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To address the challenges arising from the coupled interactions between multi-
dimensional terrain features—encompassing both geometric and physical properties 
of complex field environments—and the locomotion stability of hexapod robots, this 
paper presents a comprehensive motion planning framework incorporating multi-
dimensional terrain information. The proposed methodology systematically extracts 
multi-dimensional geometric and physical terrain features from a multi-layered 
environmental map. Based on these features, a traversal cost map is synthesized, and 
an enhanced A* algorithm is developed that incorporates terrain traversal metrics 
to optimize path planning safety across complex field environments. Furthermore, 
the framework introduces a foothold cost map derived from multi-dimensional 
terrain data, coupled with a fault-tolerant free gait planning algorithm based on 
foothold cost evaluation. This approach enables dynamic gait modulation to 
enhance overall locomotion stability while maintaining safe trajectory planning. 
The efficacy of the proposed framework is validated through both simulation 
studies and physical experiments on a hexapod robotic platform. Experimental 
results demonstrate that, compared to conventional hexapod motion planning 
approaches, the proposed multi-dimensional terrain-aware planning framework 
significantly enhances both locomotion safety and stability across complex field 
environments.
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1 Introduction

In recent years, autonomous field mobile robots have garnered increasing attention and 
remain at the forefront of research endeavors (Zghair and Al-Araji, 2021). Compared to 
wheeled and tracked robots, legged robots possess the capability to traverse discontinuous and 
uneven terrain by modulating their gait patterns, body postures, and foothold positions, while 
maintaining relative balance and stability (Biswal and Mohanty, 2021; Arrigoni et al., 2024). 
These characteristics enable them to effectively navigate obstacles and challenging 
environments. However, in unpredictable and unstructured field environments, the coupled 
variations in geometric features (such as ruggedness and steepness) and physical properties 
(such as soil compressibility and slipperiness) of the terrain pose significant challenges to 
autonomous motion planning for legged robots. Developing more rational and environmentally 
adaptive motion planning strategies for legged robots in complex field environments continues 
to be one of the primary research focuses among scholars in the field of legged robotics.
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Current research in hexapod robot motion planning primarily 
encompasses two fundamental aspects: path planning (Wang et al., 
2022; Zhang et al., 2023) and gait planning (Zhu et al., 2017; Yu et al., 
2020). Path planning focuses on the macroscopic level, addressing the 
robot’s overall trajectory generation, while gait planning typically 
operates at a subordinate level, emphasizing the local-level planning 
of specific foothold sequences. These two aspects complement each 
other synergistically to achieve effective locomotion.

In the field of path planning research, scholars typically focus on 
planning the robot’s overall motion while considering both the robot’s 
locomotion capabilities and environmental information to enhance 
path safety and feasibility. The Boston Dynamics BigDog robot (Ding, 
2015) utilizes an A* algorithm based on a 2D cost grid map to generate 
shortest collision-free paths, enabling it to navigate around major 
obstacles such as trees and boulders in forest environments. However, 
this approach only considers terrain geometric features and optimizes 
for path distance without addressing path safety. The HyQ robot 
(Arain et al., 2013; Winkler et al., 2015) employs an A* algorithm with 
cost mapping to plan feasible paths in unstructured terrain. This path 
planning methodology evaluates traversability and risk levels based 
on obstacle geometric features to generate paths optimizing both 
distance and traversability. However, the approach only considers 
terrain geometric features while neglecting physical properties, 
resulting in suboptimal safety considerations.

In the domain of gait planning research, scholars primarily focus 
on how robots can enhance their adaptability to external terrain 
variations through optimal combinations of inter-leg motion 
sequences (Long et al., 2019; Cai et al., 2021; You et al., 2021). Cheah 
et al. (2018) investigated the impact of ground height variations on 
robot gait, utilizing 2.5D elevation maps to set robot foothold heights 
and improve locomotion stability, but they did not analyze the 
influence of terrain properties on robot foot placement. Wang et al. 
(2023) conceptualized the unstructured terrain as random stepping 
stones, employing deep reinforcement learning algorithms to plan 
foothold positions for a hexapod robot in the planar stepping stone 
environment. While this enhanced the robot’s mobility in unstructured 
environments, their binary classification of foothold regions as either 
suitable or unsuitable failed to quantitatively analyze the degree of 
terrain influence on robot foot placement.

Comprehensive analysis of current hexapod robot motion 
planning research reveals that in path planning, scholars 
predominantly consider only the influence of geometric terrain 
feature variations while neglecting the potential impact of physical 
terrain properties on path safety. However, in actual field 
environments, variations in geometric features and physical properties 
typically have coupled effects on overall robot performance. Planning 
paths solely based on geometric features significantly limits the 
practical applicability of hexapod robots in field environments. 
Simultaneously, in robot gait planning research, scholars often neglect 
the impact of multi-dimensional terrain features on robot foot 
placement. Some researchers implement binary classification of 
foothold regions, but without quantitative analysis of terrain influence 
on foot placement, which also constrains the practical field application 
of hexapod robots.

Therefore, addressing these challenges, a hexapod robot motion 
planning methodology under the influence of multi-dimensional 
terrain features is proposed. The approach extracts multi-
dimensional geometric features and physical properties through 

multi-level mapping. Based on this, a traversability cost map is 
constructed, and the traditional A* algorithm is enhanced based on 
traversability costs to improve path safety across complex field 
terrain. Furthermore, a foothold cost map is developed using multi-
dimensional terrain information, and a free gait planning method 
based on foothold cost is proposed, which further enhances overall 
robot motion safety and stability through gait adjustment under the 
planned safe motion path.

2 Map construction and 
multi-dimensional terrain feature 
analysis

2.1 Multi-layer map construction

The fundamental information of the environment is its geometric 
features. Therefore, a 2.5D geometric map of the terrain is constructed. 
During the mapping process, due to sensor noise and the inherent 
uncertainty in robot motion, these uncertainties must be considered. 
Referring to literature (Fankhauser et al., 2018), a 2.5D geometric map 
with uncertainty measurements is constructed. The mapping process 
is divided into three steps: first, updating the map based on depth 
information and sensor noise. Second, updating the map according to 
robot motion and position uncertainty information. Third, performing 
map fusion based on the height and covariance matrix information. 
The specific map construction process is shown in Figure 1.

The safety and stability of robots traversing complex outdoor 
environments are closely related to the geometric features and physical 
properties of the terrain. The current environment modeling methods 
only establish the geometric features of the ground and cannot identify 
hazardous terrains such as loose sand or water holes. Therefore, it is 
necessary to construct a semantic layer map containing terrain 
categories to enrich the environment information.

Semantic segmentation assigns a label from a set of predefined 
terrain categories to each pixel in the input image, enabling robots to 
determine the categories of surrounding terrain. We  employs the 
ERFNet network architecture proposed by Romera et al. (2018) as the 
neural network architecture for the semantic segmentation module, 
as illustrated in Figure 2.

Through semantic segmentation models, a 2D ground surface 
segmentation image is obtained in the camera coordinate system. 
First, the semantic image is converted into a semantic point cloud. 
Then, based on the transformation relationship between the camera 
and map coordinate systems, the semantic point cloud is projected 
onto the map coordinate system. Finally, a multi-layer map model 
containing ground elevation and semantic information is generated, 
as illustrated in Figure 3.

2.2 Multi-dimensional terrain information 
analysis

Although the multi-layer map contains rich environmental 
information, it cannot quantitatively characterize the environment’s 
impact on motion planning. To enable robots to better understand 
how their environment may affect their movement, further analysis of 
the robot’s multi-dimensional ground surface information should 
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be conducted to obtain quantitative representations for evaluating the 
ground surface conditions where the robot operates.

A sliding window method is adopted to analyze ground surface 
information, with adjustable window sizes according to requirements. 
When calculating traversal costs for path planning, the robot is 
considered as a whole, and the sliding window size should approximate 
the robot body dimensions. When calculating foothold costs for gait 
planning, the window size should be close to the foot sole dimensions. 
To analyze grid information based on adjacent grids, the window 
should contain at least 9 grids. Figure 4 illustrates the sliding window, 
where the red grid represents the currently analyzed grid, and the 
dashed box indicates the established sliding window.

During locomotion, hexapod robots cannot traverse areas where 
the slope exceeds their climbing ability. When facing a step obstacle 

that exceeds the robot’s step height, the robot cannot traverse it. 
Hexapod robots require sufficient workspace for leg lifting and 
placement; excessive step height greatly increases the probability of 
collision with step edges, significantly affecting the robot’s stability. 
Excessive ground undulation causes substantial body fluctuation 
during locomotion, affecting stability. Different terrain types have 
varying friction and softness characteristics. Friction plays a decisive 
role in whether the robot slips during locomotion—for instance, 
robots are more likely to slip on muddy ground compared to grassy 
surfaces. Softness determines whether the robot sinks—robots are 
more prone to sinking in sandy terrain compared to soil. Therefore, 
analyzing ground slope, gradient, surface undulation, friction 
coefficient, and substrate softness is vital.

Assuming the window contains N grid points, the height 
information ( ) = , , , 1,2,i i ix y h i N  of each grid is obtained from the 
elevation map. Using the least squares method, the plane equation 
fitted from N grid data is depicted in equation 1:

 = + +z Ax By C  (1)

Based on this plane equation, the normal vector n  can 
be calculated as shown in equation 2:

 

( )− −
=
− −
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Setting the reference plane as the horizontal plane with normal 
vector ( )=0 0,0,1n , the slope of the fitted plane can be calculated from 
the normal vectors as shown in equation 3:
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The gradient is a macroscopic factor representing the surface 
gradient’s degree. It is computed as the difference between the raster’s 
maximum and minimum elevation values within the sliding window. By 

FIGURE 1

The 2.5D elevation map construction process.

FIGURE 2

Schematic diagram of ERFNet network architecture.
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traversing the height value of each raster within the sliding window and 
recording the maximum and minimum elevation values as maxH  and 
minH , respectively, the gradient can be  determined as h shown in 

equation 4:

 = −max minh H H  (4)

Undulation is a term used to describe whether the surface is flat 
and is typically expressed as the standard deviation of elevation values 
within the analysis window. r denotes the undulation as shown in 
equation 5:

 
( )

=
= −∑

1

1 N

i u
i

r h h
N  

(5)

Ewen et al. (2022) established friction values (expressed as f ) and 
looseness values (expressed as 

˜
m ) for 10 different terrains, namely 

∈  
˜ ˜
, 0,1f m . The specific details can be found in Table 1.

Based on the surface information in Table 1, the sliding window 
method is used to analyze the friction characteristics. The average friction 
value of the grid within the window is used as the friction value of the 
current analysis grid. The number of grids in the sliding window is N, and 
the friction degree of each grid is 

˜

if . The calculation for the looseness is 
depicted in equation 6:

 =
= ∑ 

1

1 N

i
i

f f
N

 
(6)

The calculation method for determining looseness properties is 
analogous to that of friction analysis and can be  expressed as 
equation 7:

 =
= ∑ 

1

1 N
i

i
m m

N
 

(7)

3 Motion planning of the hexapod 
robot

3.1 Path planning based on 
multi-dimensional terrain information

3.1.1 Traversal cost analysis based on 
multi-dimensional terrain information

When planning a robot’s path, it is essential to consider the robot as 
a complete entity and analyze how terrain characteristics affect its 
traversability. The sliding window size should be  configured to 
approximate the robot’s two-dimensional footprint. Given that the robot’s 
maximum extension occupies a rectangular area with a 20 mm grid size, 
the sliding window should contain a corresponding number of grid cells, 
a rectangle with a grid size of 20 mm has a maximum extension size of for 
the robot, so the number of grids in the sliding window is taken as 
= ×21 21N , as shown in Figure 5.

If the terrain is excessively soft, the hexapod robot may experience 
sinking, hindering its traversal. Additionally, steep inclines surpassing the 
robot’s limit for climbing may also impair its ability to move forward. 
Likewise, excessive undulation on the surface may cause the robot’s body 

FIGURE 3

Schematic diagram of multi-layer map model.

FIGURE 4

Schematic diagram of sliding window.

TABLE 1 Terrain friction and softness.

Surface Friction f Looseness m

Invalid surface 1 1

Land 1 0.25

Grassland 0.7 0.4

Asphalt road 0.7 1

Stone Road 0.85 0

Snow 0.25 0.85

Sandy 0.8 1

Shrubs 0.55 0.5

Puddles 0.1 1

Mud 0.3 0.65
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fluctuations. Furthermore, obstacles with step heights beyond the robot’s 
limit may pose traversal difficulties. Thus, the traversal cost pt  of the map 
can be computed by considering the terrain softness, slope, and gradient 
information. The corresponding formula is depicted in equation 8.

 

( )
( )

θ θ

θ
θ

 > > > <


=  
+ + + − 

 
1 2 3 4

1

1

crit crit crit crit

p

crit crit crit crit

if or h h or r r or m m
t h r mw w w w else

h r m  

(8)

where 1 2 3 4, , ,w w w w  represent weights assigned to the slope, 
gradient, undulation, and softness factors. These weights can be adjusted 
to meet the specific needs of the engineering task at hand. This study 
assigns all aspects equal importance, with 1 2 3 4, , ,w w w w  set at 0.25 for 
each. θcrit, crith , critr , and critm  represent slope, gradient, undulation, and 
looseness thresholds. These thresholds must be set based on the actual 
climbing ability, step height, flatness goal, and robot weight and foot area, 
thus ensuring optimal robot traversal.

3.1.2 Improved A* algorithm based on traversal 
cost

To address loose terrain surfaces like sand and puddles, 
we enhance the conventional A* algorithm by considering the terrain’s 
multi-dimensional geometric features and physical properties. This 
integration allows for analyzing the traversal cost on such surfaces. 
The traditional A* algorithm is shown in equation 9.

 ( ) ( ) ( )= +f n g n h n  (9)

We have enhanced the conventional A* algorithm by 
incorporating the traversal cost factor, ultimately enabling the robot 
to locate the most cost-efficient route. The resulting, improved 
algorithm is displayed in equation 10.

 ( ) ( ) ( ) ( )= + +,next next next nextf n g n h n e cost n  (10)

Equation 11 governs the expressions of ( )nextg n  and ( )nextcost n .

 

( ) ( ) ( )
( ) ( ) ( )

 = +
 = +

, ,
, ,

next next

next p

g n g s n g n n
cost n cost s n t x y  

(11)

The schematic diagram of the A* algorithm based on the traversal 
cost is shown in Figure 6.

The following variables are defined in equation form: ( ), nextg n n  
represents the distance between path node n and the subsequent node 
nextn . ( ),pt x y  represents the traversal cost based on multidimensional 

surface information for the raster in which nextn  nodes are situated. 
( ),g s n  represents the cumulative path length from the origin (node s) 

to the current node n. ( ),cost s n  represents the incremental traversal 
cost based on multidimensional surface information from the source 
(node s) to the current node n. ( ),nexth n e  is the heuristic function 
used to identify the optimal path, where ( ),nexth n e  is determined by 
calculating the Chebyshev distance from node nextn  to the end point e.

The path search using the improved path planning algorithm with 
traversal cost involves organizing traversed nodes in ascending order 
by ( ) ( ) ( )+ + ∗,next next nextg n h n e k cost n  within a CLOSELIST. In 
contrast, nodes yet to be traversed are stored in an OPENLIST. Figure 7 
illustrates the algorithm’s workflow.

3.2 Gait planning based on 
multi-dimensional terrain information

3.2.1 Foothold cost analysis using 
multi-dimensional terrain information

When performing gait planning for the robot, it is essential to 
consider the impact of the terrain surface on foot placement. To this 
end, the sliding window size is set to approximate the size of the 
robot’s foot, with the grid size set to a rectangular shape measuring 
20 mm. Given that the robot’s foot measures approximately 
15 mm × 15 mm, smaller than a single grid, a feature analysis using 
proximity grids requires a total of = ×3 3N  sliding window grids, as 
illustrated in Figure 8.

When a hexapod robot’s foot is landing, the ground surface it lands 
on can significantly impact its stability and safety. For example, a loose 
surface may cause the robot’s foot to sink, increasing the risk of tipping 
over. Significant gradient can also pose a challenge, as there is a high 
probability of the robot colliding with the step’s edge during the lifting 
and landing process, ultimately impacting the robot’s stability. Moreover, 
excessive undulation of the ground surface can cause the robot’s body 
to fluctuate, while insufficient friction can cause the robot’s foot to slip. 
Therefore, considering the surface’s gradient, friction, and looseness 
information, calculate the map’s foothold cost, as shown in equation 12.

 

( )
( )

 > < <


=    
+ − + −   

  
1 2 3

1

1 1

crit crit crit

d

crit crit crit

if h h or f f or m m
t h f mw w w else

h f m  

(12)

The evaluation weights for gradient, friction, and looseness are 
denoted by 1 2 3, ,w w w  in equation 12. All three factors are considered 
equally important in this paper. Thus, 1 2 3, ,w w w  are set to 1/3. The 
gradient threshold, crith , is determined based on the desired crash risk, 
while the friction threshold, critf , reflects the actual plantar friction 
characteristics of the robot. Finally, the robot’s overall weight 

FIGURE 5

The sliding window of crossing cost estimation.
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determines the looseness threshold, critm . Calculate the footing cost 
of a raster by comparing the gradient, friction, and looseness feature 
values to their respective threshold values. If these values exceed the 
thresholds, the footing cost of the raster is evaluated as 1, thereby 
rendering the raster unsuitable for foothold.

3.2.2 Free gait planning
Conventional hexapod robot gaits typically employ a periodic rate 

with a fixed stride length, suitable for structured indoor environments. 

However, dynamic step length adjustment is required to enable a 
flexible selection of foothold points in obstacle areas when navigating 
complex and unstructured terrains. Therefore, based on the cost of the 
foothold map, an elastic-free gait is designed to meet the needs of 
robots walking in unstructured environments. Discretize the 
representation of the robot foot position, and the discretized model is 
shown in Figure 9.

Figure  9 illustrates the specific rules used for discretizing the 
position of the single-legged robot’s foothold, which are as follows:

s

e

n
nnext

h(nnext,e) Enlightenment distance

g(n,nnext) The cost of distance
tp(x,y) Traversal cost based on multidimensional terrain features

g(s,n) Cumulative distance cost
cost(s,n) Cumulative traversal cost based on multi-dimensional
terrain features

FIGURE 6

The schematic diagram of A* algorithm based on traversal cost.

FIGURE 7

The overall workflow of the A* algorithm based on traversal cost.
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 1. During the leg’s support phase, ( )≥ ∈2,n n n Z  discrete 
equidistant points are inserted between the robot’s single-leg 
stride L. The foothold is located at the front limit point (AEP) 
as position n, the rear limit point (PEP) is position 1, and the 
discrete accuracy is determined based on the robot’s stride 
length L and grid size cellL , with = +/ 1celln L L .

 2. The end of the foot is assigned position 0 when the leg is in the 
swing phase with a foothold point presented.

 3. The end of the foot is assigned position −1 when the leg is in 
the swing phase with no foothold point presented.

 4. When the robot’s body needs to make a turn, one leg’s front and 
rear limit points require adjustment.

Transitions between foot-end positions follow the below rules:

 1. Foothold positions can transition only from a more significant 
position point to a smaller one when the place ranges 
from 1 to n.

 2. When the foot end position is 0, it can transition to either 
positions 1 to n or −1.

 3. The foot end position can transition to positions −1 and 
0 at −1.

 4. All transitions occur within a single oscillation cycle.

Dynamic step length adjustment can be achieved by allowing the 
0-position conversion to any position between 1 to n or −1. This 
feature enables the robot to traverse small, non-fillable areas safely. In 
the event of a non-fallible area too large for a single leg to have a fall 
point, the portion is identified as being in an erro  state. It is 
subsequently controlled to hover at a specified position within a 
defined period, providing the gait with fault tolerance capabilities.

The robot’s position state is represented as the set of each leg 
state, denoted as ( )= 1 1 2 3 4 5 6kP p p p p p p p , with ip  being the 
position of the _i th leg. k is the current oscillation period, and there 
are +2n  position states for a single portion of the hexapod robot, so 

there are ( )+ 62n  robot position states, constituting a 6-dimensional 
robot position state space. The essence of gait planning is to plan a 
sequence of position states in the stable position state space to meet 
the robot motion requirements based on ground-based information, 
stability margin constraints, and transition rules between 
position states.

Assuming that the current position state nP  of the hexapod robot 
is ( )1 2 3 4 5 6P P P P P P , the grid size is cellL , the period of the robot’s 
rhythmic motion is pT , and the robot body moves at a speed 
( )p/cellv L T , the free gait planning is divided into the following 

four steps:
The first step is to preprocess the current position status nP . To 

identify the hidden position 0  in the current position state, the 
position where the next cycle will be in the swing phase, preprocess 
the current position state nP  according to equation 13.

 

 ≥
= < <
 =

i i
1
i i

i

0 0
0

p p v
p p v

p erro  

(13)

The second step is to solve for the optional foothold positions. 
According to the current status and the information of the foothold 
cost grid, we  can get the foothold position 

( ) ( ) ( ){ }= oi 1 1 2 2, , , , ,n np x y x y x y  which the robot can reach in the 
next cycle, where if ( ),L Lx y  is 1, that is, the obstacle grid. The part of 
the _i th footstep is L, and the set { }= i 1 2 3, , , mL l l l l  saves all the 
optional foothold positions. When the grid in oip  is fully occupied, 
there is no optional footing point for the _i th foot, 
denoted as =oip erro.

The next position state is solved in the third step according to the 
transition rule between position states. The possible position states of 
the robot for the next oscillation cycle are ( )+ =1 2 2 2 2 2 2

1 6 3 4 5 61kP p p p p p p , 
where 2

ip  is determined as equation 14:

 

( )
ν ≠

= = ≠


= =

1 1
i i

2 1
i i oi

1
i oi

0

random 0,

0,
i

p p

p L p p erro

erro p p erro

-

 

(14)

FIGURE 8

The sliding window of foothold cost estimation.

FIGURE 9

The discretization model of foot position state.
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The corresponding steady state ( )+ =1 1 1 1 1 1 1
n 1 1 2 3 4 5 6S s s s s s s  is depicted in  

equation 15:

 

 =
= =


≠ ≠

1
i

1 1
i i

1 1
i i

0 0

0

1 0,

p

s p erro

p p erro
 

(15)

The fourth step is stability determination. If position 0 occurs 
during the position transition, i.e., a leg of the robot is converted from 
the swing phase to the support phase, the value of 2

ip  may put the 
hexapod robot in an unstable state, and the precarious position state 
is divided into direct and indirect dangerous conditions. When the 
robot’s position state is ( )0 0 0 0 0 0 , all six legs are in the swing state, 
and it is evident that the robot is unstable, and the state is directly 
dangerous. When the robot position state is ( )6 6 6 6 6 6 , the robot is 
stable in the current cycle. After a certain period, the position state 
must be converted to a directly unstable state ( )0 0 0 0 0 0  because the 
robot moves at the same speed as each foot when moving straight. 
Both direct and indirect instability states cannot occur during the gait 
planning of a hexapod robot.

Stability determination is performed for the position state 
corresponding to 2

ip . The stability margin { }= mf mr msmin , ,SM s s s  
can be found according to equation 16 and  equation 17.
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1X  is the lateral distance from the center of the robot to legs 1, 3, 
4, and 6 and is the lateral distance from the center of the robot to legs 
2 and 5. If the position state +

1
1kS  corresponds to the stability margin 

+ ≤1
1 0kSM , then 2

ip  is a direct unstable state. If 2
ip  satisfies equation 18, 

it is an indirectly dangerous state. If 2
ip  is one of the dangerous states, 

then 2
ip  needs to be re-taken.
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After the above method, the next position state of the robot can 
be planned, and the algorithm flow chart is shown in Figure 10.

4 Experimental validation

To demonstrate the feasibility and effectiveness of the proposed 
hexapod motion planning investigation in improving the safety and 
stability of robot motion in complex environments, experiments on 
path and gait planning using real prototype platforms were conducted. 
Figure 11 displays the servo-driven hexapod robot with an aluminum 
body to reduce weight while ensuring greater stiffness. The initial 
posture size of the robot is L40 cm × W44 cm × H18 cm. The robot is 
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Pre-processing of the current position 
state Pn

Presence of position 0 
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Generate the next oscillation cycle 
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Start

End
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No
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Solving for optional landing locations 
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FIGURE 10

The algorithm flow of free gait planning.
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equipped with a ZED2 depth camera and MPU6050 IMU sensor to 
provide environmental and robot attitude awareness. The experimental 
environment, shown in Figure 11b, is constructed with land, grass, 
sand, slopes, and obstacle-undulating terrain.

The environmental elevation map and semantic map were 
constructed using the parameters presented in Table 2. The mapping 
process and results are illustrated in Figure 12.

Figure 12b shows the established elevation map, where different 
colors correspond to different height values. Figure 12c illustrates the 
constructed semantic map, with different colors representing various 
terrain types. As can be observed from the mapping results, both the 
elevation map and semantic map are well constructed. However, the 
elevation map fails to identify hazardous terrains such as sand and 
water pits, the limitation that is effectively addressed by the 
implementation of the semantic map.

4.1 Experiments and analysis of robot path 
planning

To verify the effectiveness of the proposed robot path planning 
method, which considers traversability cost in enhancing robot 
motion safety in complex environments, robot path planning 
experiments were first conducted.

The traversal cost of the terrain was analyzed based on the 
elevation map and semantic map of the physical terrain. Path planning 
for the robot was performed based on the traversal cost map, with the 
path starting point set at (40, 9) and the endpoint at (89, 140). The 
parameters for constructing the traversability cost map were consistent 
with the parameters in Table 3.

After creating the traversal cost map, path planning experiments 
using the improved A* algorithm based on traversal cost were 
conducted for the hexapod robot, and compared with path planning 
using the traditional A* algorithm. The path planning process is 
illustrated in Figure 13. The traversal cost map and the comparison of 
experimental results is shown in Figure 14.

From Figure 14, it can be observed that the robot can traverse the 
15° slope on the left at a higher cost, while the 30° slope on the right 
exceeds the slope threshold of 20°, thus making it impassable for the 
robot. The large gradients on both sides of the slope are also 
impassable for the robot. The traversal cost for soft sandy terrain is 1, 
indicating that the robot cannot traverse it. The above analysis 

demonstrates that the traversal cost map considers not only the 
geometric characteristics of the terrain but also its physical properties. 
Furthermore, the areas surrounding slopes and sandy terrain also have 
high traversal cost, indicating that setting the sliding window size 
based on the robot’s dimensions for terrain feature analysis results in 
a traversal cost map that accounts for the impact of the robot’s size on 
terrain traversal, thereby allowing the robot to be treated as a point 
mass in subsequent path planning.

According to Figure 14, the traditional A* algorithm selects a path 
that traverses the slope and passes close to dangerous sandy terrain, 
whereas the improved A* algorithm based on traversal cost selects a 
path that bypasses the slope and maintains a safe distance from 
hazardous sandy terrain. The path planned by the proposed path 
planning method is safer, further validating the effectiveness of the 
proposed path planning algorithm in improving the motion safety of 
the robot.

4.2 Experiments and analysis of robot free 
gait planning

To enable autonomous walking of the hexapod robot in complex 
environments, gait planning is required. The foothold cost map was 
constructed according to the parameters in Table 4, and Figure 15 
shows the constructed foothold cost map.

In Figure 15, purple represents a foothold cost of 0, while red 
represents a foothold cost of 1, indicating impassable terrain. As can 
be observed from the figure, the slope with a lesser gradient on the left 
has a lower foothold cost for the robot, whereas the slope with a 
greater gradient on the right has a higher foothold cost. The soft sandy 
terrain has a foothold cost of 1, and certain obstacle areas in the 
undulating terrain also have a foothold cost of 1, indicating that the 
robot cannot place its feet in these regions. Compared to the traversal 

FIGURE 11

The hexapod robot prototype and the experimental environment. (a) The hexapod robot prototype. (b) The experimental environment.

TABLE 2 Parameters of the map construction process.

Parameter Value

Grid size (cm) 2

Motion speed 5

Map size (cm) 500 × 500

Terrain types 4
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cost map, the foothold cost map, due to its smaller analysis window, 
only considers the local terrain features of the foothold point, making 
it well-suited for gait planning.

To verify the effectiveness of the proposed free gait planning 
method in improving the motion performance of the robot, a 
straight-line path for the hexapod robot with the starting point at 
(20, 140) and the endpoint at (160, 140) was set. Comparative 
experiments were conducted between the free gait planning 
method proposed in this paper and the free gait planning method 
proposed in the author’s previous research (Zha et al., 2019). In the 

author’s previous research, a slope angle perception method based 
on plane fitting was proposed, along with a free gait planning 
approach for hexapod robots based on the perceived slope angle. 
In this method, the search space of available gaits is first narrowed 
by establishing a mapping relationship between the slope angle and 
the number of supporting legs. Then, by combining the robot’s 
stability constraint and leg motion space margin constraint to 
design a state search function, the method ultimately determines 
the gait options for the robot’s next step, enabling continuous gait 
planning. This approach does not utilize external sensors such as 
vision or LiDAR for environmental perception, thus the 
consideration of external environmental changes in this gait 
planning method is relatively limited.

Screenshots of the experimental process are shown in Figure 16, 
the robot body state curves are shown in Figure 17, and the robot body 
state data are presented in Table 5.

From the data in Figure 17 and Table 5, it can be observed that the 
roll angle of the robot under the function of the free gait planning 
method proposed fluctuates minimally around 0°. Compared to the 
results of the author’s previous work, the standard deviation of 
fluctuation has been decreased by 55.4%, the average stability margin 

FIGURE 12

The robot mapping process and results. (a) The robot mapping process. (b) The elevation map. (c) The semantic map.

TABLE 3 Traversal cost map construction parameters.

Parameter Value

Sliding window size 21 × 21

Slope threshold 20°

Gradient threshold 8 cm

Undulation threshold 2 cm

Softness threshold 0.5
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has been increased by 3.6%, the minimum stability margin has been 
improved by 29.5%, the pitch angle fluctuation has been reduced by 
65.4%, and the body height fluctuation has been decreased by 59.3%.

In the free gait planning method proposed in the author’s previous 
research, the physical characteristics of the external terrain and their 
influence on the robot’s gait were not considered. Additionally, during 
the robot free gait planning process, only the variations in leg 

movement combinations were taken into account, without the ability 
to freely adjust parameters such as the robot’s stride length, resulting 
in limited freedom in the selection of foothold points. In the method 
proposed in this paper, the impact of multi-dimensional environment 
information on the robot’s foothold cost is considered and 
incorporated into the free gait planning method. Consequently, the 
robot can more flexibly select foothold points based on external 
terrain condition changes, better ensuring foothold safety and overall 
robot movement stability.

5 Conclusion

This paper analyzes the significant impact of terrain geometric 
features and physical properties on hexapod robot motion 
planning effectiveness, proposing a motion planning method that 
incorporates multi-dimensional terrain information. The method 

FIGURE 13

The path planning process of the robot. (a) The robot bypassed the slope. (b) The robot kept a safe distance from the sand.
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Improved A* algorithm 
based on traversal cost
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FIGURE 14

The traversal cost map and comparison of path planning results.

TABLE 4 Foothold cost map construction parameters.

Parameter Value

Sliding window size 3 × 3

Gradient threshold 3 cm

Friction threshold 0.65

Softness threshold 0.5
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FIGURE 15

The foothold cost map.
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FIGURE 16

The walking process of the robot.
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FIGURE 17

The robot body state curve comparation. (a) The robot roll angle comparation. (b) The robot motion stability comparation. (c) The robot pitch angle 
comparation. (d) The robot body height comparation.
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encompasses two primary levels: path planning and gait planning 
for hexapod robots that account for multi-dimensional terrain 
information influences. Specifically, multi-dimensional terrain 
information including slope, gradient, undulation, softness, and 
friction coefficient were analyzed using multi-layer maps. By 
comprehensively considering how multi-dimensional terrain 
information affects hexapod robot traversal safety, a terrain 
traversal cost map was constructed, and an improved A* algorithm 
based on traversal cost was proposed. Furthermore, by thoroughly 
examining the influence of multi-dimensional terrain information 
on hexapod robot foothold stability, a terrain foothold cost map 
was developed. Based on this foothold cost map, a free gait 
planning algorithm incorporating foothold cost was proposed, 
which further enhances the robot’s overall motion safety and 
stability through gait adjustments while ensuring safe path 
planning. Finally, through the implementation of physical 
experiments and subsequent data analysis, it was verified that the 
proposed hexapod robot motion planning method, which 
accounts for multi-dimensional terrain information, can 
effectively improve the safety and stability of hexapod robots 
traversing complex terrain compared to conventional motion 
planning methods.
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