AUTHOR=Li Dahai , Chen Su TITLE=Fine-grained image classification using the MogaNet network and a multi-level gating mechanism JOURNAL=Frontiers in Neurorobotics VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2025.1630281 DOI=10.3389/fnbot.2025.1630281 ISSN=1662-5218 ABSTRACT=Fine-grained image classification tasks face challenges such as difficulty in labeling, scarcity of samples, and small category differences. To address this problem, this study proposes a novel fine-grained image classification method based on the MogaNet network and a multi-level gating mechanism. A feature extraction network based on MogaNet is constructed, and multi-scale feature fusion is combined to fully mine image information. The contextual information extractor is designed to align and filter more discriminative local features using the semantic context of the network, thereby strengthening the network’s ability to capture detailed features. Meanwhile, a multi-level gating mechanism is introduced to obtain the saliency features of images. A feature elimination strategy is proposed to suppress the interference of fuzzy class features and background noise. A loss function is designed to constrain the elimination of fuzzy class features and classification prediction. Experimental results demonstrate that the new method can be applied to 5-shot tasks across four public datasets: Mini-ImageNet, CUB-200-2011, Stanford Dogs, and Stanford Cars. The accuracy rates reach 79.33, 87.58, 79.34, and 83.82%, respectively, which shows better performance than other state-of-the-art image classification methods.