AUTHOR=Qiu Xiaorong , Shi Yingzhong TITLE=Multimodal fusion image enhancement technique and CFEC-YOLOv7 for underwater target detection algorithm research JOURNAL=Frontiers in Neurorobotics VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2025.1616919 DOI=10.3389/fnbot.2025.1616919 ISSN=1662-5218 ABSTRACT=The underwater environment is more complex than that on land, resulting in severe static and dynamic blurring in underwater images, reducing the recognition accuracy of underwater targets and failing to meet the needs of underwater environment detection. Firstly, for the static blurring problem, we propose an adaptive color compensation algorithm and an improved MSR algorithm. Secondly, for the problem of dynamic blur, we adopt the Restormer network to eliminate the dynamic blur caused by the combined effects of camera shake, camera out-of-focus and relative motion displacement, etc. then, through qualitative analysis, quantitative analysis and underwater target detection on the enhanced dataset, the feasibility of our underwater enhancement method is verified. Finally, we propose a target recognition network suitable for the complex underwater environment. The local and global information is fused through the CCBC module and the ECLOU loss function to improve the positioning accuracy. The FasterNet module is introduced to reduce redundant computations and parameter counting. The experimental results show that the CFEC-YOLOv7 model and the underwater image enhancement method proposed by us exhibit excellent performance, can better adapt to the underwater target recognition task, and have a good application prospect.