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Fine-grained image classification tasks face challenges such as difficulty in labeling, 
scarcity of samples, and small category differences. To address this problem, 
this study proposes a novel fine-grained image classification method based on 
the MogaNet network and a multi-level gating mechanism. A feature extraction 
network based on MogaNet is constructed, and multi-scale feature fusion is 
combined to fully mine image information. The contextual information extractor 
is designed to align and filter more discriminative local features using the semantic 
context of the network, thereby strengthening the network’s ability to capture 
detailed features. Meanwhile, a multi-level gating mechanism is introduced to 
obtain the saliency features of images. A feature elimination strategy is proposed 
to suppress the interference of fuzzy class features and background noise. A 
loss function is designed to constrain the elimination of fuzzy class features and 
classification prediction. Experimental results demonstrate that the new method 
can be applied to 5-shot tasks across four public datasets: Mini-ImageNet, CUB-
200-2011, Stanford Dogs, and Stanford Cars. The accuracy rates reach 79.33, 
87.58, 79.34, and 83.82%, respectively, which shows better performance than 
other state-of-the-art image classification methods.
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1 Introduction

Fine-grained image classification is a crucial task in the field of computer vision (CV), 
aiming to solve the problem of subdividing subclasses within the same general class (He and 
Peng, 2017). Fine-grained image classification has garnered the attention of researchers due 
to its wide-ranging application potential in areas such as smart transportation (Ke and Zhang, 
2020), smart retail, and biodiversity monitoring. However, the uniqueness of fine-grained 
image classification lies in the significant differences within a class and the small differences 
between classes, which require the model to extract more subtle feature representations to 
achieve accurate image classification (Zhang W. et  al., 2024). Therefore, compared with 
traditional image recognition tasks, fine-grained image classification is more challenging (Ke 
et al., 2023).

According to the type of label used, existing fine-grained image classification methods can 
be divided into two categories: one is a strong supervision method that relies on additional 
manual annotation information, and the other is a weak supervision method that relies only 
on image-level labels. The majority of early research focused on strong supervision methods. 
For example, Liu et al. (2016) proposed a Fully Convolutional Network (FCN) based on image 
masks. During the training process, the model accurately localized the head and torso of the 

OPEN ACCESS

EDITED BY

Xianmin Wang,  
Guangzhou University, China

REVIEWED BY

Weichuan Zhang,  
Griffith University, Australia
Tianhao Gu,  
Qingdao University, China

*CORRESPONDENCE

Su Chen  
 chensulh@qq.com

RECEIVED 17 May 2025
ACCEPTED 14 July 2025
PUBLISHED 06 August 2025

CITATION

Li D and Chen S (2025) Fine-grained image 
classification using the MogaNet network and 
a multi-level gating mechanism.
Front. Neurorobot. 19:1630281.
doi: 10.3389/fnbot.2025.1630281

COPYRIGHT

© 2025 Li and Chen. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 06 August 2025
DOI 10.3389/fnbot.2025.1630281

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2025.1630281&domain=pdf&date_stamp=2025-08-06
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1630281/full
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1630281/full
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1630281/full
mailto:chensulh@qq.com
https://doi.org/10.3389/fnbot.2025.1630281
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2025.1630281


Li and Chen 10.3389/fnbot.2025.1630281

Frontiers in Neurorobotics 02 frontiersin.org

object using manually marked key point information and then 
generated an image mask to exclude convolutional descriptors that 
contained the object region. Finally, the pooling operation integrated 
the features of the entire object, including the head and trunk, to 
achieve efficient classification. However, strong supervision methods 
require a significant amount of annotation information, such as object 
bounding boxes and key point information. The acquisition of this 
annotation information usually consumes a considerable amount of 
time and energy. Therefore, the method based on weak supervision 
has gradually become a new focus of research. Progressive multi-
granularity training (PMG), proposed by Du et  al. (2020), is a 
representative of the weak supervision method. The method utilizes 
the Jigsaw Puzzle Generator Module (JPGM) to segment the original 
image into blocks of different granularities and rearranges them into 
the network. In view of the sensitivity of the shallow layer network to 
the texture details of the object, PMG inputs fine-grained image blocks 
into the shallow layer network to extract the features of the object 
detail region. For coarse-grained image blocks, they are fed into the 
deep network to capture high-level semantic information of the image. 
Thus, the feature information of different granularities can 
be effectively fused, thereby improving the classification effect.

The early research is mainly based on convolutional neural 
network (CNN) technology to design fine-grained image classification 
models, and remarkable results have been achieved. However, due to 
the inherent limitation of the convolution operation, namely the 
receptive field constraint, these models tend to pay too much attention 
to local image details, and their global modeling ability for objects is 
relatively limited, which gradually leads to a performance bottleneck. 
At the same time, with Transformer excelling in the field of natural 
language processing, its powerful global information modeling 
capability has garnered widespread concern. Researchers have begun 
to introduce the vision transformer (ViT) (Yin et  al., 2022) into 
various computer vision tasks, including pedestrian re-identification, 
object detection, and image classification, and have made positive 
progress. However, unlike other visual tasks, fine-grained image 
classification relies mainly on subtle inter-class differences. It therefore 
requires the network to be able to discover more subtle discriminative 
regional features. On the other hand, the ViT model relies on multi-
head self-attention (MSA) to mine the correlation between each image 
block, paying more attention to the integration of global information 
and less attention to local key areas (Yuan et al., 2021). Therefore, 
applying the ViT directly to fine-grained image classification tasks 
may result in poor classification performance.

In response to the above problems, the researchers aim to improve 
the ViT, seeking to maintain its strong global modeling capabilities 
while enhancing its ability to capture local features, thereby improving 
ViT’s performance in fine-grained image classification tasks. For 
example, to address the ViT’s limitation in ignoring local regional 
information, Zhao et  al. (2024) proposed a TransFG network 
comprising a Part Selection Module (PSM) and Contrastive Feature 
Learning (CFL).

The model used the PSM module to integrate the self-attention 
weights from the first 11 layers of the ViT to obtain the final attention 
map and then selected the PatchToken containing the locally 
important region of the object from the last layer of the self-attention 
encoding, compensating for the lack of detailed features in the 
network. In addition, the CFL module instructed the network to learn 
the characteristics shared among the same species and the differences 
between different ones, thereby amplifying the inter-class differences 

and narrowing the intra-class differences. Although TransFG 
considered the importance of local discriminative features to the 
network, it ignored the local, low, and high-level information 
contained in different levels, resulting in a partial loss of discriminative 
information. Therefore, Wang et al. (2021) proposed a new FFVT 
network based on TransFG. It filtered the most critical tokens in each 
self-attention encoding layer based on the size of the self-attention 
weight and integrated them. This method effectively integrated the 
subtle clues from different regions of the object and enriched the 
discriminant information of the network at different levels. In 
addition, to help the network identify the most discriminative area in 
the image, Xu et al. (2023) clipped and scaled the object area in the 
original image according to the attention weight and re-input it into 
the network, thereby improving the network’s recognition ability for 
images of different scales. Moreover, they also adopt distillation 
learning, which utilizes the features extracted from the CNN network 
to guide the ViT network in learning multi-source semantic 
information from different structures, thereby improving the 
network’s generalization ability.

Although existing ViT-based methods have made significant 
progress, several problems remain to be addressed. First, since images 
need to be divided into image blocks of a certain size before being 
input into the ViT network, and the size of these image blocks remains 
constant throughout the entire forward propagation process, the 
network can only process image information of the same granularity. 
However, for fine-grained image classification, features of different 
granularities have varying identification capabilities within the 
network, so the information learned by the network under a single 
granularity is incomplete and insufficient. Second, in fine-grained 
image classification, existing methods based on distillation learning 
often rely on a teacher model with a large number of parameters to 
guide a student model with a small number of parameters. However, 
due to the differences between the models, the teacher network with 
a better model effect is not necessarily conducive to the learning of the 
student network (Lu and Han, 2024); that is, the “knowledge” in the 
teacher network cannot be transferred to the student network. When 
the performance difference between the teacher network and the 
student network is too large, the guidance provided by the teacher 
network can lead to contradictions in the student network’s 
optimization. Third, different layers of the network have distinct areas 
of concern for the object; that is, each encoding layer has a different 
degree of influence on the network classification results. However, the 
existing method (Wan et al., 2021) simply fuses the self-attention 
weights of all layers when mining local details, thereby ignoring the 
differences between each self-attention encoding layer, which affects 
image classification. In addition, these methods only improve the large 
prediction region generated by the network, paying more attention to 
global information and paying less attention to local and underlying 
features. Background noise in complex scenes can significantly impair 
the network’s ability to focus on subtle local features.

Based on the above analysis, this study proposes a novel fine-
grained image classification method utilizing the MogaNet network 
and a multi-level gating mechanism. First, using MogaNet (efficient 
multi-order gated aggregation network) as the backbone network, in 
the training stage, to extract multi-scale features, a contextual 
information extractor (CIE) is designed to remove the redundant 
information of the context, extract fine-grained local features with 
spatial context from the deep features, and capture the subtle changes 
in each region. Second, the feature elimination strategy (FES) is 

https://doi.org/10.3389/fnbot.2025.1630281
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li and Chen 10.3389/fnbot.2025.1630281

Frontiers in Neurorobotics 03 frontiersin.org

designed to mitigate the impact of fuzzy class features and 
backgrounds on classification, thereby improving the quality of 
processing ambiguous objects and complex backgrounds. Meanwhile, 
a multi-level gating mechanism is introduced to obtain the saliency 
features of images. Finally, features of different depths are fused to 
produce a refined prediction region. Experiments demonstrate that 
the proposed method exhibits favorable classification characteristics.

2 Related research

2.1 Fine-grained image classification

Currently, fine-grained image classification methods encompass 
local localization, feature coding, and attention mechanisms. For 
example, Ge et al. (2019) proposed a weakly supervised supplementary 
component model for fine-grained image classification. This method 
extracted rough object instances through mask R-CNN and CRF 
segmentation, then searched for the best component model, and fused 
this component information using bidirectional LSTM, which 
significantly improved classification performance. In order to obtain 
highly identifiable local discriminant regions, Liu et  al. (2021) 
proposed a multi-regional attention method. The attention mechanism 
was repeatedly applied to focus on secondary features, combined with 
background removal and up-sampling techniques to obtain accurate 
local image features. Finally, a rectangular box was used to count 
positions, thereby reducing detail loss. In addition, combining 
multiple methods is also an effective strategy for improving 
performance and solving problems more comprehensively. Zhang 
et al. (2016) proposed a multi-scale collaborative differential network. 
They employed different kernels and pooling methods to obtain 
images of varying scales and then input these images into the basic 
network to generate multi-scale feature blocks. These blocks were 
fused to create features with more comprehensive information. Finally, 
these features were fed into a collaborative differential network to 
capture second-order information about the image. However, the 
effectiveness of the model largely depends on the adequacy of the data, 
and it is challenging to obtain data for rare species. Feature learning 
plays a crucial role in nearly all image tasks, including retrieval, 
detection, and classification. The performance of deep convolutional 
networks is particularly outstanding, and their success is mainly 
attributed to the ability to learn discriminative deep features. In the 
early days of deep learning development, the features (activations) of 
fully connected layers were typically used as image representations. 
Subsequently, with the continuous development of deep learning, 
researchers discovered that the feature maps of deeper convolutional 
layers contain intermediate and advanced information, such as parts 
of an object or the entire object. This has led to the widespread use of 
convolutional features/descriptors. Moreover, compared with the 
output of the fully connected layer, the application of encoding 
techniques to these local convolutional descriptors has brought 
significant improvements.

To some extent, the improvement of encoding techniques comes 
from the high-order statistics encoded in the final features. Especially 
for fine-grained recognition, when the Fisher vector encoding of SIFT 
features (Scale-Invariant Feature Transform) outperforms the fine-
tuned AlexNet in several fine-grained tasks, the demand for 
end-to-end modeling of high-order statistics becomes apparent. 
Bilinear convolutional neural networks represent images as the mixed 

outer product of features derived from two deep convolutional neural 
networks, thereby encoding the second-order statistics of 
convolutional activation and significantly improving fine-grained 
recognition. However, bilinear mixed features generate extremely 
high-dimensional features, resulting in a significant increase in the 
number of parameters in the deep network classification module. This 
may lead to overfitting and make it impractical in practical 
applications, especially in large-scale applications. Therefore, this 
study focuses on exploring fine-grained image classification methods 
in a few-shot learning environment.

2.2 Few-shot learning

In a few-shot learning environment, due to the limited number of 
samples, the model is prone to overfitting, which reduces its 
generalization ability to new samples (Song et al., 2023). Few-shot 
learning strategies can be  divided into two main categories: 
optimization-based meta-learning methods and metric-based 
learning methods. The core of meta-learning lies in enhancing the 
ability of models to adapt quickly to new tasks, although challenges 
arise when dealing with domain shifts. Metric learning is another 
widely used strategy that measures similarity by calculating the 
distance between sample features. For example, the prototype network 
proposed by Xu et al. (2020) calculates the average vector of samples 
within a class as the class prototype and compares the new sample 
with the class prototype to achieve fast classification. Yan et al. (2023) 
proposed the discriminant spatial metric network, aiming to 
maximize inter-class dispersion and minimize intra-class dispersion, 
and effectively use the geometric structure of samples to enhance the 
discriminant ability. Wei et  al. (2019) introduced the concept of 
few-shot fine-grained recognition and designed a piecewise smart 
mapping function to analyze bilinear features by generating decision 
boundaries through a set of sub-classifiers. Folkesson et al. (2008) 
proposed a method for the adaptive selection of representative local 
descriptors, modifying the traditional KNN classification model to 
adjust the weights based on the distance between neighboring points. 
In addition, other studies (Nie et  al., 2023) have used attention 
mechanisms to enhance semantic information and focus on image-
rich regions.

2.3 Frequency domain learning

As an effective tool, frequency analysis has been widely utilized in 
deep learning to extract frequency features from signals. Mitsuhata 
et al. (2001) employed the Fourier transform and its inverse to reduce 
the discrepancy between the source distribution and object 
distribution by adjusting the low-frequency components. Zhong et al. 
(2022) converted RGB color images into the frequency domain and 
developed a frequency selection strategy to select frequencies with 
abundant information. In addition, Chen and Wang (2021) discussed 
the influence of different frequency components on few-shot learning 
tasks and proposed a new frequency-guided few-shot learning 
framework. The framework could adaptively mask relevant 
information in images according to specific task requirements. Unlike 
the above work, this study identifies the overall structure of the image 
by extracting features in the frequency domain, thereby avoiding 
disturbances from local noise. Local changes in the image are then 
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captured in the airspace. The combination of the two provides better 
resistance to noise and other interference, and parallel processing can 
also provide higher degrees of freedom for subsequent operations.

3 Proposed image classification

The proposed fine-grained image classification method, based on 
the MogaNet network and a multi-level gating mechanism, is 
illustrated in Figure 1.

First, the MogaNet backbone network is utilized to extract multi-
scale feature maps. Then, a contextual information extractor is 
proposed to extract both global features, including shapes and 
textures, and local features, including edges and corners, using multi-
scale sliding windows. The attention mechanism is used to suppress 
low-context areas and enhance the ability to capture detailed features. 
Meanwhile, a multi-level gating mechanism (MGM) is introduced to 
obtain the saliency features of images. Then, a feature elimination 
module is designed to reduce the impact of fuzzy class features and 
background features on network classification by combining multi-
modal feature interaction. Finally, a full connection layer is used to 
fuse features of different scales, and different input images are 
classified through the classification layer.

3.1 MogaNet

The backbone network determines the feature extraction 
capability of the algorithm and its application potential in 
downstream tasks. Selecting a suitable backbone can help the network 
focus on improving fine-grained problems. Recent studies have 
shown that, with advanced training settings and updated structures, 
convolutional neural networks can achieve comparable or better 
performance than the ViT without increasing computational 
requirements. The MogaNet, designed by Li et al. (2023), utilizes an 
improved convolutional macro architecture and optimization strategy 
to achieve faster inference speed and higher accuracy with the same 
number of parameters. MogaNet performs information mining and 
channel aggregation in pure convolutional networks and is 

significantly superior to current mainstream backbone networks in 
general image classification, image retrieval, and semantic 
segmentation at a lower computational cost. This success 
demonstrates that the MogaNet network can extract highly powerful 
features and has significant potential for transfer learning in 
downstream tasks. The selected MogaNet-L in this study consists of 
four stages. After the input image passes through different stages, the 
feature map × ×∈ i i iH W C

iF R  at different scales can be  obtained. i 
indicates the number of phases of the backbone network. iH , iW , and 
iC  represent the height, width, and number of channels of the feature 

map. After the input image passes through stage 1, the height and 
width of the feature map are reduced to one-quarter of the original 
size. Thereafter, after each stage, the height and width of the feature 
map are halved, and the number of channels is increased to four 
times that of the previous stage.

3.2 Contextual information extractor

Compared to global features, local features are abundant in the image, 
the correlation between features is low, and the influence of occlusion is 
minimal. Previous fine-grained image classification methods typically 
employ global features to generate large prediction regions, making it 
challenging for the network to discern local, detailed features in unclear 
objects and complex scenes. Moreover, the detection objects in the image 
are often mixed with the background or occupy only a small part of the 
image, and the local features directly obtained by the network from the 
local region are very limited. Since each object always exists in a specific 
environment or coexists with other objects, a good representation of 
contextual information of objects/scenes can integrate global and local 
features, help the network detect objects, and play a key role in fine-
grained classification tasks. Based on the above analysis, a 3-layer 
contextual information extractor CIE is designed. Each layer has the same 
structure and is composed of a multi-scale sliding window and attention 
guide mechanism. Through a multi-scale sliding window, spatial 
contextual information of deep features is captured. Then, an attention-
directing mechanism is used to suppress low-contextual information 
areas of shallow features and up-sample deep features to provide an 
adequate representation of important targets.

FIGURE 1

Proposed image classification structure.
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The single-layer structure of CIE is shown in Figure 2. Its input 
comes from the output feature map iF  and +i 1F  of any adjacent layer 2 
of the backbone network. × ×∈ i i iH W C

iF R , + + +× ×
+ ∈ i 1 i 1 i 1H W C
i 1F R , where 

iF  is a shallow feature and +i 1F  is a deep feature.
First, a two-dimensional convolution is used to change the 

number of channels of the deep feature +i 1F  into +i 1C /16 and +i 1C /36
, and the spatial contextual information of the deep feature is mined 
through a sliding window operation. The expression is shown in 
Equations 1 and 2.

 ( )( )+ +=1
i 1 i 1 1F Unfold Conv2d F ,s  (1)

 ( )( )+ +=2
i 1 i 1 2F Unfold Conv2d F ,s  (2)

Unfold shows the sliding window operation. 1s  and 2s  are the sizes 
of the two sliding windows, respectively. +

1
i 1F  and +

2
i 1F  respectively 

represent the feature map obtained after the sliding window operation. 
The number of channels of +

1
i 1F  and +

2
i 1F  is determined by the size of the 

sliding window. Set = ×1s 2 2 and = ×2s 3 3 , the number of channels of 
the two feature graphs after sliding window operation is +i 1C / 4, which 
is consistent with the number of channels iC  of shallow feature iF . By 
concatenating +

1
i 1F  and +

2
i 1F  together, it can obtain the high-level 

descriptor + × ′
∈

i 1C s
4gf R , where s’ is the sum of the widths of the two 

features after the sliding window operation. gf  aggregates features from 
multiple local parts of a deep feature and their contextual information and 
can emphasize the importance of the local. The gf  is computed is as 
Equation 3.

 
( )+ += 1 2

g i 1 i 1f concate F ,F
 

(3)

where concate represents the feature concatenation function.
Inspired by the attention approach, we  align the high-level 

descriptor gf  with the shallow feature iF  to calculate the similarity 
between them and obtain the repeated contextual information af  in gf  
through the vector inner product operation. × ×∈ i i iH W C

af R . The af  
expression is as Equation 4.

 ( )= ⊕ ⊕ T
a g i gf f F f

 (4)

The deep layers of the network perceive more comprehensive 
semantic information, while the shallow layers focus on details 
such as edges and corners. That is, deep features have more 
semantic context, while shallow features have more detailed 
context, so for ambiguous targets in complex backgrounds, 
repeated contexts will contain more useless semantics. Therefore, 
redundant features are removed from shallow features to extract 
fine-grained local feature Af  with spatial context from global 
information. The Af  expression is as Equation 5.

 = −A i af F f  (5)

The feature +i 1f  containing rich contextual information is obtained 
by downsampling the local feature to the deep feature. 

+ + +× ×
+ ∈ i 1 i 1 i 1H W C
i 1f R , ∈  i 1,3 . The expression for +i 1f  is as Equation 6.

 ( )+ += +i 1 i 1 fpn Af F f f  (6)

where fpnf  represents the feature pyramid sub-sampling function.

FIGURE 2

Framework of a single-layer contextual information extractor.
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3.3 Multi-level gating mechanism (MGM)

The multi-level gating mechanism is derived from MogaNet, a 
pure convolutional neural network inspired by Vision Transformers 
(ViT). Its characteristic is to promote the extraction of middle-order 
features, thereby improving the model’s performance. The multi-
level gating mechanism is shown in Figure 3. The structure of the 
multi-level gating mechanism consists of two branches, and the left 
branch can be regarded as a residual connection. The branch on the 
right is mainly used for feature extraction. For the feature extraction 
of the input feature map, a depth-separable convolution operation is 
first performed using a 5 × 5 convolution kernel. Then the feature 
graph is sliced into three sub-feature graphs. For two sub-feature 
graphs, convolution kernels with dimensions of 5 × 5 and 7 × 7 are 
used for feature extraction. In the MGM model, the design of multi-
branch convolution (5 × 5, 7 × 7) is primarily adopted to capture 
image features at different scales, thereby better handling various 
structural and textural information within the image. The features 
in an image can be  classified into fine-grained features (such as 
texture and detail) and coarse-grained features (such as shape and 
structure). Convolution kernels of different sizes can extract these 
features at different scales, thereby providing richer information for 
the model.

Dilated convolution is a special convolution operation. It expands 
the receptive field of the convolution kernel by inserting a dilation rate 
between the elements of the convolution kernel without the need to 
add additional parameters. This design enables the model to capture 
a wider range of contextual information without increasing the 
computational complexity.

The other one is directly mapped to the next layer, and the three 
sub-feature graphs are concatenated using a 1 × 1 convolution for 
fusion. Then, the SiLU function (Elfwing et  al., 2018) is used for 
feature activation. Finally, the features on the two branches are added, 
and the output is adjusted using a 1 × 1 convolution. The advantage of 
a multi-level gating mechanism is that the use of large convolution 

kernels and expansive convolution of different sizes can significantly 
enhance the receptive field of the network, thereby capturing multi-
level features and improving the model’s performance (Yin et  al., 
2024a; Yin et al., 2024b).

3.4 Feature elimination strategy

A fuzzy category refers to the result of predicting similar 
classification scores, which is one of the primary causes of 
misclassification. After obtaining the features containing contextual 
information through the above CIE, a feature elimination strategy is 
designed to further eliminate the influence of background and fuzzy 
classes on the network, allowing it to focus on more discriminative 
features. By eliminating similar regions and background features 
between classes, forcing the network to focus on other discriminant 
features, ViT-SAC (self-assessment classifier) examined the fuzziness 
in the first K prediction classes and utilized the images and the first K 
prediction results to reevaluate the classification. This research 
method is inspired by ViT-SAC, but the proposed method is different 
from it. (1) This method does not need to crop the original image 
through the generated feature map and re-input it into the network, 
achieving end-to-end training and avoiding the impact of training 
errors and errors in the previous stage on the network training in the 
later stage; (2) This method uses prediction scores to divide the feature 
map into object candidate regions and background candidate regions 
and deletes the corresponding fuzzy class feature points and 
background feature points directly at the pixel level. Since the output 
+i 1f  of CIE is context-sensitive, and deleting certain features does not 

lose the contextual information of the image.
The feature elimination strategy (FES) consists of four modules, 

each with the same structure. The specific structure of a single module 
is shown in Figure 4. X is the input of this module. X’ represents the 
output of this module. Input 1X  of module 1 is the feature graph 1F  in 
stage 1. Inputs 2 4X ~ X  of modules 2–4 are outputs +i 1f  of CIE, ∈  i 1,3

FIGURE 3

MGM structure.
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. Each FES module contains a fuzzy class feature elimination branch 
and a background elimination branch. The double-branch structure 
comprehensively considers the contribution degree of fuzzy class 
features and background features to network classification. It generates 
discriminative features by eliminating the feature points that are less 
helpful to classification. For any module of FES, the feature points in 
the input feature graph X are numbered one by one. jX  represents the 
j-th feature point in X, ∈ ×j {1,2, ,H W) . The feature number set Z  
contains the numbers of all the feature points in X. Z  can be expressed 
is as Equation 7.

 { }= ×Z 1,2, ,H W  (7)

The feature elimination branch of the fuzzy class is used to 
eliminate the feature points of common concern of the first K terms 
fuzzy class. First, the visual feature ∈ VdV R  is extracted by the fully 
connected layer, and the first K prediction results are obtained, where 
Vd  represents the dimension of V . Then, the Glove word embedding 

method is used to learn the language modal information of class tags 
=   1 k KE E , ,E , ,E , ∈ edkE R . This article uses the default ed

=1,024 in the Glove to represent the dimension of each class label 
information. Bilinear attention network (BAN) (Kim et al., 2018) is 
used to fuse the two-modal information X and E, and the joint feature 
∈ edJ R  and fuzzy attention map ×∈ H WM R  are obtained, with the 

expression is as Equations 8–10.

 ( )( )= σ ×m Linear X E
 (8)

 ( ) ( )=M sum m .resize H,W  (9)

 

×
= × ×∑ ∑
H W K

T
j k

j 1
J X M E

 
(10)

where ( )σ ⋅  represents the Softmax function. ( )⋅Linear  
indicates the fully connected layer. m represents K feature maps 

obtained by BAN. × ×∈ H W Km R . ( )⋅sum  means add by column, 
and ( )resize H,W  means return the feature vector of size ( ×H W). 
The response of M reflects the region of common concern among 
the first K fuzzy classes, and the higher the response of the feature 
points, the more likely it is to cause incorrect classification. The 
×H W  feature points in M are sorted according to the response 

size, and the feature points of common concern of the first τ  
fuzzy classes are discarded, and the fuzzy cancellation feature 
number set maxZ  is obtained. maxZ  is a subset of the set Z  of all 
feature numbers.

Background elimination is used to eliminate feature points with 
fewer classes, thereby reducing the influence of complex 
backgrounds on classification results. The classification score X of 
all feature points in x  is extracted by the full connection layer, 

× ×∈ H W Kx R . Each feature point is divided into class P, where P is 
the total number of classes. The maximum prediction probability is 
used as the classification score of the feature point, and a low 
classification score indicates that the feature point belongs to the 
background feature. The first δ  feature points are selected 
according to the classification scores from high to low, and the 
background elimination feature number set minZ  is obtained. minZ  
is a subset of the set z of all feature numbers.

Finally, it takes the intersection of the two numbered sets 
= ∩final min maxZ Z Z . By gating the feature points in finalZ , a new 

feature graph X’ is obtained, and the expression is as Equation 11.

 { }= ∈j finalX |j ZX'
 (11)

where 
×∈ N CX R' , N is the total number of extracted feature 

numbers, and C is the number of channels in the feature map.
Since the feature number ( )finalg Z  in finalZ  is not fixed, to 

determine the classifier parameter of the X’ connection, it takes 
= δ− τN . When ( ) >finalg Z N, delete the feature numbers with low 

classification scores in finalZ  until ( ) =finalg Z N; When ( ) <finalg Z N, 
add the number of features with high classification scores to finalZ  from 
Zmax until ( ) =finalg Z N.

FIGURE 4

Framework of single-layer feature elimination strategy.
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3.5 Feature fusion

Using single-scale feature maps for classification training, the 
network generates large prediction regions and cannot adequately 
characterize image details. Therefore, the multi-scale feature 
fusion layer is introduced to reduce the loss of detail features and 
fully mine multi-scale spatial information. After the FES strategy, 
four feature maps of different scales are obtained namely, 

′ ×= 1 11 N CX R , ′ ×= 2 22 N CX R , ′ ×= 3 33 N CX R , ′ ×= 4 44 N CX R . First, the 
dimensions of four feature graphs are unified by using 
one-dimensional convolution with a convolution kernel size 1, 
and they are joined together along the channel dimension to 
obtain ′×∈ 1N C

finalX R . Here, = + + +1 2 3 4N N NN N' . finalX  
contains all the feature points mined by the network that are 
useful for classification. The selected local features are then 
recombined into global features that can represent the entire 
image through a fully connected layer. Thus, a feature graph of 
dimension ′× 1N CR  can produce a prediction of dimension PR  after 
passing through the fully connected layer.

3.6 Loss function

Due to small differences among the subclasses in the image 
classification task, the cross-entropy loss function alone is insufficient 
to completely supervise the network’s iterative learning. The loss 
functions designed in this study include prediction loss finalL , 
background elimination loss backL , and fuzzy class elimination loss 
jointL  and drop feature point loss dropL . The total loss L can 

be expressed is as Equation 12.

 = + + +final back joint dropL L L L L  (12)

finalL  is calculated by the cross-entropy loss function ceL , which 
can be expressed is as Equation 13.

 ( )=final ce finalL L X ,y  (13)

where y  indicates the sample label.
backL  is used to oversee the background elimination branch of 

the FES policy. The average classification score ∈i Pl R  of all feature 
points is used to calculate the overall loss of iX  with the 
Equations 14 and 15.

 

×

=
=

× ∑
H W

i i
j

j 1

1l x
H W

 
(14)

 = =
= −

× ∑∑
4 P

i
back p p

i 1p 1

1L y log l
H W

 
(15)

where i
jx  represents the classification score of the feature point 

whose feature number is j in the −i th  stage. py  represents the real 
label of the sample. i

pl  represents the prediction probability that il  
belongs to class p.

jointL  is used to supervise the fuzzy class feature elimination 
branch of FES policy, which can be expressed as Equation 16.

 = =
=∑∑

4 P
i

joint p p
i 1p 1

L y log J
 

(16)

where i
pJ  represents the prediction probability that the feature 

vector iJ  of −i th stage belongs to class p.
dropL  is calculated by the sum ih  of the discarded features in the 

FES policy. The expression with the Equations 17 and 18.

 ∈ −
= ∑

final

i i
j

j Z Z
h X

 
(17)

 
( )

= =
= − −∑∑

4 P
i

drop p p
i 1p 1

L y log 1 h
 

(18)

where i
ph  indicates that ih  belongs to the prediction probability of 

class p.

4 Experimental results and analysis

In order to verify the effectiveness of the proposed method, the 
model training is carried out on four publicly available fine-grained 
datasets: Mini-ImageNet (Oreshkin et al., 2018), CUB-200-2011 (CUB) 
(Zhai and Wu, 2018), Stanford Dogs (Dogs) (Khosla et al., 2011), and 
Stanford Cars (Cars) (Jiang and Yin, 2023), and the experimental 
comparison is made with other few-shot fine-grained image classification 
methods. In addition, ablation experiments are performed to verify the 
performance advantages of individual modules, the complexity of multi-
level gating mechanism modules in backbone networks is analyzed, and 
the spatial effect of feature visualization is demonstrated.

4.1 Experiment set

The standard fine-grained datasets CUB, Dogs, and Cars, and 
the few-shot dataset Mini-ImageNet, are used for comparison 
experiments. CUB is a representative bird dataset containing 11,788 
images from 200 different bird species. The Cars dataset comprises 
16,185 images of 196 different car brands. The Dogs dataset collects 
120 different dog breeds and contains a total of 20,580 images. 
Mini-ImageNet is the most widely used dataset in the field of 
few-shot learning, comprising 100 categories with 600 images each, 
totaling 60,000 color images. The above datasets are shown in 
Table 1.

Although the data volume division varies under different tasks, in 
this study, we  uniformly divide the numbers of the training set, 
validation set, and test set of these four datasets into 60:20:20%.

4.2 Experiment settings

This experiment was conducted on a desktop computer 
equipped with a GTX 1660S GPU, utilizing the PyTorch 1.10 
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framework and Python 3.7 version to complete the experiment. To 
evaluate the performance of a fine-grained image classification 
method, the accuracy index is used as the criterion for judgment. 
The model conducts 400 rounds of epoch training without using 
any additional data. The few-shot learning configurations are 5-way 
1-shot and 5-way 5-shot. Among them, only 1 or 5 samples are 
extracted from each class as a support set so as to verify the 
classification ability of fine-grained images in the case of a few-shot 
sample. The image samples for training and testing are adjusted to 
84 × 84 pixels. The Adam optimizer is used for model training, with 
a learning rate of 0.001. In the final testing phase, the classification 
accuracy of the test sample and its 95% confidence interval are 
evaluated by calculating the average of 600 randomly 
generated scenarios.

4.3 Experimental comparison

4.3.1 Experimental comparison on a few-shot 
datasets

To evaluate the performance of the proposed method in the 
classification task, an experimental comparison is conducted on the 
Mini-ImageNet dataset, as presented in Table 2.

Table 2 shows the experimental results of the 5-way 1-shot and 
5-way 5-shot classification tasks on the Mini-ImageNet dataset. The 
classification accuracy rates reach 65.87 and 79.33%, respectively. In 
the 1-shot setting, the accuracy performance of the proposed method 
is superior to other methods, which is attributed to two main factors: 
(1) The advantage of multi-scale feature fusion enhances the ability of 
information capture and (2) accelerated model adaptation to new 
categories by setting a multi-level gating mechanism.

To evaluate the performance of the model under low-light 
conditions, we use the low-light dataset for testing. These images 
simulate scenes at night or in low-light environments, accurately 
reflecting the model’s performance under such conditions. Table 3 
presents the experimental results obtained under low-light conditions.

Medical images usually have high resolution and complex 
textures and structures, and the annotation cost is relatively high. 
Remote sensing images have extensive geographical coverage, 
multispectral information, and complex backgrounds. The images 
in these fields have significant differences in data distribution, 
feature space, and annotation methods. We conduct experiments 
using public medical image datasets (the ISIC skin lesion dataset). 
The dataset comprises high-resolution images of various skin 
lesions, accompanied by detailed and accurate annotations. 
We employ the transfer learning method and utilize a pre-trained 
model for the task of medical image classification. The result is 
shown in Table 4.

The experimental results show that through transfer learning. 
However, the results have declined somewhat compared with those of 
other datasets; the model can still achieve good performance in the 
task of medical image classification.

4.3.2 Experimental comparison on other datasets
To evaluate the classification performance on fine-grained 

datasets, this experiment is compared with several methods. As shown 
in Tables 5–7, the tables present the performance of different models 
for the 5-way 1-shot and 5-way 5-shot classification tasks on three 
fine-grained datasets.

As shown in the table, in the CUB dataset, the proposed model 
achieves the best performance in the 1-shot task, with an accuracy that 
is 5.46% higher than that of the sub-optimal model FFSNet, and the 
accuracy is 2.23% higher than that of the sub-optimal model dSE in 
the 5-shot task. On the Dogs dataset, the 1-shot task and 5-shot task 
increase by 2.26 and 0.98%, respectively, compared with the dSE 
method. However, on the Cars dataset, the accuracy of the proposed 
model is also higher than that of most methods in the 5-way 1-shot 
setting; however, it is slightly insufficient in the 5-way 5-shot 
classification task. This may be due to the lack of local diversity in the 
dataset, which leads to the overlapping of local areas of identification, 
thereby limiting the improvement of classification performance. In 
summary, the proposed method’s accuracy is superior to that of other 
methods on fine-grained datasets.

TABLE 1 Dataset information statistics.

Dataset Total 
number

Training Verification Testing

CUB 200 130 20 50

Dogs 120 70 20 30

Cars 196 130 17 49

Mini-ImageNet 100 64 16 24

TABLE 2 Experimental comparative analysis on the mini-ImageNet 
dataset.

Model 5-way 1-shot 5-way 5-shot

Matching net (Zhang et al., 2021) 43.67 55.42

ProtoNet (Zhang L. et al., 2024) 49.53 68.31

RelationNet (Kang et al., 2021) 50.55 65.43

DN4 (Li and Wu, 2024) 51.35 71.13

RCN (Wang et al., 2023) 53.58 71.74

ICNN (Wu et al., 2023) 49.82 68.77

FFSNet (Ma et al., 2023) 52.48 68.30

LCNet-ViT-FG (Shen and Qin, 

2025)

54.48 72.14

FET-FGVC (Chen et al., 2024) 56.44 72.95

dSE (Hossain et al., 2023) 59.53 77.47

Proposed 65.87 79.33

TABLE 3 Experimental comparative analysis on the low-light dataset.

Model 5-way 1-shot 5-way 5-shot

Matching net (Zhang et al., 2021) 42.37 54.81

DN4 (Li and Wu, 2024) 51.22 71.07

RCN (Wang et al., 2023) 53.45 71.68

LCNet-ViT-FG (Shen and Qin, 

2025)

54.47 72.13

FET-FGVC (Chen et al., 2024) 55.89 71.78

dSE (Hossain et al., 2023) 59.28 77.16

Proposed 65.76 79.31
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TABLE 8 Ablation experiments with different modules on CUB.

Modules 5-way 
1-shot

5-way 
5-shot

MogaNet 66.01 81.02

MogaNet + CIE 69.08 83.52

MogaNet + CIE + MGM 72.35 86.16

MogaNet + CIE + MGM + FES 73.87 87.58

TABLE 9 Ablation experiments with different modules on dogs.

Modules 5-way 
1-shot

5-way 
5-shot

MogaNet 51.17 68.71

MogaNet + CIE 55.30 72.18

MogaNet + CIE + MGM 62.42 77.55

MogaNet + CIE + MGM + FES 64.12 79.34

TABLE 10 Ablation experiments with different modules on cars.

Modules 5-way 
1-shot

5-way 
5-shot

MogaNet 54.23 73.58

MogaNet + CIE 62.87 77.64

MogaNet + CIE + MGM 72.42 82.62

MogaNet + CIE + MGM + FES 73.90 83.82

4.4 Ablation experiment

To illustrate the effectiveness of each module, we conduct ablation 
experiments on three fine-grained datasets: CUB, Dogs, and Cars. 

Under the two settings of 5-way 1-shot and 5-way 5-shot, modules are 
added sequentially for training, and results are obtained. The 
evaluation index is Top-1 accuracy. The specific experimental results 
are shown in Tables 8–10.

According to the table results, in the 5-way 1-shot classification 
task, the accuracy of the benchmark network increases by 3.08, 4.13, 
and 8.64%, respectively, after the CIE method is added. Subsequently, 
with the introduction of the MGM method, the performance further 

TABLE 4 Experimental comparative analysis on the ISIC skin lesion 
dataset.

Model 5-way 1-shot 5-way 5-shot

Matching net (Zhang et al., 2021) 41.22 52.91

DN4 (Li and Wu, 2024) 49.82 63.27

RCN (Wang et al., 2023) 51.83 65.69

LCNet-ViT-FG (Shen and Qin, 

2025)

52.40 67.55

FET-FGVC (Chen et al., 2024) 53.81 68.65

dSE (Hossain et al., 2023) 54.39 71.84

Proposed 63.18 72.41

TABLE 5 Experimental comparative analysis on the CUB dataset.

Model 5-way 1-shot 5-way 5-shot

Matching net 60.17 74.68

ProtoNet 50.78 75.17

RelationNet 64.05 77.98

DN4 53.26 82.01

RCN 66.59 82.15

DLG 64.88 83.42

ICNN 67.67 83.73

FFSNet 68.41 80.75

LCNet-ViT-FG 54.65 75.97

FET-FGVC 64.63 78.74

dSE 71.87 85.35

BSNet 66.00 81.10

Proposed 73.87 87.58

TABLE 6 Experimental comparative analysis on the dogs dataset.

Model 5-way 1-shot 5-way 5-shot

Matching net 46.21 59.90

ProtoNet 40.92 61.69

RelationNe 47.46 66.31

DN4 45.84 66.44

RCN 54.40 72.76

DLG 47.88 67.18

ICNN 58.40 78.19

FFSNet 54.09 70.96

LCNet-ViT-FG 49.19 70.27

FET-FGVC 61.86 77.49

dSE 61.86 78.36

BSNet 51.17 68.71

Proposed 64.12 79.34

TABLE 7 Experimental comparative analysis on the cars dataset.

Model 5-way 1-shot 5-way 5-shot

Matching net 44.84 66.85

ProtoNet 36.65 62.25

RelationNet 46.15 68.63

DN4 61.62 89.71

RCN 61.73 89.73

DLG 62.67 89.09

ICNN 72.87 87.78

FFSNet 58.43 75.79

LCNet-ViT-FG 60.15 89.73

FET-FGVC 70.85 87.84

dSE 76.47 93.43

BSNet 54.23 73.58

Proposed 73.90 83.82
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improves by 3.27, 7.12, and 9.55% compared to the previous results. 
In addition, the inclusion of the FES module enhances model 
performance by approximately 1.5%. The same experiment is 
performed on the 5-way 5-shot task, achieving classification 
accuracies of 87.58, 79.34, and 83.82% on three fine-grained datasets, 
respectively.

4.5 Complexity analysis of the feature 
fusion module

In order to verify the lightness of FES, this study uses the Thop 
method to calculate the number of parameters and the structure 
calculation amount of the model, where the network structure 
computation refers to the number of floating-point operations per 
image (GFLOPI) (Meng et  al., 2023) that occur during a single 
forward propagation when one image is input.

In this study, MogaNet is selected as the backbone network of this 
method. From the perspective of lightweight, compared to the ResNet 
series networks, the MogaNet network has a lower number of 
parameters and calculation amount, as shown in Table 11. It can 

be seen that the parameter number of MogaNet is 226,177, while the 
parameter number of ResNet12 is 10,737,672, indicating a significant 
difference in calculation amount. From the point of view of efficiency, 
the computing resources of few-shot learning tasks are often limited, 
and the lightweight MogaNet network can be  used to train and 
reason more efficiently. After adding the proposed FES module based 
on MogaNet, the number of parameters increases by only 11,536 
(approximately 5.1%), which is a small increase and does not 
significantly increase model complexity. Based on MogaNet, the 
calculation amount is increased by 1.56 GFLOPI/MB, which indicates 
that the calculation cost is lower. In summary, it demonstrates that 
FES can significantly enhance network performance while 
maintaining a minimal increase in parameters and 
computational requirements.

4.6 Loss function change curve

To evaluate the performance of the proposed method, loss 
convergence experiments are conducted on the CUB dataset for 5-way 

TABLE 11 Complexity comparison analysis.

Backbone GFLOPI/MB Parameters

MogaNet 40.49 226,177

MogaNet + FES 32.05 237,712

ResNet12 138.56 10,737,672

ResNet18 150.82 11,689,512

FIGURE 5

Loss change curve.

TABLE 12 The effect of τ on the performance of the model.

τ Accuracy/%

0.1 91.2

0.2 91.4

0.3 91.4

0.4 91.5

0.5 91.3

https://doi.org/10.3389/fnbot.2025.1630281
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li and Chen 10.3389/fnbot.2025.1630281

Frontiers in Neurorobotics 12 frontiersin.org

FIGURE 6

Visual result. (a) original image, (b) relation network method, (c) BSNet method, (d) proposed method.

1-shot and 5-way 5-shot settings in this section. As shown in Figure 5, 
the model loss changes with the increase of the training rounds under 
different training settings. In the first 50 rounds, the loss value of the 
two training settings decreases significantly, indicating that the model’s 
learning effect is obvious. During the intermediate period, the loss 
continues to decline, with the 1-shot task losing approximately 0.12 at 
200 rounds and the 5-shot task losing approximately 0.1 at the same 
number of rounds. At this point, the model’s learning rate starts to 
slow down, but it continues to optimize. After 300 rounds, the loss 
tends to flatten out and reach a stable state. From the overall trend, the 
loss value of the 5-way 5-shot task is consistently lower than that of 
the 5-way 1-shot task, indicating that under the same number of 

training rounds, the model for the 5-shot task outperforms that for the 
1-shot task, and its learning ability and stability are also stronger.

4.7 Hyperparameter analysis

In the FES model, parameters τ and δ are two key hyperparameters, 
which, respectively, control the sensitivity of feature extraction and the 
weight of feature fusion. To better understand the influence of 
parameters τ and δ on model performance, we conducted a parameter 
sensitivity analysis. We set different value ranges for the parameters τ 
and δ, respectively. τ∈[0.1,1.0], δ∈[0.01,0.1], and the step size is 0.05. 
We use accuracy to evaluate the model’s performance under different 
parameter settings on the CUB dataset, as shown in Tables 12, 13. It 
can be  seen from the experimental results that when τ = 0.4 and 
δ = 0.08, the model yields better results.

4.8 Visualization experiment

By comparing the response region visualizations of different 
models, this study demonstrates the degree to which each model 

TABLE 13 The effect of δ on the performance of the model.

δ Accuracy/%

0.05 92.5

0.06 92.6

0.07 92.6

0.08 92.7

0.09 92.5
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focuses on key features in the classification task, aiming to 
highlight the advantages of the model presented in this study. The 
original images of two bird species and two dog species are 
processed using the Grad-CAM algorithm. As shown in Figure 6, 
the proposed model in this study presents clearer and more 
concentrated features in the response area compared with 
Relation Network and BSNet. In the bird dataset, the high 
response area of the model is concentrated in the beak, wing, and 
other fine-grained features. In the dog dataset, the model 
responds strongly to key features of the dog, such as patterns and 
ears, which are crucial for distinguishing between different dog 
breeds. In contrast, although the response regions of Relation 
Network and BSNet cover some key features, the distribution is 
relatively scattered, lacking the high response concentration and 
clarity of the method presented in this study. The proposed 
method in this study effectively combines MGM and FES, 
improving the model’s response concentration in important 
regions and enhancing its ability to discriminate subtle 
image features.

5 Conclusion

To overcome the limitations of the traditional MogaNet model in 
capturing local details and the shortcomings of existing image 
classification methods, this study proposes a novel fine-grained 
image classification network. The network makes full use of the 
multi-scale features of the backbone to enhance its ability to capture 
local details. A contextual information extractor is designed, which 
uses contextual information and an attention mechanism to guide 
feature transformation, suppress low-information regions, and 
enhance important regions. The class prediction score is used to 
eliminate background features and fuzzy class features, allowing the 
network to focus on discriminative regions. A variety of loss 
functions are designed, and the constraint feature extraction and 
fuzzy feature elimination further improve the network’s performance. 
The model is evaluated on a few-shot fine-grained benchmark 
dataset, achieving classification accuracy superior to the majority of 
state-of-the-art image classification methods. In future research, the 
combination of transfer learning and fine-grained image recognition 
methods will be further explored to enhance the model’s performance 
across various application scenarios.
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