of
machine learning research). 4057-4086. Available online at: https://proceedings.mlr.
press/v162/clark22a.html.

Csaba, B., Bibi, A,, Li, Y., Torr, P, and Lim, S.-L. (2022). Diversified dynamic routing
for vision tasks. arXiv. doi: 10.48550/arXiv.2209.13071 [preprint]

Fan, D., Messmer, B., and Jaggi, M. (2024) ‘Towards an empirical understanding of
moe design choices, in ICLR 2024 workshop on mathematical and Empirical
understanding of foundation models. Available online at: https://openreview.net/
forum?id=ebPKyb6r9F

Fedus, W,, Dean, J., and Zoph, B. (2022a). A review of sparse expert models in deep
learning arxiv. Available at: https://arxiv.org/abs/2209.01667

Fedus, W, Zoph, B., and Shazeer, N. (2022b). Switch transformers: scaling to trillion
parameter models with simple and efficient sparsity. J. Mach. Learn. Res. 23:5232-5270.
doi: 10.48550/arXiv.2101.03961

Folino, E, Pontieri, L., and Sabatino, P. (2024) ‘Sparse mixtures of shallow linear
experts for interpretable and fast outcome prediction;, in DeSmedt, J. and Soffer, P. (eds)
PROCESS Mining Workshops, ICPM 2023. (lecture notes in business Information
processing), pp. 141-152.

Gao, Z., Deng, J., Reviriego, P, Liu, S., and Lombardi, E. (2024). ‘Reducing the energy
dissipation of large language models (LLMs) with approximate memories, in 2024 IEEE
international symposium on circuits and systems, ISCAS 2024. IEEE; IEEE Circuits &
Syst Soc (IEEE International Symposium on Circuits and systems).

Guo, Y., Cheng, Z., Tang, X., Tu, Z., and Lin, T. (2024). ‘Dynamic mixture of experts:
an auto-tuning approach for efficient transformer models. Available online at: https://
arxiv.org/abs/2405.14297.

Hao, Z., Liu, F, Jiao, L., Du, Y, Li, S., Wang, H., et al. (2025). Preserving text space
integrity for robust compositional zero-shot learning via mixture of pretrained experts.
Neurocomputing 614, 1-12. doi: 10.1016/j.neucom.2024.128773

Huang, Q, An, Z, Zhuang, N, Tao, M., Zhang, C,, Jin, Y,, et al. (2024). Harder task
needs more experts: Dynamic routing in moe models. Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistic. Bangkok, Thailand,
12883-12895. doi: 10.18653/v1/2024.acl—long.696

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., et al.
(2024). Mixtral of experts. arXiv. doi: 10.48550/arXiv.2401.04088

Jiang, M., Roth, H. R,, Li, W,, Yang, D., Zhao, C., Nath, V,, et al. (2023). ‘Fair federated
medical image segmentation via client contribution estimation, in 2023 IEEE/CVF
conference on computer vision and pattern recognition (CVPR). IEEE; CVF; IEEE
Comp Soc (IEEE Conference on computer vision and Pattern recognition),
pp. 16302-16311.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., et al. (2020).
GShard: scaling Giant models with conditional computation and automatic
sharding. Arxiv.

Frontiers in Neurorobotics

10.3389/fnbot.2025.1590994

intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Li, P, Huang, L., L, J., Yan, H., and Shan, D. (2025). Graph-based vision transformer
with sparsity for training on small datasets from scratch. Sci. Rep. 15:24520. doi:
10.1038/s41598-025-10408-0

Liu, J., Tang, P,, Wang, W,, Ren, Y., Hou, X,, Heng, P. A,, et al. (2024). A survey on
inference optimization techniques for mixture of experts models. arXiv. doi:
10.48550/arXiv.2412.14219

Liu, T., Blondel, M., Riquelme, C., and Puigcerver, J. (2024) ‘Routers in vision mixture
of experts: an Empirical study, Trans. Mach. Learn. Res. Available online at: https://
openreview.net/forum?id=aHk3vctnfl.

Mckinzie, B., Gan, Z., Fauconnier, J. P, Dodge, S., Zhang, B., Dufter, P, et al. (2024).
MM1: methods, Analysis & Insights from multimodal LLM pre-training. Arxiv. doi:
10.1007/978-3-031-73397-0_18

Mustafa, B., Riquelme, C., Puigcerver, J., Jenatton, R., and Houlsby, N. (2022)
‘Multimodal contrastive learning with LIMoE: the language-image mixture of experts,
in Koyejo, S. Advances in neural information processing systems 35 (NEURIPS 2022).
(Advances in neural Information processing systems).

Nguyen, H., Nguyen, T., and Ho, N. (2023) ‘Demystifying Softmax gating
function in gaussian mixture of experts) in A. Oh. Advances in neural information
processing systems 36 (NEURIPS 2023). (Advances in neural Information
processing systems).

Radford, A., Kim, J. W,, Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., et al. (2021)
‘Learning transferable visual models from natural language supervision, in M. Meila and
T. Zhang (eds). International Conference On Machine Learning, VOL 139.

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M., Jenatton, R., Susano Pinto, A.,
etal. (2021). ‘Scaling vision with sparse mixture of experts, in Ranzato, M. ADVANCES
IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021).
(Advances in neural Information processing systems).

Sajjad, H., Dalvi, F, Durrani, N., and Nakov, P. (2023). On the effect of dropping layers
of pre-trained transformer models. Comput. Speech Lang. 77:101429. doi: 10.1016/j.
¢s1.2022.101429

Shazeer, N, Mirhoseini, A, Maziarz, K, Davis, A, Le, Q, Hinton, G, et al. (2017).
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. Arxiv.
Available at: https://arxiv.org/abs/1701.06538.

Touvron, H., Martin, L., Stone, K. R., Albert, P, Almahairi, A., Babaei, Y., et al. (2023).
‘Llama 2: open foundation and fine-tuned chat models, ArXiv. Available online at:
https://api.semanticscholar.org/CorpusID:259950998.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A, et al. (2017)
Attention is all you need. Advances in Neural Information Processing Systems 30. Long
Beach: MIT Press, 1-45.

Wang, A., Singh, A., Michael, J., Hill, E, Levy, O., Bowman, S. R., et al. (2018). ‘GLUE:
a multi-task benchmark and analysis platform for natural language understanding), in
T. Linzen, G. Chrupata, and A. Alishahi (eds) Proceedings of the 2018 EMNLP
workshop BlackboxNLP: Analyzing and interpreting neural networks for NLP. Brussels,
Belgium: Association for Computational Linguistics, pp. 353-355.

Wang, L., Gao, H., Zhao, C., Sun, X., and Dai, D. (2024). Auxiliary-loss-free load
balancing strategy for mixture-of-experts. Arxiv. Available at: https://arxiv.org/
abs/2408.15664.

Wu, J., Hu, X., Wang, Y., Pang, B., and Soricut, R. (2024). Omni-SMoLA: Boosting
generalist multimodal models with soft mixture of low-rank experts. Arxiv. Available at:
https://arxiv.org/abs/2312.00968

Xie, Y., Ren,], and Xu, J. (2024). Unraveling complex data diversity in underwater
acoustic target recognition through convolution-based mixture of experts. Expert Syst.
Appl. 249:123431. doi: 10.1016/j.eswa.2024.123431

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://doi.org/10.1109/ICCV51070.2023.01591
https://doi.org/10.1109/ICCV51070.2023.01591
https://proceedings.mlr.press/v162/clark22a.html
https://proceedings.mlr.press/v162/clark22a.html
https://doi.org/10.48550/arXiv.2209.13071
https://openreview.net/forum?id=ebPKyb6r9F
https://openreview.net/forum?id=ebPKyb6r9F
https://arxiv.org/abs/2209.01667
https://doi.org/10.48550/arXiv.2101.03961
https://arxiv.org/abs/2405.14297
https://arxiv.org/abs/2405.14297
https://doi.org/10.1016/j.neucom.2024.128773
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.48550/arXiv.2401.04088
https://doi.org/10.1038/s41598-025-10408-0
https://doi.org/10.48550/arXiv.2412.14219
https://openreview.net/forum?id=aHk3vctnf1
https://openreview.net/forum?id=aHk3vctnf1
https://doi.org/10.1007/978-3-031-73397-0_18
https://doi.org/10.1016/j.csl.2022.101429
https://doi.org/10.1016/j.csl.2022.101429
https://arxiv.org/abs/1701.06538
https://api.semanticscholar.org/CorpusID:259950998
https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2312.00968
https://doi.org/10.1016/j.eswa.2024.123431

Wen et al.

Xu, H, Elbayad, M, Murray, K, Maillard,], and Goswami, V. (2023). Towards being
parameter-efficient: a stratified sparsely activated transformer with dynamic capacity.
Findings of the Association for Computational Linguistics: EMNLP 2023. Singapore,
12858-12870. doi: 10.18653/v1/2023.findings-emnlp.856

Xu, J., Sun, L., and Zhao, D. (2024). ‘MoME: mixture-of-masked-experts for
efficient multi-task recommendation; in Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, SIGIR
2024. Assoc comp machinery; ACM special interest grp Informat Retrieval,
pp. 2527-2531.

Yan, Q., Li, Y., Ma, N., and Wan, E. (2024) ‘Research on the structure and realization
of mixture-of-experts, in 2024 5th international conference on computer engineering
and application, ICCEA 2024. IEEE (International Conference on computer Engineering
and applications ICCEA). 354-359.

Yang, Y., Qi, S., Gu, W,, Wang, C., Gao, C., Xu, Z,, et al. (2024) XMoE: sparse models
with fine-grained and adaptive expert selection, in Findings of the Association for
Computational Linguistics ACL 2024. Findings of the Association for Computational

Frontiers in Neurorobotics

14

10.3389/fnbot.2025.1590994

Linguistics ACL 2024, Bangkok, Thailand and virtual meeting: Association for
Computational Linguistics, pp. 11664-11674.

You, Z., Feng, S., Su, D., and Yu, D. (2021). SpeechMoE: Scaling to large acoustic
models with dynamic routing mixture of experts. arXiv. doi: 10.48550/arXiv.2105.03036

Zhang, R., Luo, Y,, Liu, J., Yang, H., Dong, Z., Gudovskiy, D., et al. (2024). Efficient
Deweather Mixture-of-Experts with Uncertainty-Aware Feature-Wise Linear
Modulation. 38th AAAI Conference on artificial intelligence, Assoc Advancement Artificial
Intelligence, 38, 16812-16820.

Zhou, W,, Xu, C., Ge, T, McAuley, ., Xu, K., and Wei, E. (2020). ‘BERT loses patience:
fast and robust inference with early exit, in Proceedings of the 34th International
Conference on neural Information processing systems. Red Hook, NY, USA: Curran
Associates Inc. (NIPS 20).

Zhu, P, Sun, Y., Cao, B., and Hu, Q. (2024) ‘Task-customized mixture of adapters for
general image fusion, in 2024 IEEE/CVF CONFERENCE on computer vision and
PATTERN recognition, CVPR 2024. IEEE; IEEE Comp Soc; CVF (IEEE Conference on
Computer Vision and Pattern Recognition), pp. 7099-7108.

frontiersin.org

https://doi.org/10.3389/fnbot.2025.1590994
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://doi.org/10.18653/v1/2023.findings-emnlp.856
https://doi.org/10.48550/arXiv.2105.03036

	Adaptive-expert-weight-based load balance scheme for dynamic routing of MoE
	1 Introduction
	2 Related work
	2.1 Mixture of experts model architecture
	2.2 Top-k routing in mixture of experts models
	2.3 Dynamic routing

	3 Method design
	4 Experimental design
	4.1 Dataset
	4.2 Model structure and parameter settings
	4.3 Baseline
	4.4 Evaluation indicators

	5 Results
	6 Ablation experiment
	7 Summarize

	References

