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Load imbalance is a major performance bottleneck in training mixture-of-experts 
(MoE) models, as unbalanced expert loads can lead to routing collapse. Most 
existing approaches address this issue by introducing auxiliary loss functions 
to balance the load; however, the hyperparameters within these loss functions 
often need to be tuned for different tasks. Furthermore, increasing the number of 
activated experts tends to exacerbate load imbalance, while fixing the activation 
count can reduce the model’s confidence in handling difficult tasks. To address 
these challenges, this paper proposes a dynamically balanced routing strategy 
that employs a threshold-based dynamic routing algorithm. After each routing 
step, the method adjusts expert weights to influence the load distribution in the 
subsequent routing. Unlike loss-function-based balancing methods, our approach 
operates directly at the routing level, avoiding gradient perturbations that could 
degrade model quality, while dynamically routing to make more efficient use of 
computational resources. Experiments on Natural Language Understanding (NLU) 
benchmarks demonstrate that the proposed method achieves accuracy comparable 
to top-2 routing, while significantly reducing the load standard deviation (e.g., from 
12.25 to 1.18 on MNLI). In addition, threshold-based dynamic expert activation 
reduces model parameters and provides a new perspective for mitigating load 
imbalance among experts.
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1 Introduction

Transformer models are currently enjoying significant success in applications such as 
natural language processing (Radford et al., 2021), computer vision (Jiang et al., 2023; Zhu 
et al., 2024), and multimodal (Mustafa et al., 2022). And with the rapid development of 
Transformer models, the computational requirements have increased significantly. In general, 
scaling model size and training data is one of the direct and effective ways to reduce 
computational requirements, but it fails to better handle increasingly complex data, in this 
context, the Mixture of Experts (MoE) model provides a method that can expand model 
capacity and applicability without significantly increasing computational overhead, becoming 
one of the most effective methods to address the high computational demands of dense models 
(Mckinzie et al., 2024; Wu et al., 2024).

Mixture of experts is a sparse structure based on transformer (Lepikhin et al., 2020). 
It replaces the original FFN (Feed-Forward Network) layer with an expert layer, which 
consists of a gating network and various experts. Theoretically, experts can 
be combinations of different neural networks. Compared to traditional dense models, 
MoE achieves significant improvements in computational efficiency. MoE achieves 
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sparsity mainly through the gating network, which routes each 
input to a specific subset of experts, reducing computational 
demands by activating only a small number of experts for training. 
However, MoE systems inherently face challenges of expert load 
imbalance caused by uneven training data distributions and 
divergent initial parameter preferences among experts. Expert load 
balance is a combination of the overall performance, efficiency, 
and robustness of the model. If some experts are over-activated 
while others remain idle for a long time, the actual effective 
number of parameters in the model will be  lower than the 
theoretical value, leading to a waste of resources; frequently 
selected experts accelerated gradient updates, while underutilized 
counterparts stagnate in training, potentially trapping the 
optimization process in local minima and inducing a vicious cycle. 
Additionally, due to the limited capacity of experts, token overflow 
may occur under excessive input loads, resulting in partial data 
loss (Guo et al., 2024). Thus, expert load imbalance persists as a 
pervasive yet critical challenge in the MoE framework.

The current prevalent approach to mitigate expert load imbalance 
involves incorporating a load-balancing loss function into the 
optimization objective. This method quantifies activation frequency 
disparities among experts within each training batch using variance 
metrics, subsequently imposing penalty terms on the gating network’s 
outputs. During backpropagation, these penalties update model 
parameters to influence future token routing decisions. While 
theoretically sound, this methodology presents multiple 
implementation challenges:

	 1.	 Hyperparameter sensitivity: the auxiliary loss coefficient (α ) 
requires manual calibration, where excessive values enforce 
artificial uniformity at the expense of model performance, 
while insufficient values compromise load balancing efficacy. 
Experiment indicates that optimal values exhibit phase-
dependent variability—higher weights are preferable during 
the initial training phase, whereas later stages necessitate 
gradual reduction to prioritize task-specific optimization. 
Implementing dynamic α  scheduling introduces nontrivial 
computational overhead.

	 2.	 Inherent data distribution bias: in scenarios with naturally 
imbalanced training data distributions, specific expert 
subsets demonstrate persistent activation dominance, and 
the balancing loss struggles to counteract such 
inherent biases.

	 3.	 Delayed feedback and scalability constraints: the impact of the 
load balancing loss function acts on the output weights of the 
gating network, requiring multiple iterations to update the 
parameters, then influences the next load distribution. 
Moreover, in the trillion-parameter scale model, the auxiliary 
loss function is used to make the expert utilization close to a 
uniform distribution.

Another issue is that in MoE models, inputs are typically 
allocated to a fixed number of experts. In tasks such as machine 
translation, MoE only improves BLEU (Bilingual Evaluation 
Understudy) by 0.5 compared to dense models with equivalent 
parameters, indicating that different inputs may require different 
numbers of experts for processing in specific downstream tasks (Xu 
et al., 2023).

To address the above issues, this paper proposes a dynamic 
routing load balancing model based on expert weights. The main 
contributions of our work are summarized as follows:

	•	 We propose a dynamic routing load balancing algorithm based 
on expert weights, abandoning the load loss function and 
achieving load balancing through control expert weights directly. 
Specifically, during routing, input data generates the final routing 
score matrix through operations with expert weights, and the 
routing probability is obtained by normalizing the routing score. 
After each training batch, expert weights are continuously 
updated based on the activation in the previous batch, reducing 
the weight of highly loaded experts and increasing the weight of 
low-loaded experts, to balance the load among experts for the 
next routing. This method does not introduce a load-balancing 
hyperparameter, avoids the gradient effects of the loss function, 
and achieves load balancing among experts even in small-scale 
parameter models by directly adjusting expert weights without 
the need for multiple backpropagations, thereby improving the 
model’s adaptability.

	•	 Our method can effectively alleviate the load imbalance issue 
in MoE models. In addition, dynamic routing achieves 
dynamic activation of expert subsets based on data complexity, 
improving computational efficiency and model performance. 
To verify the effectiveness of this method, experiments were 
conducted on standard datasets for natural language 
understanding. The experimental results show that our 
method outperforms traditional top-k methods in most tasks, 
achieving an average accuracy improvement of 0.7% compared 
to the top-2 routing model using loss functions on nine 
different datasets, and significantly improving the load 
imbalance among experts.

2 Related work

2.1 Mixture of experts model architecture

The Mixture of Experts model is a sparsely gated deep learning 
model consisting primarily of some expert models and a gating 
network (Xu et al., 2024). In this case, the MoE layer is composed of 
the gated network ( )G x  and multiple experts of the same network 
frame. Experts can be  any identical or different models. For 
example, in a Transformer-based Mixture of Experts model, the 
expert network consists of several identical Feed-Forward Networks, 
and the MoE structure is typically placed after the self-attention 
sublayer to use the gating network to select the feed-forward 
networks within the Transformer block. This setup is because, as the 
model expands, the computational requirements for FFN increase 
(Zhang et al., 2024). In the 540B parameter PaLM model, 90% of the 
parameters are located in its FFN layer, so the MoE structure is 
placed after the attention layer to reduce the number of activated 
parameters (Chowdhery et  al., 2023). Shazeer et  al. (2017) 
introduced a sparse gating strategy that reduces computational 
overhead and achieves model sparsity by only computing the 
weighted sum of the outputs of the top few experts without 
significantly increasing the number of activated parameters in 
the model.
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2.2 Top-k routing in mixture of experts 
models

The gating network is the core of the Mixture of Experts model 
and the method for achieving sparsity, responsible for matching 
tokens with experts. Top-k routing (Shazeer et al., 2017) is the most 
widely used routing algorithm; however, for tasks with different 
difficulties, it selects a fixed number of experts for activation. The 
number of activated experts, k, as a hyperparameter in the model, 
directly affects the model’s performance on different tasks and requires 
extensive ablation experiments to determine the optimal k value.

As shown in Figure 1 (where K is the total number of experts and 
k is the number of experts activated each time), different settings 
result in approximately 1–5% differences in model performance. As 
the model size increases, this limitation leads to wasted computational 
resources. Therefore, Huang et al. (2024) proposed a threshold-based 
dynamic routing method that can adjust the number of experts in the 
activated expert subset each time. After performing top-k routing, if 
the sum of the activation probabilities of the activated experts does 
not reach the activation threshold, it indicates that more experts are 
needed to jointly complete the task. This design dynamically allocates 
the number of experts based on the complexity of tokens. This method 
addresses the load balancing issue by using the loss function from 
Switch Transformer, adding the auxiliary loss for each MoE layer 
during training to the total loss of the model. Although the auxiliary 
loss can alleviate load imbalance to a certain extent, for dynamic 
routing, the number of activated experts is not fixed, and experts 
activated more frequently are more prone to load imbalance (Xie et al., 
2024). Moreover, the contribution of each expert varies, and the loss 
function introduces additional hyperparameters and disturbs the 
gradient. Therefore, using a loss function requires extensive 
experiments to determine the optimal hyperparameter values to 
minimize its impact on the model.

When executing top-k routing, a batch input contains several 
tokens. For each token ∈ Dx  , D represents the dimension, k experts 
are selected by softmax function (Riquelme et al., 2021; Fedus et al., 
2022a). The mathematical representation of the routing process is 
given by Equations 1–3.

	
( ) ( ) ( )
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experts ( ){ } =1

MLP E
r r
x , where represents the routing probability 

between considering load balancing, ε  is the load loss, and the expert 
weights ×∈ E DW  can be  trained along with other network 
parameters. Equation 1 represents how each token selects the top k 
experts based on the softmax scores as well as the outputs of the MoE 
layer. Compared to the traditional multi-layer perceptron (MLP) layer, 
the MoE layer can reduce the computational cost by controlling the 
number of experts (Liu J. et al., 2024). Assuming each MoE layer 
processes T tokens { }⊂1, , D

Tx x  , ×∈ T DX   X is the matrix 
composed of all tokens arranged by row. The MoE layer for processing 
a batch of data (containing T tokens) is defined as:
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In Equation 4, where DX and CX are the scheduling tensor 
(responsible for assigning different tokens to different experts) and the 

FIGURE 1

Impact of different expert settings on accuracy on the RTE dataset.
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combination tensor (for linearly combining outputs across experts) of 
X. C is the buffer capacity of each expert, which specifies the maximum 
number of tokens that each expert can process in a small batch, to 
efficiently utilize the hardware resources are generally C T , 
=  /C T E  or =  2 /C T E  (Csaba et al., 2022). The output of the MoE 

layer is expressed as Equations 5, 6.
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The core of the MoE layer is to map the input X to two tensors and 
obtain the final expert layer output through calculations. The whole 
routing process can be  simplified as ( )→Router : ,X XX D C  (Liu 
T. et al., 2024). In the routing process, W, as the expert weight, can 
directly affect the allocation of the token. Before executing the top-k 
router, the similarity matrix between the expert and the token is first 
constructed Ð softmax , as shown in Equation 7:

	 ( )BalanceÐsoftmax :softmax +XW 
	 (7)

In the absence of any regularization constraints, the maximum 
value of each row of the final routing score matrix may be concentrated 
at certain indexes, i.e., most of the tokens are routed to a few fixed 
experts, which makes some experts underutilized. Simultaneously, 
due to the limited expert capacity, subsequent tokens may be lost. To 
prevent this from happening, the current work is through the addition 
of auxiliary loss Balance  to mitigate (Lepikhin et al., 2020; Fedus et al., 
2022b), for a sequence of length T, the auxiliary loss is defined as the 
Equation 8:
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(8)

where E is the total number of experts, k is the number of experts 
selected by each token, ,i ts  is the routing score of the tth token at 
expert i, if  represents the routing score of tokens routed to expert i, iP  
represents the average routing score of expert i, and is the 
hyperparameter controlling the strength of the auxiliary loss. 
Although adding an auxiliary loss function can alleviate the load 
imbalance, the size of the hyperparameter α  affects the overall 
performance of the model; a smaller αwill lead to routing collapse, 
which affects the model efficiency and may result in some experts not 

being able to learn or utilize adequately; while a larger α  will keep the 
load balance in a controlled state and significantly reduce the model 
performance (You et  al., 2021). Therefore, our method directly 
controls expert weights to avoid introducing loss functions to solve 
the load-balancing issue among experts (Li et al., 2025).

2.3 Dynamic routing

Traditional top-k routing limits the number of activated experts, 
leading to unnecessary waste in some cases (Yang et  al., 2024). 
Experiments have shown (Clark et al., 2022; Fan et al., 2024) that the 
performance of MoE models can be significantly different depending 
on the value of k in the top-k, and thus a large amount of computational 
resources are needed to verify the optimal value of k for different 
downstream tasks; secondly, top-k gating methods assume that each 
token must activate the same number of experts, which does not 
satisfy the task needs in practice. A fixed number of experts can 
produce lower confidence when handling certain difficult tasks, 
affecting output results.

Guo et  al. (2024) proposed DYNMOE, an algorithm that can 
automatically determine the number of activated experts during both 
training and testing. By modeling the gating mechanism as a multi-
label classification problem, treating each expert as a separate category, 
and independently computing the gating score for each expert, all 
experts with scores exceeding the threshold are activated. This allows 
different tokens to activate different numbers of experts. When a token 
chooses not to activate any existing experts, it adds a new expert and 
deletes any unused experts. However, without constraining the 
maximum number of activated experts, tokens may activate all experts 
or only a few specific experts. Activating all experts can lead to high 
similarity and insufficient specialization among experts, while 
activating specific experts can cause severe load imbalance. Although 
DYNMOE also adds an auxiliary loss function to alleviate these issues, 
computing losses for each token routing, adding and deleting experts, 
introduces additional computational costs and greater memory 
requirements, posing challenges for model training and testing.

3 Method design

Addressing the limitations of top-k routing, Huang et al. (2024) 
argued that traditional routing ignores the variation in difficulty 
among different inputs and activates a fixed number of experts at each 
layer of the Transformer, ignoring differences in cross-layer 
representations. Therefore, different numbers of experts are needed 
for different layers. Under these conditions, they designed a threshold-
based dynamic routing strategy. By determining whether the currently 
activated number of experts reaches the threshold, more experts are 
activated to increase the reliability of token processing. This method 
first sorts the routing probability values P  to get the sorted index I, 
finds the smallest set of experts S that cumulatively exceeds the 
threshold p, where p is a hyperparameter with a value range of [0, 1] 
and is set to 0.4 in the original experiment. A larger p-value indicates 
that more experts need to be activated. Load balancing among experts 
adopts the method proposed by Fedus et  al. (2022b), where the 
hyperparameter α requires experimental verification and cannot adapt 
to different downstream tasks.
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In this paper, we adopt the dynamic routing strategy proposed by 
Huang et al. and design an expert weight-based dynamic routing 
method, primarily optimizing load balancing. Traditional load 
balancing is achieved by adding auxiliary loss functions. Since loss 
functions introduce additional hyperparameters that need to 
be  tuned to fit the current task, and improper selection of 
hyperparameters may cause the model to pay too much attention to 
load balancing (Nguyen et  al., 2023), which will weaken the 
performance of the main task, so this paper, from the principle of 
routing algorithms in the MoE gated network, alleviates the issue of 
load imbalance through the adjustment of the expert weights. 
Specifically, after routing each batch of data, a penalty term is set 

based on the load situation of the current round of training, reducing 
the weights of highly loaded experts and increasing the weights of 
low-loaded experts. The advantage of this method is that it avoids 
introducing additional auxiliary loss functions, eliminating the 
impact of hyperparameters on the model’s handling of different 
downstream tasks. Models activate experts by routing probabilities, 
where expert weights play a key role in the routing process, and 
different weights determine the subset of experts activated during 
dynamic routing (Fedus et al., 2022a, 2022b). The routing principle 
is shown in Figure 2, which illustrates how the Mixture of Experts 
model selects experts through the generated similarity matrix for 
top-k routing.

FIGURE 2

Different routing results by adjusting expert weights.
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Threshold-based dynamic routing can be  regarded as a 
variant of top-k routing, both selecting the most suitable experts 
by computing the routing score matrix through operations 
between expert weights and tokens. The expert weight is a multi-
dimensional vector, with each dimension representing the degree 
of specialization in different fields. A higher weight represents a 
greater proportion of the expert’s processing results. The dynamic 
routing design idea is to activate a corresponding number of 
experts based on task difficulty. Dynamic expert activation 
improves model efficiency but also brings new issues: for 
example, in the bottom layer of the model and the early stage of 
training, the dynamic routing will activate more experts to ensure 
the reliability of the output, more experts means higher activation 
rate is also more prone to imbalance load (Folino et al., 2024). To 
better achieve load balancing, this paper directly adjusts expert 
weights based on the load situation. The advantage of this design 
is that expert weights play a decisive role in routing. Each token 
needs to compute with expert weights to construct the routing 
matrix. After routing each batch of data, the load situation of all 
experts is counted, and the weights are updated through an 
algorithm (Jiang et al., 2024), the reason for not needing to pay 
attention to the load of the experts frequently is that in the 
language task, the data in each batch basically come from the 
same sentence or paragraph, and there is a connection between 
the front and back, if it is too frequent, the expert load will 
be  adjusted according to the load. If expert load balancing is 
pursued too frequently, it will easily lead to the loss of contextual 
connection, violating the natural division of labor mechanism of 
expert models, and additionally consuming 
computational resources.

For the input set X, dynamic routing is performed first, and 
a larger threshold is set for dynamic routing. At the initial stage 
of model training, randomly assigned tokens are given to the 
experts, and the expert weights will gradually show specialization 
as the model is trained together, so a larger threshold is needed 
to allow more experts to participate in the training. In addition, 
this also helps the model acquire more shallow representations 
for subsequent deep expert activation. After obtaining the routing 
probability of each token, it is sorted in descending order. The 
expert subset whose cumulative probability exceeds the threshold 
is taken as the routing experts for this round. Subsequently, the 
number of tokens assigned to each expert is counted, and the 
average number is determined. The load penalty is calculated, 
and the load weight of each expert at the token level is computed. 
The expert weights are then updated using Equation 9. 
Algorithm 1 describes the flow of this method. By optimizing the 
load balancing scheme in dynamic routing, this paper achieves 
dynamic expert selection based on input while balancing the task 
load among experts, leveraging model advantages to 
improve efficiency.

Since ε  represents the amount of load loss in Equation 3, the load 
balancing scheme adopted by Fedus et al. makes ε = Balance , our 
scheme proposed in this paper does not use a loss function, so makes 
ε = 0 in Equation 3, the set of all activated experts is obtained at the 
end of the current batch of data routing, = −i i ie a a  represents the 
number of tokens processed by the i-th expert that is more (less) than 
that in the balanced state ( ia  is the number of assigned tokens for each 
expert and ia  is the ( it  is the number of assigned tokens per expert, is 
the average number of assigned tokens per expert), and represents the 

load weight deviation of the i-th expert at the token level, accordingly, 
by mapping the deviation at the token level to the expert weight level, 
and updating the existing expert weights through Equation 9 to 
achieve the load balancing for the next route.

	 =

 
 = + ×
 
 

∑
1

/
E

i i i i i
i

w w w w t
	

(9)

Our goal is to use dynamic routing to influence the expert weights 
in the next round through load weight deviations at the token level, so 
that experts can include load constraints from the previous round in 
the next round of routing calculations. In the expert activation 
probabilities of the next round ( )= softmax iwP x , after being updated 
by Equation 9, the expert weights include the load conditions from the 
previous round. The weight update directly affects the activation 

probability of the expert for the input token. Among them, 
=
∑

1
/

E

i i
i

w w

represents the proportion of the current expert weight in the total 
weight. When it  is higher than the load average, it takes a negative 
value, reducing the current expert weight and suppressing activation in 
the next round. Conversely, it promotes load balancing between experts.

In the algorithm design, expert weights are updated after each 
batch routing because, in language tasks, tokens are somewhat 
correlated. Responding to load balancing in real-time would consume 
significant computational resources and affect the task accuracy of 
language models. For example, pronouns in the sentence often require 
more experts to process them collaboratively, and at the same time, 
the participating experts should also include those who deal with the 
referenced pronouns. This load imbalance is due to the fact that 
special tasks activate more experts, thus increasing the confidence of 
the model to handle some of the difficult tasks.

4 Experimental design

Based on the aforementioned design, the Mixtral-8×7B is adopted 
as the core architecture of the model, which is a Transformer-based 
mixture of experts model consisting of 8 feed-forward networks (i.e., 
experts) per layer, with the parameter size of 7B for each expert, and 

ALGORITHM 1

Load balancing algorithm based on expert weights.
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the number of hidden layers and attention headers both being 32. 
Experiments are conducted on a natural language understanding 
dataset; the main focus is on the load balancing of the model, the 
average number of activations of the experts, and the accuracy of each 
sub-task were evaluated. In multiple benchmark tests, its performance 
reached or surpassed that of Llama 2-70B (Touvron et  al., 2023), 
especially demonstrating outstanding capabilities in mathematics and 
multilingual understanding tasks.

4.1 Dataset

Natural Language Understanding (NLU) is a subfield of Natural 
Language Processing (NLP) that focuses on making computers 
understand the meaning of human language (Clark et al., 2022). The 
validity of the model was verified on a publicly available dataset. In this 
paper, we  use the multi-tasked Natural Language Understanding 
dataset GLUE (Wang et al., 2018) (General Language Understanding 
Evaluation) created from New  York University, University of 
Washington, and other institutions. GLUE contains nine Natural 
Language Understanding tasks, all in the language of English. It is used 
to evaluate the performance of the model in various existing NLU 
tasks. The nine tasks of GLUE involve multiple tasks, such as natural 
language inference, textual entailment, sentiment analysis, semantic 
similarity, etc. GLUE has nine tasks, namely CoLA, SST-2, MRPC, 
STS-B, QQP, MNLI, QNLI, RTE, and WNLI, which can be categorized 
into three types, namely, Single-sentence classification tasks, similarity 
tasks, and inference tasks.

Single-sentence classification tasks include: sentiment 
classification (SST-2), judging whether it is grammatical or not 
(CoLA), all of which can be abstracted into a binary task to judge 
whether the sentence is (or is not) grammatical; similarity tasks 
include: judging whether two sentences express the same meaning 
(MRPC, QQP), and judging the relevance of the two sentences to each 
other (STS-B); inference tasks include: whether the sentences are 
semantics are contradictory and implicit (MNLI, RTE), whether there 
is an answer to a certain question in a sentence (QNLI), and which 
object is referred to by a pronoun (WNLI).

4.2 Model structure and parameter settings

Mixtral-8 × 7B is based on the Transformer architecture (Jiang et al., 
2024) with up to 32 k token length of processing context and feedforward 
blocks are replaced by MoE layers. The number of Transformer layers is 
set to 32, the embedding size for the feedforward network (FFN) is 4,096, 
the number of Q (query) vectors is 32, and the number of K (key) and V 
(value) vectors is 8. Each layer consists of 8 experts, with each expert 
having 7B parameters. The top two experts are activated each time, and 
the SwiGLU activation function is used in the FFN layers. The threshold 
p is a hyperparameter with an initial value of 0.4. All other learnable 
parameters are randomly initialized before pretraining with a standard 
deviation of 0.006. In the GLUE dataset, for tasks with relatively large 
amounts of training data (MNLI, SST-2, QQP, QNLI), the number of 
epochs is set to 6. For tasks with limited data (CoLA, STS-B, MRPC, RTE, 
WNLI), the number of epochs is increased to 10. The warmup steps value 
is set to 16. Additionally, due to the limited training data of only around 
six hundred samples in WNLI, the batch size for this task is set to 
16 separately.

4.3 Baseline

In the experimental design, we set up one dense model and two 
Mixture-of-Experts (MoE) models using top-1 and top-2 routing, 
respectively. The dense model follows the standard Transformer 
architecture, where each Transformer layer consists of a multi-head 
attention layer and a standard feedforward network (Vaswani et al., 
2017). The baseline MoE model achieves load balancing by 
incorporating auxiliary loss functions. Specifically, the top-1 routing 
adopts the Switch Transformer model (Fedus et al., 2022a, 2022b), 
while the top-2 routing employs the Gshard model (Chen et al., 2023). 
For a fair comparison, all three baseline methods are configured 
identically to the method proposed in this paper, and are trained with 
learning rates set to {1e-3, 2e-3, 5e-3}, although only the best 
experimental results are used for comparison. For the baseline MoE 
models, the loss function proposed by Fedus et al. is used, which 
involves the hyperparameters α = 0.001.

4.4 Evaluation indicators

For the three types of downstream tasks in the GLUE dataset, the 
accuracy rate (ACC) was used as an evaluation metric. The calculation 
method for accuracy rate is shown in Equation 10.

	
+

=
+ + +

TP TNACC
TP TN FP FN 	

(10)

Where: TP (True Positives) refers to true cases, FP (False Positives) 
refers to false positive cases, FN (False Negatives) refers to false 
negative cases, and TN (True Negatives) refers to true negative cases. 
Load balancing is evaluated using the standard deviation σ  of the 
proportion of tokens iP  received by each expert iE  as an evaluation 
index of load balancing, with the smaller standard deviation 
representing the more balanced load. Evaluation metrics for load 
balancing are shown in Equation 11.
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5 Results

The experiment evaluates the effectiveness of the models based on 
the training and test data provided by the GLUE dataset, using the test 
accuracy of each task as the metric. Table 1 presents the test accuracies 
of four models, each with 8 experts, on three different types of 
downstream tasks in the GLUE dataset, employing various routing 
strategies and auxiliary functions.

The experimental results show that the MoE model outperforms 
traditional dense models in the vast majority of tasks. This is 
because the MoE model can increase model capacity under the 
same parameter settings, and the number of parameters activated 
at each step is significantly smaller than that of dense models, 
thereby reducing inference costs. Compared with other models, the 
method proposed in this paper achieves an average accuracy rate 
6.1% higher than that of dense models and 0.7% higher than the 
currently widely used top-2 routing, indicating that the proposed 
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model is applicable to general natural language understanding tasks 
and can achieve good performance. However, on the RTE and 
MRPC datasets, the accuracy is slightly lower than that of top-2 
routing, indicating that the proposed model cannot fully leverage 
the advantages of dynamic routing in scenarios with limited data. 
For datasets with sufficient data (such as QQP and MNLI), the 
model can improve accuracy by over 1%. Both MRPC and QQP 
suffer from imbalanced positive and negative sample distributions. 
In QQP, negative samples account for 63% and positive samples 
account for 37%. By using the load balancing method proposed in 
this paper, the model can avoid token loss caused by selecting only 
a portion of experts in scenarios with imbalanced positive and 
negative sample distributions. Therefore, it can achieve better 
results than top-2  in classification tasks, demonstrating the 
robustness of this method to imbalanced sample distributions in 
large datasets.

The model performs poorly on small datasets, primarily because 
the training datasets for RTE and MRPC contain only 2,500 and 3,700 
examples, respectively, with negative examples accounting for as much 
as 65% of the total. To further investigate the impact of small datasets 
on model performance, we  conducted the following comparative 
experiments. First, we gradually reduced the size of the training set, 
using 100, 75, and 50% of the training set data to train the model. 
Under the setting of batch_size = 16, we  calculated the average 
variance of the expert load for the first layer, the eighth layer, and the 
sixteenth layer, with ACC as the evaluation metric. The experimental 
results are shown in Table 2.

As the training data decreased, the model accuracy also 
deteriorated gradually, with the highest decrease of 3.27%. From a 
routing perspective, a core feature of MoE is that different experts 
focus on different input subspaces. However, in small-sample datasets, 
the router randomly distributes the limited samples to multiple 
experts in the early stages, resulting in smaller effective sample sizes 
for each expert. Due to insufficient sample size, the experts cannot 
train stable patterns, leading to inaccurate routing of tokens to relevant 
experts in subsequent stages. We then adjusted the batch size during 
training, setting it to 8, 16, and 32, and included a large dataset with 
sufficient data as a comparison (QNLI). The experimental results are 
shown in Table 3. Under the condition of a constant epoch, the small 
dataset performs best when batch_size = 16. This is because a smaller 
batch size increases the probability of all samples within a batch 
belonging to the same category, leading to an increase in the activation 
frequency of certain experts. Dynamic routing then reduces the 
weight of these experts, affecting the results of subsequent routing 
rounds. A larger batch_size setting reduces the number of model 
iterations, resulting in poor generalization performance. Through the 
above comparative experiments, it was verified that the primary 
reason for the poor performance of the model on small datasets is the 
limited data volume and uneven data distribution. However, by 
adjusting the batch size, the issue of poor model accuracy can 
be  mitigated, thereby enhancing the model’s adaptability to 
limited data.

Jiang et al. found that for higher levels in the MoE model, the 
continuous allocation phenomenon is significantly higher than the 

TABLE 1  Accuracy of the four models on the GULE dataset.

Models Single-sentence 
classification tasks

Similarity tasks Inference tasks Average 
precision

COLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI

dense 57.1 92.3 87.5 89.1 90 80.7 88.9 75.6 65.6 80.75

top-1 64.2 93.3 86.3 88.2 91.3 81.1 92.3 73.9 65.4 81.77

top-2 64.4 94 87.7 88.2 92.1 83.8 92.9 75.1 65.7 82.65

Ours 65.1 94.7 86.7 89.3 93.2 86.5 93.2 74.4 66.9 83.33

Bold indicates the best result.

TABLE 2  Load variance and accuracy of the expert layer under different dataset sizes

1st-layer 8th-layer 16th-layer ACC

RET (100%) 1.66 1.51 1.74 74.47

MRPC (100%) 1.17 1.28 1.20 86.71

RET (75%) 1.71 1.98 2.33 72.92

MRPC (75%) 1.65 2.02 2.46 85.34

RET (50%) 1.90 3.19 3.67 69.86

MRPC (50%) 1.93 2.79 4.17 82.07

TABLE 3  The impact of different batch sizes on model accuracy.

Dataset ACC

Batch_size = 8 Batch_size = 16 Batch_size = 32

RET (100%) 74.13 74.91 74.44

MRPC (100%) 86.76 87.11 86.73

QNLI (100%) 92.50 93.04 93.21
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random allocation (Jiang et al., 2024). This implies that without load 
balancing control, the model will be more likely to activate only a few 
experts, which seriously affects the training and reasoning of the 
model, and results in a waste of resources of free experts. The expert 
allocation of the first MoE layer and the last MoE layer in the Mixtral-
8×7B model for the same sentence is verified by visualizing the expert 
allocation of the first MoE layer and the last MoE layer in the 
Mixtral-8 × 7B model as shown in Figure 3, which verifies that the 
method proposed in this paper is effective in balancing the load of 
high-level expert effectiveness.

Figures 3a,b shows the allocation of eight experts to the same 
sentence in the first and last layers of MoE, respectively, from which it 
is found that the last layer is more prone to successive assignment of 
experts in token assignment, and the activation frequency of each 
expert is counted, and there is a serious load imbalance compared to 
the first layer, in which the activation rate of the expert 4 grows from 
1.45 to 34.78%, and that of the experts 2 and expert 4 is only 5.8%. 
Figure 3c represents the load of the last layer of experts after adopting 
the load-balancing scheme of this paper. The standard deviation value 
of the expert load is 1.76, compared to 9.33 in Figure 3b. Furthermore, 
the variance of expert load was analyzed for other layers (from Layer 
1 to Layer 7), and it was found that the proposed method outperformed 
the loss function method proposed by Fedus et al. for all layers except 
the first two. This is because both methods use random allocation in 
the first layer, leading to similar performance and achieving uniform 
allocation. Therefore, the method designed in this paper has little 
impact on adjusting expert weights in the first layer. However, as the 
number of MoE layers increases, the loss function fails to effectively 

handle the consecutive allocation phenomenon, resulting in worsened 
load imbalance with increasing layers.

To verify the impact of thresholds on the model in dynamic 
routing, we selected the QQP, SST-2, and RTE datasets from GLUE 
based on their data volume sizes. RTE based on the size of the data. 
The sizes of their training sets are approximately 360 k, 67 k, and 
3 k, respectively, and the threshold sizes are set to 0.2, 0.4, and 0.6, 
respectively. By statistically analyzing the number of expert 
activations and experimental results under different thresholds, 
we verify the reasonableness of the thresholds. Figure 4 shows the 
number of expert activations in the MoE layer using dynamic 
routing across the three datasets at different thresholds, with 
dashed lines indicating the number of top-2 routed activations. As 
the dataset size decreases, the number of expert activations at 
different thresholds within the same dataset also decreases, and the 
rate of decrease becomes smaller. This is because, as the dataset size 
decreases, it becomes increasingly difficult to quickly form highly 
specialized experts. The dynamic routing strategy must balance 
load balancing while meeting activation threshold requirements. 
Therefore, in larger datasets, the proposed dynamic routing 
strategy is highly effective in reducing the number of expert 
activations. During the early stages of model training or in shallow 
layers, experts have not yet reached a specialized level, and the 
distribution of routing probabilities is often relatively uniform. 
When the threshold is set to p = 0.2, the threshold is easily met, 
and even if all experts have the same activation probability, only 
two experts are needed to reach the threshold. Therefore, as 
training progresses or in deeper layers of the model, a low 

FIGURE 3

Routing visualization results for different layers of MoE for the same sentence. (a) and (b) show the routing results in the first and last MoE layers 
respectively, while (c) shows the routing result in the last layer with dynamic routing.
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threshold causes routing to degrade into traditional top-1 routing, 
and this phenomenon becomes more pronounced as the dataset 
size decreases. As the threshold increases, dynamic routing 
activates the corresponding number of experts based on routing 
probabilities to promote specialization. In the three datasets 
mentioned above, the number of activated experts in deeper layers 
is significantly lower than in shallower layers. This is because, after 
training, experts with higher specialization levels can meet the 
threshold constraint without activating additional experts for 
computation. Table 4 shows the experimental results of dynamic 
routing on datasets of different sizes at different thresholds. In all 
three datasets, the setting of p = 0.4 yields the best results. Thus, in 
this task also validates the effectiveness of the p-value set to 0.4 by 
Huang et al.

In general, the performance of a model for downstream tasks 
usually depends on the number of parameters (Gao et al., 2024). 
For example, top-2 routing showed significantly better performance 
than top-1 routing in experiments. Zhou et al. (2020) demonstrated 
that deeper representations of the model are prone to overfitting 
phenomena, and therefore, good shallow representations are more 
valuable than complex deep representations (Sajjad et al., 2023). 
These two phenomena indicate that both the number of parameters 
and shallow representations can effectively improve model 
performance. The scheme proposed in this paper achieves 
comprehensive feature extraction in the shallow layers through 
multiple experts, and by influencing expert weights and dynamic 
routing, activates fewer experts in the deep layers, thus achieving 
a balanced load among experts while reducing the number of 
model parameters.

WNLI is a dataset for a binary classification task, which includes 634 
training samples and 146 test samples. The training set has a balanced 
distribution of positive and negative samples, while 65% of the test 
samples are negative. The main reason for the consistent number of 
dynamically activated experts is that for more challenging reasoning 
tasks, the model will activate more experts to participate. Limited 

training data, uneven distribution of positive and negative samples, and 
task difficulty all contribute to the model not having an advantage in the 
average number of experts activated for this task. In the top layers of the 
model, around two experts are also activated, and due to insufficient data 
distribution and quantity, the scheme degenerates into top-2 routing in 
terms of average activation number. Through experiments on nine 
datasets, the proposed scheme in this paper not only activates fewer 
experts (i.e., fewer parameters) while achieving load balancing, but also 
obtains better shallow representations by activating more experts in the 
lower layers of the model. As the number of layers increases, the number 
of experts activated per token gradually decreases, effectively preventing 
the model from becoming overly complex and reducing unnecessary 
computations. Except for a few datasets, the proposed scheme achieves 
better results than top-2 routing.

6 Ablation experiment

The ablation experiment selects five datasets from GLUE 
according to the size of the data volume to verify the effect of the 
method proposed in this paper on the load balancing of experts. The 
load conditions of eight experts during the training process were 
recorded, demonstrating that the proposed load balancing scheme 
outperforms the method using a loss function on the same datasets. 
The experimental results are shown in Figure 5. Figure 5a shows the 
activation rates of the eight experts on different datasets when the loss 
function is used to achieve load balancing, and it can be seen that 
more serious load balancing occurs in each dataset. The gray dashed 
line represents the ideal expert activation rate. Load imbalance is 
more severe in some datasets with larger data volumes (e.g., QQP and 
MNLI). This is because load balancing loss is achieved by regularizing 
the selection probability distribution of the gating network, typically 
using softmax or other normalization functions, whose gradients can 
become very small or very large near extreme values (Wang et al., 
2024). This gradient issue may cause the selection probability of 

FIGURE 4

Average number of activated experts per MoE layer at different thresholds.

TABLE 4  The impact of different threshold settings on experimental results.

Dataset ACC

p = 0.2 p = 0.4 p = 0.6

QQP 91.7 93.2 92.9

SST-2 89.2 94.7 93.5

RET 73.0 74.4 74.3

Bold indicates the best result.
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FIGURE 5

Expert activation rate for two load losses under dynamic routing. (a) shows the results of using a loss function, (b) shows the results of using dynamic 
routing.
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certain experts to increase rapidly, exacerbating the imbalance. 
Secondly, after adopting dynamic routing, the number of experts 
activated each time is not fixed. At the beginning of training, the 
model activates more experts to obtain shallow representations, as 
shown in Figure  4. This reduces the weight of the penalty term 
intended to improve load imbalance among experts. Therefore, the 
loss function cannot effectively improve expert load balancing, 
resulting in the activation rate of some experts being much higher 
than the ideal value throughout the training process. Figure 5b shows 
the dynamic routing strategy using the proposed expert weight-based 
dynamic routing scheme, which achieves good load-balancing effects 
on different datasets. By directly modifying expert weights, it avoids 
the gradient influence brought by the loss function and does not 
increase the load loss as the number of training batches increases. It 
also performs well on larger datasets, verifying that the proposed 
method can effectively alleviate load imbalance among experts.

For the above five datasets, the standard deviation of expert 
activation under two kinds of load loss is calculated as a criterion to 
verify the effectiveness of the model, as shown in Table 5. The standard 
deviation is reduced on all five datasets, with the most significant 
improvement in load imbalance observed on the MNLI dataset. 
Accordingly, in Table 1, it can be seen, the experimental accuracy of the 
load balancing algorithm proposed in this paper on the MNLI dataset 
has been improved by 2.7%, which is the largest accuracy improvement 
in all the tasks. This also confirms that the load imbalance affects the 
accuracy of the model and the training effect. In addition, our method 
employs dynamic routing; the experimental results demonstrate that 
this approach enables the model to activate fewer experts (parameters), 
reducing the computational requirements of the model while 
maintaining load balancing among experts. This further optimizes the 
Mixture of Experts (MoE) model.

In MoE models, sparsity is achieved through the gating network 
( )G x  without significantly increasing computational costs. Although 

load imbalance directly affects the optimal performance of the model 
when dealing with large datasets and complex tasks, in some cases, load 
imbalance may be meaningful. For example, if a certain batch of input 
data is mostly of one type, the hybrid expert model was originally 
designed with the intention that different experts would process 
different kinds of inputs Instead of evenly distributing the same kind 
of data to different experts (Xie et al., 2024), the forced equalization 
may violate the natural division of labor mechanism of the model. The 
current load balancing mechanism does not take into account the 
imbalance of the training data itself, and only achieves the average load 
balancing state through the expert weights setting, and requires the 
uniform distribution of all kinds of training data in the model training 
to avoid the load brought by the distribution of the data itself. In the 

model training, all types of training data are required to be evenly 
distributed to avoid the load imbalance caused by the distribution of 
the data itself. If the data are naturally imbalanced distributed, the 
pursuit of absolute equalization may affect the model effect (Yan et al., 
2024). Future work will focus on more realistic scenarios, addressing 
how to avoid the aforementioned issues when data itself is imbalanced. 
Additionally, experiments have shown that the model’s performance is 
not ideal when testing on datasets with uneven label distributions (Hao 
et al., 2025). Further research is needed to address load balancing issues 
arising from small sample sizes, uneven sample distributions, and other 
related challenges.

7 Summarize

This paper proposes a dynamic routing algorithm based on 
expert weights for load balancing, which adjusts expert weights 
based on the load situation among experts during the previous 
routing to influence the next routing allocation. The advantage of 
this method lies in avoiding the training settings of 
hyperparameters in the loss function and the impact of gradient 
changes on expert loads. Experimental validation demonstrates 
that the dynamic routing algorithm based on expert weights not 
only improves task accuracy but also reduces the model’s parameter 
count compared to top-k routing, while achieving good load-
balancing effects. Especially in datasets with sufficient data, this 
routing algorithm can better leverage its advantages.
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