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In nasal endoscopic surgery, the narrow nasal cavity restricts the surgical field

of view and the manipulation of surgical instruments. Therefore, precise real-

time intraoperative navigation, which can provide precise 3D information, plays

a crucial role in avoiding critical areas with dense blood vessels and nerves.

Although significant progress has been made in endoscopic 3D reconstruction

methods, their application in nasal scenarios still faces numerous challenges.

On the one hand, there is a lack of high-quality, annotated nasal endoscopy

datasets. On the other hand, issues such as motion blur and soft tissue

deformations complicate the nasal endoscopy reconstruction process. To tackle

these challenges, a series of nasal endoscopy examination videos are collected,

and the pose information for each frame is recorded. Additionally, a novel model

named Mip-EndoGS is proposed, which integrates 3D Gaussian Splatting for

reconstruction and rendering and a di�usion module to reduce image blurring

in endoscopic data. Meanwhile, by incorporating an adaptive low-pass filter

into the rendering pipeline, the aliasing artifacts (jagged edges) are mitigated,

which occur during the rendering process. Extensive quantitative and visual

experiments show that the proposed model is capable of reconstructing 3D

scenes within the nasal cavity in real-time, thereby o�ering surgeons more

detailed and precise information about the surgical scene. Moreover, the

proposed approach holds great potential for integration with AR-based surgical

navigation systems to enhance intraoperative guidance.

KEYWORDS

nasal endoscopy, 3D reconstruction, 3D Gaussian Splatting, di�usion model, anti-

aliasing

1 Introduction

The demand for endoscopes in transnasal surgery is growing, both for endoscopic

examination and endoscopic surgery. For example, according to statistics, rhinosinusitis

(RS), an inflammatory disease of the nasal cavity and paranasal sinuses, affects

approximately one-six of adults in the United States, resulting in over 30 million diagnoses

annually (Wyler and Mallon, 2019; Rosenfeld et al., 2015). Functional endoscopic sinus

surgery (FESS), a common method for treating RS, involves inserting a slender endoscope

into the nasal cavity to enter the sinus. The endoscope that enters the cavity provides the

doctor with a clear field of view, which helps to accurately locate the lesion.
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Endoscopy, compared to CT imaging, not only has a lower

cost and no radiation, but also better real-time performance, which

helps doctors accurately understand the relationship between target

lesions and critical anatomical structures (Münzer et al., 2018;

Pownell et al., 1997). However, mainstream monocular endoscopy

cannot obtain depth information about the internal structure of the

nasal cavity, which limits its application in endoscopic examination

and endoscopic surgery. Therefore, surface reconstruction from

endoscopic sequences enables doctors to obtain 3D information of

the internal structure of the nasal cavity, which will better facilitate

examination decisions and guide surgical operations.

Structure from Motion (SfM) (Snavely et al., 2006) and

Simultaneous Localization and Mapping (SLAM) (Grasa et al.,

2013; Mur-Artal et al., 2015) are widely used in depth estimation

of endoscopic images, which recover 3D structures by tracking

the position of feature points in different images. Widya et al.

(2019) investigated how to utilize SfM to overcome the challenge

of reconstructing gastric shapes from texture-limited endoscopic

images. Leonard et al. (2016) studied an image-enhanced

endoscopic navigation method based on the SfM algorithm to

improve the accuracy and safety of functional endoscopic sinus

surgery. Wang et al. (2020) proposed a bronchoscope enhancement

scheme based on visual SLAM, which achieved the reconstruction

of feature point models and improved navigation performance;

(Mahmoud et al., 2017) successfully stabilized the tracking of

endoscope position by combining monocular endoscopy with

ORB-SLAM, and successfully repositioned it after tracking loss.

In recent years, neural rendering (Kato et al., 2018; Tewari et al.,

2020; Mildenhall et al., 2021) used differentiable rendering and

neural networks, surpassing the limited performance of traditional

3D reconstruction. For instance, Wang et al. (2022) utilized

dynamic neural radiance fields to represent deformable surgical

scenes and explored the potential of neural rendering in 3D

reconstruction of surgical scenes. Batlle et al. (2023) introduced

LightNeus, which combines neural implicit surface reconstruction

technology with photometric models of light sources to achieve

3D reconstruction of the entire colon segment. Chen P. et al.

(2024) first utilized Neural Radiance Fields (NeRF) (Mildenhall

et al., 2021) to achieve 3D reconstruction of dynamic cystoscopic

examination scenes, which can recover scenes under limited

perspectives and features, alleviating texture loss problem that

traditional algorithms may encounter.

Furthermore, doctors can observe lesion areas from different

perspectives through 3D reconstruction using videos obtained

from endoscopic examinations, aiding in formulating more

precise surgical plans and predicting surgical difficulty and risks.

During surgery, the real-time rendering of the 3D scene inside

the nasal cavity can be achieved through the posture of the

endoscopic camera, providing additional perspective and depth

information, which enables doctors to perform cutting, suturing,

and other operations more accurately. However, the application of

traditional methods in 3D reconstruction of nasal endoscopy has

certain limitations. For example, geometry-based reconstruction

techniques, such as SfM (Snavely et al., 2006; Widya et al., 2019;

Leonard et al., 2016; Schonberger and Frahm, 2016) and SLAM

(Grasa et al., 2013; Wang et al., 2020; Mahmoud et al., 2017; Mur-

Artal et al., 2015), often struggle to accurately capture feature points

in complex nasal scenes with rich vascular networks and lack of

distinct textures, resulting in sparse reconstruction. Additionally,

endoscopic images may be affected by lighting effects and lens

jitter, leading to image blurring and making reconstruction more

complex. The emerging technology based on NeRF (Wang et al.,

2022; Batlle et al., 2023; Chen P. et al., 2024) is to use implicit neural

representation for volume parameterization of 3D space, which not

only is the flexibility poor, but also has slow inference speed, greatly

reducing the real-time performance of intraoperative surgery.

Therefore, in this paper, a nasal endoscope reconstruction

model, Mip-EndoGS is proposed. Specifically, building upon

the foundation of the 3D Gaussian Splatting model (3D-GS)

(Kerbl et al., 2023), we employ a diffusion model to alleviate

the impact of dynamic blurring in endoscopic images on the

reconstruction results. In addition, an adaptive low-pass filter is

introduced to reduce aliasing artifacts during the rendering process.

We collect a dataset of high-definition surgical videos of nasal

examinations performed by professional physicians, recording the

spatial position of each frame. Subsequently, we apply the proposed

Mip-EndoGS model to this dataset, achieving high-quality and

real-time rendering of 3D nasal endoscopic scenes. The main

contributions of this paper are as follows.

1. A nasal endoscopy reconstruction model, Mip-EndoGS, is

proposed to achieve high-quality 3D reconstruction of nasal

endoscopy, which integrates a diffusion module into the 3D

Gaussian Splatting framework to remove blur from endoscopic

images.

2. An adaptive low-pass filter is embedded into the Gaussian

rendering pipeline to overcome aliasing artifacts, which achieves

realistic 3D reconstruction of nasal endoscopy scenes.

3. Extensive quantitative and qualitative experiments are

conducted to validate the proposed model’s effectiveness in

reconstructing and rendering nasal endoscopy scenes.

2 Materials and methods

2.1 Nasal endoscopy dataset

The nasal endoscopy dataset, NasED, is constructed by our

own. There are 16 subjects with a total of 51 video segments.

The data is collected using XION 4K endoscope and NDI optical

surgical navigation system. The videos record the process from the

inferior and middle nasal meatus to the pharyngeal orifice of the

eustachian tube, capturing multi-angle shots of the internal nasal

structures, such as the middle and inferior turbinates. Furthermore,

the video data is preprocessed into nasal endoscopy examination

images with a resolution of 1280 x 720, totaling over 30,000 frames.

2.2 Method architecture

The proposed high fidelity 3D reconstruction and rendering

model framework is shown in Figure 1, which comprises two stages,

image enhancement based on the diffusion model and 3D-GS

differentiable rendering using an adaptive low-pass filter. In the

first stage, we uniformly sample several endoscopic views from
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FIGURE 1

The overview of our Mip-EndoGS pipeline. Firstly, relatively blurry views are processed by the di�usion module for deblurring processing.

Subsequently, the improved image sequence is processed through SfM to obtain sparse 3D point clouds and camera poses. Then, The generated

point clouds and camera poses are fed into the Gaussian splatting pipeline for fast di�erentiable rendering. Adaptive low-pass filtering is applied

during splatting to reduce aliasing and improve the quality of 3D nasal endoscopy reconstruction.

the endoscopic video in chronological order and select relatively

blurry views as input to the diffusion module (Chen Z. et al.,

2024) for deblurring processing. Subsequently, the deblurred views

are merged with the original ones to obtain an image-enhanced

sequence of endoscopic images. In the second stage, the optimized

image sequence is processed through Structure-from-Motion (SfM)

(Snavely et al., 2006) algorithms to obtain sparse 3D point clouds

and camera poses. These generated point clouds and camera poses

are then inputted into the Gaussian splatting pipeline for fast

differentiable rasterization rendering (Kerbl et al., 2023). In the

splatting rendering process, adaptive low-pass filtering is designed

to overcome aliasing issues, thereby achieving high-quality 3D

reconstruction of nasal endoscopic scenes.

2.2.1 Image enhancement based on di�usion
models

In the process of reconstructing 3D nasal cavity based on

endoscopic video, the factors may potentially affect the quality

of the images, such as the blurriness caused by the mutual

compression of nasal tissues or induced by the dynamic movement

of the endoscope. Meanwhile, the potential noise can affect

feature extraction between consecutive frames. Therefore, the

advanced HI-Diff (Chen Z. et al., 2024) method is employed to

denoise the captured nasal endoscopic images, which combines

the Transformer based reconstruction module with the traditional

diffusion model, and utilizes hierarchical concentration modules

(Zamir et al., 2022) to enhance the deblurring process.

The overall framework of HI-Diff deblurring is illustrated in

Figure 2. During the training process, given the input blurry image

IBlur and its corresponding ground truth image IGT, there are two

identical latent encoders (LE) (Rombach et al., 2022) employed

to process both images. Specifically, the concatenated form of the

blurry image IBlur and its corresponding ground truth image IGT is

first fed into one of the latent encoders to extract the prior features

v. Simultaneously, the blurry image IBlur is fed into another LE to

be mapped to a conditional latent vector p. The specific procedure

is as follows:

v = fLE1 (IGT©IBlur) , (1)

p = fLE2(IBlur), (2)

Where fLE1 and fLE2 denote the mappings of the images into

high-dimensional space, and © represents the concatenation of the

two images.

Subsequently, adhering to the procedures outlined in the

diffusion model, the prior features are subjected to the addition of

random Gaussian noise before being inputted into the denoising

network, resulting in vT . Concurrently, the conditional latent

vector p is also fed into the denoising network. This denoising

network, conditioned on both inputs, proceeds to predict the

ultimate prior features v1. The detailed process unfolds as follows:

vT = fdiffusion(v), (3)

v1 = fdenoising(vT , p), (4)
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FIGURE 2

The framework of HI-Di�. Blurry views are fed into HI-Di�, which performs deblurring to recover clearer and more detailed structures.

Where fdiffusion denotes the process of adding noise to the prior

features v, and fdenoising represents the neural network. This network

takes the vector vT , which has been augmented with random noise,

along with p as inputs, to predict the prior features v1.

Moreover, due to the non-uniform blurriness induced by the

dynamic motion of the endoscope, relying solely on a single

scale of prior features may not adequately accommodate complex

blurring scenarios. Hence, to acquire multi-scale prior features

capable of adapting to various scales of intermediate features, v1
is downsampled twice. The specific procedure unfolds as follows:

v2 = fdown−sample(v1), (5)

v3 = fdown−sample(v2). (6)

For the Transformer-based reconstruction module, given the

input blurry image IBlur , the reconstruction module undergoes

multiple rounds of upsampling and downsampling before

reconstructing the clear image IDB. Furthermore, at each feature

extraction stage, a hierarchical concentration module is positioned

ahead of both the encoder and decoder, which serves to fuse the

intermediate features Xin from the Transformer with the multi-

scale prior features v1,v2,v3 from the diffusion model through

cross-attention fusion. Its purpose is to enhance the deblurring

process of the Transformer.

During the testing phase, we replace the ground truth image IGT
with randomly generated Gaussian noise. The blurry image IBlur

is then fed into the diffusion model to obtain the prior features

v1. Subsequently, these prior features are utilized to enhance the

blurry image within the Transformer-based reconstructionmodule,

resulting in the generation of high-quality, clear images.

2.2.2 Di�erentiable rendering through 3D
Gaussians Splatting

To achieve fast differentiable rasterization rendering through

3D-GS splatting (Kerbl et al., 2023), the sparse point clouds along

with their corresponding camera poses are required, which can be

estimated by tracking feature points across multiple images based

on Structure-from-Motion (SfM)(Snavely et al., 2006). Based on

these point clouds, a set of Gaussian functions using the position

mean µ and covariance matrix A is defined. To enhance the

representation of the scene, each Gaussian function is equipped

with opacity σ and a set of spherical harmonic functions. By

introducing this anisotropic 3D Gaussian distribution as a high-

quality and unstructured representation of the radiation field,

not only can the model compactly represent 3D scenes, but

flexible optimization processes are also supported. Specifically, the

probability density function of the Gaussian model is as follows

(Zwicker et al., 2001b):

N(x) = e−
1
2 (x−µ)TA−1(x−µ), (7)
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where A can be decomposed into two more specific

components, the quaternion r and the 3D-vector s. Then, these

components are transformed into the corresponding rotation and

scaling matrices R and S. Therefore, the covariance matrix A can be

represented as:

A = RSSTRT . (8)

During the rendering stage, Gaussian elements need to be

projected into the rendering space (Zwicker et al., 2001a). Through

view transformation, the new covariance matrix in the camera

coordinate system can be calculated as follows:

A′ = JWAWTJT , (9)

where J is the Jacobian matrix approximating the affine

transformation of the projection.

Additionally, these Gaussian elements are projected onto the

imaging plane according to the observation matrix, and colors are

blended based on opacity and depth (Kopanas et al., 2022, 2021).

Therefore, the final color C(p) of the p-th pixel can be represented

by blending M ordered points overlapping the pixel:

C(p) =
∑

i∈M
Tiαici, (10)

with

αi = σie
− 1

2 (p−µi)
T
A′(p−µi) and Ti =

i−1
∏

j=1

(

1− αj

)

.

Ti is the transmittance, ci represents the color of the Gaussian

element along the direction of the ray, andµi denotes the projected

2D UV coordinates of the 3D Gaussians.

Efficient rendering and depth sorting are achieved through

a fast tile-based differentiable raster izer. Additionally, the α-

blending technique is introduced to adjust opacity σ and scale

parameter S through a sigmoid function, which ensures that the

image synthesis maintains higher visual quality.

The rendered scene is compared with the corresponding image

to calculate the loss for rapid backpropagation. The loss function

consists ofL1 loss and Structural Similarity Index Measure (SSIM),

balanced by adjusting the weighting factor λ. It is expressed as

follows:

L = (1− λ)L1 + λLD-SSIM . (11)

Here, the Stochastic Gradient Descent (SGD) algorithm is

utilized to optimize the model parameters iteratively to minimize

the loss function (Fridovich-Keil et al., 2022). To further optimize

the model, adaptive density control is implemented to adjust

the number and density of Gaussian elements for better scene

representation. The introduction of transparency threshold ǫα and

position gradient threshold τpos is used to control the addition

and removal of Gaussian elements. The introduction of this

adaptive control allows the method to better adapt to the geometric

complexity of nasal endoscopy scenes.

2.2.3 Adaptive low-pass filter
In the rendering process, aliasing is a fundamental issue, as

rendered images are usually sampled based on discrete raster

grids, inevitably leading to visual artifacts such as jagged edges

along object contours and Moir é fringes in textures. A similar

phenomenon occurs when splashing elliptical Gaussian, when the

scene is reconstructed and rendered at a lower sampling rate.

Previous research (Hu et al., 2023; Yu et al., 2023; Barron

et al., 2021) attempts to mitigate aliasing effects generally by

prefiltering (Heckbert, 1989; Mueller et al., 1998) and super-

sampling techniques (Cook, 1986). For example, the EWA volume

reconstruction (Zwicker et al., 2001a) introduces the notion of

resampling filters, combining the reconstruction algorithm with

a low-pass kernel. Inspired by this method, we employ an anti-

aliasing filter to alleviate aliasing artifacts during nasal endoscope

rendering. Building upon Equation 10, we further elaborate the

rasterization formula:

C(p) =
M
∑

i=1

ciσiN
′
i (p)

i−1
∏

j=1

(

1− σjN
′
j (p)

)

, (12)

Where N′
i (p) represents the projection of the Gaussian

distribution onto a two-dimensional plane, closely related to the

two-dimensional covariance (Kopanas et al., 2021). And the 2 ×
2 variance matrix A′′ can be easily obtained from the 3 × 3 matrix

A′ by skipping the third row and column:

A′ =







a b c

b d e

c e f






⇔

(

a b

b d

)

= A′′. (13)

Following that, to simulate the diffusion effect occurring during

the propagation of light rays, the scale of the 2D covariance

is adjusted (Kerbl et al., 2023), for which a positive definite

adjustment term is added to the original covariance matrix A′′.

The adjustment term is a scalar multiplied by the unit matrix

related to the hyperparameter, by which the scale of the covariance

matrix is increased and the diffusion effect of light rays is simulated.

Furthermore, in the actual imaging process, the light captured by

each pixel accumulates within its surface area, meaning the final

image is obtained by integrating the photon energy falling on

each pixel (Shirley, 2018). To achieve the actual imaging process

more efficiently, the “Adaptive Low-Pass Filter” is proposed as

shown in Equation 14, which adapts to different sampling rates and

changes in perspective when processing endoscopic images, while

maintaining the visual quality of the image.

N
2D(x)low-pass =

√

|A′′|
|A′′ + sI|

e−
1
2 (x−µ)T(A′′+sI)

−1
(x−µ). (14)

The scale parameter in the adaptive low-pass filter controls the

extent of Gaussian smoothing. Intuitively, it simulates the physical

diffusion of light across pixel areas due to limited resolution and

sampling rates. A larger scale parameter induces stronger anti-

aliasing but risks oversmoothing details, while a smaller scale

parameter preserves sharpness but may cause jagged edges.
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TABLE 1 Quantitative comparison of rendering quality on di�erent video sequences.

Method H1 H2 H3

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3D-GS 26.52 0.942 0.114 32.67 0.953 0.137 26.34 0.925 0.156

Mip-EndoGS 27.50 0.936 0.114 35.95 0.971 0.022 30.16 0.934 0.145

The best results are in bold.

FIGURE 3

Qualitative results presentation on di�erent video sequences.

FIGURE 4

Comparison of surface reconstruction from ours and COLMAP.
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TABLE 2 Quantitative comparison of di�erent outcomes after 6k and 40k iterations.

Method 6k 40k

PSNR Train time FPS PSNR Train time FPS

3D-GS 20.63 1 m 53 s 112 26.34 12 m 23 s 91

Mip-EndoGS 27.49 3 m 14 s 105 30.16 14m 86

The best results are in bold.

FIGURE 5

Qualitative comparison of di�erent outcomes after 6k and 40k iterations.

3 Results

In this section, the proposed method, Mip-EndoGS, is

evaluated based on our nasal endoscopy dataset, NasED. Firstly,

the implementation setting of Mip-EndoGS is presented. Then,

we provide a detailed introduction of the metrics used in the

experiment. Finally, the experimental results are showed, including

both quantitative analysis and qualitative analysis.

3.1 Experiments setting

The NasED dataset comprises several monocular nasal

endoscopy video sequences, denoted as {Hi}Ti=1. Here, T represents

the number of sequences, and Hi denotes the i-th sequence. Each

nasal sequence is divided into several frames, denoted as
{

Aj

}M

j=1
,

where M is the total number of frames in the sequence, and j

represents the index of the j-th frame. Hence, the i-th sequence

and j-th frame’s endoscopic view is represented as
(

Hi,Aj

)

. From

this dataset, we extracted four groups of video sequences: H1, H2,

H3, and H4. Each group consists of randomly sampled consecutive

100-frame views, totaling 400 frames. Each sequence is split into

90% training data and 10% testing data. These video sequences are

captured by a monocular camera, covering the internal structures

of the nasal cavity and sinuses.

In the diffusion module, we adhere to experimental settings

consistent with HI-Diff and load weights trained on the GoPro

(Nah et al., 2017) synthetic dataset for image denoising. Sparse

point clouds and camera poses are obtained through COLMAP

(Snavely et al., 2006; Schonberger and Frahm, 2016). The

parameters of the Gaussian rendering pipeline (Kerbl et al., 2023)

follow the original method settings, except for the changes in the

number of iterations. The scale parameter in the adaptive low-pass

filter is set to 0.3, and the learning rate is set to 1e-4. The network is

trained on an NVIDIA RTX A6000 device.

3.2 Metric

To conduct a thorough assessment of our experimental results,

various methods are employed to evaluate the reconstruction

outcomes, primarily comprising quantitative analysis and

qualitative assessment through visualization. For quantitative

analysis, we utilized several commonly used evaluation metrics,

including the Structural Similarity Index Measure (SSIM), Peak

Signal-to-Noise Ratio (PSNR), and Learned Perceptual Image

Patch Similarity (LPIPS).

The computation of SSIM is as follows, which measures the

similarity between two images in terms of brightness, contrast,

and structure:

SSIM(x, y) =
(

2µxµy + c1
) (

2σxy + c2
)

(

µ2
x + µ2

y + c1

) (

σ 2
x + σ 2

y + c2

) , (15)
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where x and y represent the two images to be compared, µx

and µy denote their mean intensities, σ 2
x and σ 2

y represent their

variances, σxy indicates their covariance, and c1 and c2 are variables

used to stabilize the denominator.

The definition of PSNR is as follows:

PSNR = 20 · log10
(

MAXI√
MSE

)

, (16)

where MAXI represents the maximum possible pixel value

of the image, and MSE is the mean squared error between the

reconstructed image and the reference image.

LPIPS employs deep learning models to evaluate the perceptual

similarity between images, capturing texture and structural

differences crucial for human visual perception:

LPIPS(x, y) =
∑

l
wl · ‖φl(x)− φl(y)‖2, (17)

where φl(x) and φl(y) represent the feature maps of images x

and y extracted by a pre-trained deep neural network at layer l, and

wl is a learned weight used to emphasize the importance of each

layer’s contribution to perceptual similarity.

By applying these metrics, we can quantitatively analyze the

quality of our image reconstructions.

3.3 Results analysis

3.3.1 Evaluation on full resolution
To validate the model’s strong generalization capability, we

selected sequences from different subjects. The results are presented

in Table 1 and Figure 3. Figure 3 illustrates the rendering effects of

sequences H1, H2 and H3 after 40k iterations of model training.

A comparison with the Ground Truth reveals that despite

the narrow field of view and lack of texture in nasal endoscopic

views, our method renders nasal structures distinctly with clear

textures. Compared to the original 3D-GS method, the proposed

approach demonstrates higher stability, effectively reducing issues

such as significant aliasing, artifacts, and distortions in certain

areas observed in the output of 3D-GS. Quantitative evaluation

through Table 1 shows notable improvements in the PSNR metrics

across all four datasets. Additionally, except for H1, the SSIM

and LPIPS metrics for the other three datasets also achieve

superior results.

3.3.2 Compared with COLMAP
The proposed method, Mip-EndoGS, is compared with the

current mainstream reconstruction methods, Depth Map Fusion

(Merrell et al., 2007) and the Poissonmethod (Kazhdan andHoppe,

2013) in COLMAP. and the visual results are shown in Figure 4.

Data H1 is utilized in this evaluation. Evidently, the nasal

endoscopic scenes reconstruct with Mip-EndoGS exhibit more

realistic and smoother features, demonstrating excellent visual

outcomes. Apart from comparison with COLMAP, we also attempt

reconstruction using methods based on neural radiance fields such

as NeRF (Mildenhall et al., 2021) and Neuraludf (Long et al., 2023).

However, due to the unique characteristics of nasal structures, these

methods all fail.
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FIGURE 6

Qualitative comparison of single-scale training and multi-scale testing.

3.3.3 Evaluation on di�erent iterations
Table 2 and Figure 5 respectively present the quantitative

results and visual effects of 3D-GS and Mip-EndoGS at 6k

and 40k iterations (evaluated using H3 data), which shows that

our model is capable of capturing the structures within the

nasal cavity clearly after 6k iterations, with the PSNR metric

significantly outperforming the rendering results of 3D-GS at the

same iteration count.

In terms of time, the proposed model only takes around

3 minutes for 6k iterations, less than 1/4 of the time required

for 40k iterations. This shorter training time, coupled with

clear structural representation, is crucial for real-time surgical

navigation. Moreover, although the addition of the diffusion

module slightly affects the training time and rendering speed of our

model, it still achieves real-time rendering capability.

3.3.4 Evaluation on various resolution
To simulate the reconstruction effects of scenes at low

sampling rates, the original data are downsampled to obtain

datasets with resolutions reduced to 1/2, 1/4, and 1/8 of the

original resolution. We train the model on the original resolution

data and render on the downsampled datasets accordingly. The

quantitative evaluation is conducted using H1 and H4 data (as

shown in Table 3), where the proposed method outperforms 3D-

GS in rendering quality at lower resolutions. The visual results

for H4 are shown in Figure 6, where the proposed method

produces the higher fidelity imagery without apparent artifacts

and aliasing.

4 Discussion

Nasal endoscopic scene reconstruction contributes to a

comprehensive understanding of the surgical environment, precise

surgical localization, and critical information provision for

minimally invasive procedures. However, nasal cavity structures

are not only narrow and intricate, but also lack distinctive

texture features. Additionally, the influence of endoscopic lighting

often makes it challenging to capture nasal cavity structural

characteristics. Moreover, the quality of views collected by

endoscopy is difficult to guarantee, often resulting in blurriness

and contamination.

To address these issues, this paper introduces an advanced

nasal endoscopic reconstruction model, Mip-EndoGS, which

enables real-time rendering of scenes and synthesis of new

viewpoints during surgery by pre-training before surgery. The

proposed method consists of two parts, an image enhancement

module based on diffusion models and a 3D-GS differentiable

rendering pipeline using adaptive low-pass filters. The image

enhancement module used in this paper integrates a Transformer-

based reconstruction module with traditional diffusion models

and employs a hierarchical attention mechanism to enhance

the deblurring process of the Transformer, achieving denoising

effects on collected nasal endoscopic images. For the differentiable
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rendering pipeline based on 3D-GS, we embed an adaptive low-

pass filter to overcome aliasing artifacts, which simulates the

diffusion effect during light propagation and integrates the photon

energy falling on each pixel to adapt to changes in sampling rates

and viewpoints.

The proposed method can reconstruct highly realistic nasal

endoscopic scenes on the NasED dataset. As shown in the

experimental results, the reconstructed nasal structures are distinct

with clear textures. Compared to the original 3D-GS, the proposed

method demonstrates higher stability, effectively alleviating issues

such as aliasing artifacts and distortions during rendering. The

high-quality reconstruction results can provide more accurate

3D information, assisting surgeons in diagnosis and reducing

surgical risks.

In practice, this task will be combined with motion tracking

technology to create a more convenient and intelligent surgical

navigation workspace. Additionally, with the development of

augmented reality and virtual display technologies, doctors

can perform detailed surgical simulations preoperatively and

provide real-time three-dimensional views intraoperatively. Such

capabilities are particularly valuable in complex or minimally

invasive procedures, where accurate spatial perception is critical.

These technological advancements can provide doctors with more

intuitive and easier-to-use surgical assistance and offer patients

higher-quality medical services.

However, certain limitations still exist, such as the occlusions

caused bymedical instruments and the hands of the surgeon during

surgery, as well as deformations of nasal tissues from various angles.

These failure cases highlight the need for further optimization

in complex surgical environments. To address these challenges,

more intelligent surgical planning and navigation technologies are

urgently needed.

5 Conclusion

In this work, a novel method, Mip-EndoGS, is proposed to

reconstruct the scene of nasal endoscopy. The method combines

the diffusion model and 3D Gaussian model, initially employing

the diffusion model for deblurring and then achieving high-

quality real-time rendering using 3D Gaussian. Additionally,

we collect high-definition surgical video datasets from nasal

examinations performed by professional doctors and validate

the proposed method on this dataset. In the experiment, the

proposed method demonstrates superior performance in both

quantitative assessment and visual analysis. In the future, we plan

not only to expand this dataset but also to further refine the

related algorithms.
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