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Pre-training, personalization, and
self-calibration: all a neural
network-based myoelectric
decoder needs

Chenfei Ma, Xinyu Jiang and Kianoush Nazarpour*

School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom

Myoelectric control systems translate electromyographic signals (EMG) from

muscles intomovement intentions, allowing control over various interfaces, such

as prosthetics, wearable devices, and robotics. However, a major challenge lies

in enhancing the system’s ability to generalize, personalize, and adapt to the

high variability of EMG signals. Artificial intelligence, particularly neural networks,

has shown promising decoding performance when applied to large datasets.

However, highly parameterized deep neural networks usually require extensive

user-specific data with ground truth labels to learn individual unique EMG

patterns. However, the characteristics of the EMG signal can change significantly

over time, even for the same user, leading to performance degradation during

extended use. In this work, we propose an innovative three-stage neural network

training scheme designed to progressively develop an adaptive workflow,

improving andmaintaining the network performance on 28 subjects over 2 days.

Experiments demonstrate the importance and necessity of each stage in the

proposed framework.
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1 Introduction

Interaction with smart platforms, including wearable devices, is increasingly mediated

by non-contact input. The AI Pin exemplifies a technology that has moved beyond

traditional hardware and touch-screen interaction. Low-cost biomedical sensing, such as

electromyography (EMG) has shown great promise in enhancing these non-contact input

methods. Generation of EMG signals involves complex processes in which brain signals

trigger electrical impulses in muscles, leading to muscle contraction, and generating an

electrical field detected by EMG electrodes from the surface of the skin. Coupled with

inertial sensing, EMG has been shown to be capable of reliably detecting motion intentions

(labs at Reality Labs et al., 2024).

Modern myoelectric control has traditionally relied on pattern recognition techniques

to interpret muscle signals (Asghar et al., 2022) for prosthetic and wearable device

operations. These methods involve extracting features from EMG signals and classifying

them using linear or non-linear models (Asghar et al., 2022). Although exciting, traditional

pattern recognition approaches often struggle with the variability of the EMG signals and

therefore fall short of recognizing complex hand gestures reliably.
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1.1 Neural network for myoelectric
control—a précis

Recently, there has been a significant shift toward the use of

modernmachine learning techniques, particularly neural networks,

for myoelectric control (Fleming et al., 2021; Khushaba and

Nazarpour, 2021; Hu et al., 2023). Neural networks, with their

ability to model non-linear input-output relationships and learn

from large datasets, offer a more personalized and adaptable

solution. This transition has the potential to enhance the

performance and reliability of myoelectric control, paving the

way for more intuitive human-machine interactions and better

user experiences.

These neural network-based innovations build upon decades of

research in the myoelectric control of bionic limbs. For example,

Kelly et al. (1990) used multilayer perceptron neural networks

in myoelectric control. They laid the foundation for research

on machine learning and deep learning-driven techniques in

myoelectric control. Au and Kirsch (2000) applied a time-delayed

artificial neural network to an EMG-based shoulder movement

estimation task, which showed the importance of including

information from previous time steps. Bu et al. (2003) and Song

and Tong (2005) embedded recurrent structures in the neural

network for the estimation of movement and the estimation

of elbow torque, respectively. Modern 2D convolutional neural

networks (CNN) (Park and Lee, 2016; Atzori et al., 2016), temporal

convolutional networks (TCNs) (Betthauser et al., 2019), long-

short-term memory (LSTM) neural networks (Teban et al., 2018),

together with their variants (Rahimian et al., 2021; Godoy et al.,

2022; Liu et al., 2023; Ma et al., 2020, 2021) and combinations

(Xia et al., 2018; Jabbari et al., 2021, 2020), have shown promising

performance in EMG decoding. In addition, transfer learning

protocols and adversarial neural networks in the adaptive domain,

for example, were utilized to build generalizable and cross-user

models (Campbell et al., 2021), as well as user-independent models

(Côté-Allard et al., 2020). General domain adaptation algorithms

have also been well examined in previous studies to adapt EMG

variabilities caused by various factors (Lin et al., 2023; Zhang et al.,

2023, 2022; Shi et al., 2022; Tam et al., 2021; Ameri et al., 2019).

Despite their success, most of the previous methods have

remained academic curiosities and are yet to be translated into

extended-reality or myoelectric control applications. For instance,

most of the above models were trained with data from the same

user, increasing the risks of overfitting (Wang and Buchanan, 2002),

limiting the generalizability across new users, and showing less

robustness to non-stationarities. Such a user-specific model also

requires a large amount of training data from the target user,

increasing the data collection burden on each user. Furthermore,

simply combining personalized data from the target user and

generalized data from others to train a large model also raises

privacy concerns about data sharing (Zhang et al., 2017). In

addition to variability between users, the characteristics of the EMG

of the same user can change substantially over time due to factors

such as behavior change (Ludwig, 1982) or fatigue (Dimitrova and

Dimitrov, 2003). Consequently, an ideal myoelectric model should

be generalizable, adaptive, privacy safe, and self-improving.

In this paper, we introduce a paradigm for neural network-

based myoelectric control which

1. is pre-trained by data from many participants, taking a step

toward future between-user model generalization.

2. enables the personalization of the pre-trained model to a new

user with a small amount of data that only includes one trial

per movement.

3. self-calibrates autonomously to adapt to changing myoelectric

behavior of the user.

We demonstrated progressive performance improvements

by including each of the key modules above. We hope

that our work can provide a useful framework for neural

network training in future practical real-time myoelectric

control applications.

2 Methods

Figure 1 shows the block framework of the proposed method.

Eight hand-crafted features, namely waveform length (WL), log

variance (LV), zero crossing (ZC), slope sign changes (SSC),

skewness (SKW), mean frequency (MNF), peak frequency (PKF),

and variance of central frequency (VCF), a similar choice to our

previous work (Jiang et al., 2024a, 2025), were extracted from

training EMG data with a window size of 150 ms and a stride of

5 ms. The features were segmented by another sliding window with

a window size of 250 ms and stride of 50 ms for use in pre-training,

personalization, and self-calibration steps. In the following, we

detail each compartment.

2.1 Pre-training

Pre-training refers to the process of initializing a model

on a large dataset to learn general features before fine-tuning

it on a more specific task or a smaller dataset (Hendrycks

et al., 2019). Using pre-trained networks addresses a key

challenge in myoelectric control, which is minimizing the risk

that a small sample size biases the training of a network.

Furthermore, pre-training enhances the possibility of enhancing

the generalization ability.

The structure of the temporal convolutional neural network

(TCN) was designed to analyze temporal information, for example,

for video processing (Lea et al., 2017). The key advantage of

TCNs over conventional CNNs is the combination of dilated and

causal convolutions, which expands the neural network’s receptive

field and focuses on relevant data for the current time step. This

feature makes TCNs particularly useful for myoelectric signal

processing and movement classification, as shown in our previous

work (Ma and Nazarpour, 2024). We therefore chose TCN as the

backbone of our approach. In particular, we adopted a 4-block

TCN, as illustrated in Figure 1b, to improve model portability

and transparency. The network has two high-level blocks, namely

feature learning and the classifier. We have separated these two

in Figure 1a as we deal with them separately at a later stage in

the framework.

The classification accuracy of this pre-trained model serves as a

benchmark in this study. We build upon it with additional neural

network blocks, namely, personalization and self-calibration.
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FIGURE 1

A block diagram for (a) the data pipeline, “one shot” stands for only one trial of movement being included (b) the architecture of a temporal

convolutional network; (c) self-calibration via pseudo-labeling; and (d) self-calibration via a modified deep CORAL to further align data distribution in

the latent space projected by the feature learning module.

2.2 Personalization

After pre-training the model with the collected base dataset,

the model could learn general knowledge. However, individual

differences in EMG data distribution usually lead to the

degradation of model performance when applying a pre-trained

model to new users. The personalization stage in the framework

could adjust the weights of the neural networks without disrupting

the pre-built structure. This stage aligns the model with the shifted

data distribution of the new user. Diverse methods could be

utilized to align the model, e.g., fine-tuning (Bengio, 2012), data

selection (Afridi et al., 2018; Ruder and Plank, 2017), domain

adaptation (Kouw and Loog, 2018), and miscellaneous transfer

learning methods (Tan et al., 2018).

In our work, we chose the fine-tuning method (Bengio,

2012), as a proof of principle, which took the parameters from

the pre-trained model as a starting point and then further

updated these parameters by backpropagation (Hecht-Nielsen,

1992). Importantly, we employed labeled data from only one

trial (1 s duration) per class to fine-tune the pre-trained model,

demonstrating that the personalization process can be achieved

in a highly data-efficient way. Specifically, the weights for each

TCN layer were unfrozen and fine-tuned using the Adam optimizer

(Kingma and Ba, 2014) with a gradient descent on the cross-

entropy loss (Shannon, 1948).

2.3 Self-calibration

Personalization partially adapts the model to the new user.

However, the user’s evolving myoelectric behavior over time causes

performance variability because the model remains static while

the behavior changes. In addition, the skin condition, electrode

repositioning, etc. also extend the challenge. This highlights the

need for a system that continuously updates, keeping the model

adaptive. Figures 1c, d illustrate the two methods that we adopted

for self-calibration.

2.3.1 Self-calibration via pseudo-labeling
We first adopted a naive approach (Jiang et al., 2024b),

assuming that the characteristics of the EMG signal distribution
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change slowly. Therefore, we can retrain the neural network

by assigning pseudo-labels to the incoming testing EMG data.

Specifically, we utilized (1) t-distributed Stochastic Neighbor

Embedding (t-SNE) (Hinton and Roweis, 2002), a dimensionality

reduction method enabling manifold learning, and (2) K-means

(Hartigan andWong, 1979), a clustering algorithm, to jointly create

pseudo-labels. The pseudo-labels were then used to update and

retrain the neural network in the background. The block diagram

illustrating this process is shown in Figure 1c.

Note that during pseudo-labeling, we first froze the feature

learning module of the neural network and then input the EMG

features of the unlabeled data into the feature learning module. The

output variables (features in the latent space) were then fed into t-

SNE and then K-means algorithms to get the pseudo-labels. The

K-means algorithm was initialized as the prediction outcomes of

the personalized model. Following clustering, one trial labeled data

was used to align the pseudo-labels with the correct labels. Then the

pseudo-labeled data was used to retrain the classifier. This process

occurs periodically when a certain number of samples per label is

collected during the operation, thus maintaining the adaptability of

the model.

2.3.2 Domain adaptation via deep CORAL
Another approach to enable self-calibration is to match the

distribution of new unlabeled sEMG data (target domain) with the

previously collected labeled data (source domain). We therefore

used deep correlation alignment (CORAL), an unsupervised

domain adaptation method (Sun and Saenko, 2016). This method

perfectly suits cases where the target domain and source domain

share similar features and label space, but the distributions are

different. CORAL (Sun et al., 2016), similar to maximum mean

discrepancy (MMD) (Gretton et al., 2012), is a measure of

distribution divergence between observed samples.

Suppose that the training samples in the source domain (one

trial labeled data) are denoted as Ds = {xi}, x ∈ R
d, i ∈ {1, 2, ..., nS},

corresponding to labels Ls = {yi}, i ∈ {1, 2, ..., nS}, with the sample

number of nS, and the unlabeled data samples (from the self-

calibration stage) in the target domain are Dt = {zi}, z ∈ R
d, i ∈

{1, 2, ..., nT}, with the sample number of nT . The feature covariance

matrices of the source domain CS and the target domain CT could

be calculated as:

CS =
1

nS − 1
(D⊤

S DS −
1

nS
(1⊤DS)

⊤(1⊤DS)) (1)

CT =
1

nT − 1
(D⊤

TDT −
1

nT
(1⊤DT)

⊤(1⊤DT)) (2)

where 1 is a column vector filled with elements of 1. After the

covariance computation in both the source and target domains, the

CORAL loss, based on the distance between the covariances of both

domains, could be presented as follows:

ℓCORAL =
1

4d2
‖CS − CT‖

2
F (3)

where ‖ · ‖2F stands for the Frobenius norm. In the context of self-

calibration, the source domain data and target domain data are

from the same (new) user.

Conventional deep CORAL minimizing the CORAL loss

alone is very likely to degenerate the feature learning outcome

because simple features from different classes are very likely to

overlap together to reduce the total CORAL loss. Meanwhile, only

minimizing the classification loss in the source domain can lead

to overfitting, increasing the domain shift between the source and

target domains. Since the variables in the latent space given by the

feature learning module should be discriminative enough in both

the source and target domains, minimizing the CORAL loss on the

output of the feature learning module is a promising solution. We

therefore minimized a hybrid training loss as follows:

ℓ = ℓclassification + λℓCORAL (4)

where λ is a parameter that trades off different loss functions.

2.4 Ethics

All experimental procedures were conducted in accordance

with the Declaration of Helsinki and were approved by the local

Ethics Committee of the School of Informatics at the University

of Edinburgh (2019/89177). All participants read an information

sheet and gave their consent prior to the experiments. A total of 28

participants, aged between 21 and 43 years, including 13 males and

15 females, were recruited for this study.

2.5 Data collection experiment

Fifteen EMG sensors (Delsys Trigno, USA) were placed around

the forearm of the dominant arm, 2 cm below the elbow, starting

from the extensor carpi ulnaris muscle on each participant for

data collection (Figure 2). After preparation, each participant was

instructed to perform one trial per gesture, following the on-screen

instructions during the data collection phase. These data (one

trial per hand gesture) were used for model personalization. The

gestures included power, lateral, tripod, pointer, open, and rest

(Figure 2).

For each of the 28 participants, data from 2 days was collected.

On the first day, a calibration session was first conducted, with one

trial per hand gesture. Each trial is of 2 s duration, and participants

shape their hand in the first second and holding the same hand

gesture in the last second. A 2-s inter-trial interval was provided. In

all data collection of the 28 participants, we followed the same trial

duration and inter-trial interval. Data collected in the calibration

session was used to personalize the model in one shot. After the

calibration session on the first day, five test blocks were performed,

with 30 trials per block. Therefore, we collected 150 trials for all 6

hand gestures, that is, 25 trials per gesture. Participants could take

flexible self-paced breaks between test blocks, typically 5 min. On

the second day, participants directly started fivemore testing blocks

without any calibration session. Each test block lasted about 2 min

and the total duration of the experiment on each day was 40 min,

including intervals labels are balanced in each day. By exploring the

performance variation along all test blocks on the same day and on

2 days, we could compare the robustness of different models during

long-term use.
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FIGURE 2

The electrode placement and all the movements comprised in the research.

Data were sampled at 2,000 Hz and filtered using a 4th-order

bandpass Butterworth filter with a frequency range of 10 to 500 Hz.

After collecting data for personalization, participants were guided

through 10 blocks of tests without feedback. In order to verify its

robustness on temporal variance, trials were reordered into five

randomly ordered trials for each gesture, totaling 30 trials per block.

During each trial, all participants were instructed to perform one

hand gesture as displayed on the screen for 2 s while the data

and labels were recorded. To account for individual differences in

reaction times, only the data from the latter 1-s interval were used

for analysis. The decision to withhold feedback from participants

was made to prevent bias in their behavior.

2.6 Validation methods

We tested four different models: the pre-trained model, the

personalized model, the self-calibrated model via pseudo-labeling,

and the self-calibrated model via deep CORAL. It is important to

note that each of the latter models includes all the keymodules from

the previous ones. For example, the personalized model indicates

that the model has been pre-trained prior to personalization. Since

self-calibration involves block-wise training (the model would

be trained/calibrated over each block), for a fair comparison,

performance testing was conducted only on the last two trials of

each class in each block; the first three trials of each class were used

for self-calibration, which requires block-wise training.

In the pre-training step, leave-one-person-out cross-validation

was applied. This meant that we repeated the analysis 28 times,

using data from 27 participants to pre-train the model, while the

data from the held-out participant was used for personalization and

subsequent testing of the model. The accuracy of the prediction for

the movement labels, compared to the recorded ground truth in

each sliding window, was used to evaluate model performance.

Training and testing on a workstation with an AMD

Ryzen Threadripper PRO 3975WX 32-Cores CPU and two

NVIDIA GeForce RTX 3090 GPUs in parallel, in a Python

3.8.10 environment.

2.7 Data augmentation

Data augmentation is one of the most commonly adopted

data preprocessing techniques in deep learning (Mumuni and

Mumuni, 2022). However, unlike images, myoelectric signals do

not have explicit or structured patterns, which means that they

cannot be scaled or rotated. Therefore, we created a virtual channel

between each pair of adjacent physical channels by averaging the

signal values. This step increased the number of channels from

15 to 30.

3 Results

As illustrated in Figure 3a, the personalized model outperforms

the pre-trained model across all 10 blocks. Additionally, the

self-calibrated models—achieved through both the pseudo-

labeling method and the deep CORAL method—outperform

the personalized model. Specifically, the deep CORAL method

contributes to superior performance in most test blocks compared

to the pseudo-labeling method.

In terms of performance, the pre-trained model stays in

a relatively low standard range, personalized models, which

performed better, experienced a decrease at the beginning of

the testing process, while the self-calibration models showed

better results and kept an increasing trend. Furthermore,

users naturally varied their behavior when performing hand

gestures as the experiment progressed, leading to fluctuations in

model performance. Notably, after block 7, the pre-trained and

personalized model exhibited significantly more unstable accuracy

than other models, as shown in Figure 3a.

To validate the hypothesis that the module at each stage

of our training process is necessary, first we carried out the

Friedman test, which proved there was an overall effect of

decoder choice (χ2 = 75.4, p < 10−16). We then performed

statistical analyzes (Wilcoxon Signed Rank test) between each

pair of models. Because three comparisons were made, the
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z

(a) (b)

FIGURE 3

The comparison figure on (a) The test accuracy (average across subjects) results on each block (b) The statistical results of each method (average

across subjects) on stages and the stars with the same color represent the corresponding stage results for random forest (RF) method which are

calculated using the method presented by Jiang et al. (2024a,b, 2025) (the two sub-figures share the same legend).

Bonferroni correction was performed. The results after correction

are presented in Figure 3b. The personalized model (accuracy:

0.767 ± 0.016) significantly (p = 0.006) outperforms the pre-

trained model (accuracy: 0.693 ± 0.021). The pseudo-labeling-

based self-calibration model (accuracy: 0.854± 0.012) significantly

(p = 0.006) outperforms the personalized model. Similarly, the

deep CORAL-based self-calibrationmodel (accuracy: 0.870±0.022)

significantly (p = 0.018) outperforms the pseudo-labeling-based

self-calibration model. We also included the random forest method

in all 3 stages, the results for the pre-training, personalization,

and self-calibration stages are 0.763, 0.844, and 0.884, respectively

(Jiang et al., 2024a,b, 2025). The progressively improved accuracy

demonstrates the necessity of each module in the proposed neural

network training protocol.

To examine the performance of the model in recognizing each

hand gesture, the confusion matrices for one subject in the last test

block are presented in Figure 4. The number 40 is the number of

classifications during the final two trials in the last test block. As

shown in Figure 4a, the pre-trained model struggles to distinguish

the lateral gesture. In Figure 4b, the personalizedmodel has adapted

to the user’s pattern and can generally predict the movements.

However, it still exhibits a low recall rate for power and lateral hand

gestures. Figures 4c, d indicate that the self-calibration methods

further enhance the model’s performance across most classes.

The distributions of the outputs from each convolutional

layer for one subject in the final experiment test block are

shown in Figure 5. Since the model has learned general feature

representations during the pre-training stage, the behavior of the

first layer’s feature representation did not change significantly when

the personalization and self-calibration modules were introduced.

From the second to the middle layers of the model, noticeable

differences in output distribution can be observed across different

models, with these differences being especially pronounced in

the middle layers, such as layers 4 and 5. However, from the

middle to the deepest layers, the output distributions of different

models begin to overlap again. This suggests that the variation

in performance between models is primarily due to differences in

behavior in the middle layers.

4 Discussion

In this study, we proposed a three-stage neural network

training protocol for myoelectric control models, consisting of pre-

training, personalization, and self-calibration. Neural networks are

increasingly applied in myoelectric control applications, but the

standard one-stage training approach has significant limitations,

particularly in terms of extensive data collection requirements and

the inability to adapt during long-term use. Furthermore, privacy

concerns surrounding personal biomedical data, coupled with the

complexity of EMG signals and individual variability, make it

challenging to directly leverage data from other users or even

historical data from the same user. To address these issues, we

introduce a multistage training scheme designed to mitigate these

challenges and enhance model robustness.

4.1 Pre-training: reducing data collection
burden

The pre-training stage serves as the foundation by leveraging

previously collected datasets from a large number of users. This

allows the model to learn general patterns in the EMG data,

significantly reducing the burden of data collection for each new

target user. In this stage, a common model is trained to extract

generalizable features across users, encoding this knowledge into

the network weights. However, despite these benefits, pre-training

alone is insufficient for achieving robust performance in new users.

As shown in Figure 3a, the pre-trained model, without any further
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FIGURE 4

(a) Confusion matrix of the pre-trained model (b) Confusion Matrix of the personalized model (c) Confusion matrix of the self-calibrated model

(pseudo-labeling) (d) Confusion matrix self-calibrated Model (deep CORAL).

calibration, performed the worst from the beginning of the testing

phase and showed increasingly unstable performance from block

7. This is due to inherent factors such as variations in muscle

conditions, electrode placement, and behavioral differences for

the same movement, all of which degrade model performance

over time.

4.2 Personalization: learning user-specific
characteristics

To address this, we introduced the personalization stage,

allowing the pre-trained model to adapt to the specific

characteristics of a new user. In this stage, data from just one

trial (1-s signal duration) per hand gesture are collected to

fine-tune the model. This approach differs from traditional

methods, where models are trained from scratch either with

large datasets from other users or solely with data from the new

user. By separating pre-training and personalization, our method

establishes a foundational understanding of general EMG signals,

which is then personalized using a minimal amount of new user

data. Importantly, the pre-trained model’s knowledge (on feature

extraction, superficial layers of the network) is retained in its

weights and parameters, allowing the personalization stage to

adjust the model without needing access to the original pre-

training data. This is crucial to address privacy concerns related to

biomedical data. As demonstrated in our results, the personalized

model significantly outperformed the non-personalized model

and also exhibited greater stability than the pretrained model

with better performance, highlighting the value of this stage in

long-term applications.
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This plot demonstrates the distribution changes of output variables on the same model layers, over di�erent stages. The values from the superficial

layer to the deep layer show that the model extracts and abstracts the lower-dimensional high variant inputs into higher-dimensional low variant

semantic information. Besides, the changes across stages present that the feature extraction (superficial layers) and feature space organization (deep

layers) are somewhat constant, but the weights in the middle layers show considerable changes.

4.3 Self-calibration: adapting to changes
over time

However, the human motor system is inherently complex,

leading to unpredictable muscle states, such as fatigue and

behavioral variability over time. Individual differences in memory

retention and movement execution can also cause significant

changes in EMG patterns during long-term use, further reducing

the robustness of the model. Frequent recalibration is often needed

to maintain accuracy. To address this, we propose a self-calibration

stage that uses unlabeled data collected during themodel’s inference

process. This unlabeled data enables unsupervised self-calibration,

allowing the model to adapt to the latest EMG data distributions

and even learn new information to enhance its performance.

Our results show that both self-calibration methods significantly

improved performance compared to the personalized model

without self-calibration (Figure 3a).

While self-calibration has received relatively limited attention

in previous studies, it is essential for real-world applications.

In our work, we implemented and compared two methods:

deep CORAL and pseudo-labeling. Deep CORAL incorporates

additional guidance by leveraging classification performance on a

small number of labeled data points collected during the one-trial

personalization stage. In contrast, pseudo-labeling relies on both

the model from the previous update for prior knowledge and the

one-trial data. The relatively better performance of deep CORAL

demonstrates that transfer learning and domain adaptation, when

applied in the self-calibration stage, can significantly improve

model performance by utilizing both model parameters and

previous data.

We have previously developed a flexible mechanism for self-

calibrating random forests (Jiang et al., 2024a,b, 2025), which

demonstrated superior generalization performance compared to

the neural network approach evaluated in this work. As shown in

Figure 3b, the random forest consistently outperforms the neural

network at each stage. This is largely due to its robustness when

working with limited datasets, as neural networks, by design, have

a higher parameter count and greater capacity, making them prone

to overfitting in low-data regimes. However, there are important

trade-offs between the two approaches. Random forests offer
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simplicity, aremore straightforward to implement in hardware, and

perform reliably with smaller datasets. In contrast, neural networks

provide greater flexibility and scalability when handling larger

datasets, where their capacity to learn hierarchical representations

becomes advantageous.

4.4 Limitations and future directions

Although our methods represent innovative approaches to

improve myoelectric control models, there is still room for

improvement. First, the pre-training dataset we used was relatively

small. Previous research has shown that increasing the size and

diversity of the pre-training dataset can dramatically enhance

model performance, and we expect similar improvements with a

larger dataset in future work.

Second, the personalization stage involved collecting only one

trial per hand gesture at the beginning of the experiment. This

limited amount of data may introduce bias or fail to capture

variations in EMG signals over time. Amore robust personalization

process, potentially using more labeled data from the new user,

could further improve the model’s adaptability and accuracy in

real-world settings.

Finally, during the self-calibration stage, we used unlabeled data

from only three trials per movement in each test block. Although

this was sufficient for demonstrating proof of concept, a larger data

buffer in real-world applications could capture more information

about the current EMG data distribution, leading to more effective

model calibration.

5 Conclusion

Our study highlights the importance of a multi-stage training

protocol for neural network-basedmyoelectric control models. The

combination of pre-training, personalization, and self-calibration

addresses key challenges related to data scarcity, privacy concerns,

and long-term usability. While there is potential for improvement,

particularly in expanding pre-training datasets and enhancing

personalization and self-calibration methods, the results presented

here provide a strong foundation for future work. These methods,

when further refined, have the potential to significantly enhance the

adaptability, robustness, and practicality of neural network-based

myoelectric decoders in real-world applications.
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	2 Methods
	2.1 Pre-training
	2.2 Personalization
	2.3 Self-calibration
	2.3.1 Self-calibration via pseudo-labeling
	2.3.2 Domain adaptation via deep CORAL

	2.4 Ethics
	2.5 Data collection experiment
	2.6 Validation methods
	2.7 Data augmentation

	3 Results
	4 Discussion
	4.1 Pre-training: reducing data collection burden
	4.2 Personalization: learning user-specific characteristics
	4.3 Self-calibration: adapting to changes over time
	4.4 Limitations and future directions

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References




