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With the advancement of deep learning, road crack segmentation has become 
increasingly crucial for intelligent transportation safety. Despite notable progress, 
existing methods still face challenges in capturing fine-grained textures in small crack 
regions, handling blurred edges and significant width variations, and performing 
multi-class segmentation. Moreover, the high computational cost of training such 
models hinders their practical deployment. To tackle these limitations, we propose 
RSA-TransUNet, a novel model for road crack segmentation. At its core is the 
Axial-shift MLP Attention (ASMA) mechanism, which integrates axial perception 
with sparse contextual modeling. Through multi-path axial perturbations and an 
attention-guided structure, ASMA effectively captures long-range dependencies 
within row-column patterns, enabling detailed modeling of multi-scale crack 
features. To improve the model’s adaptability to structural irregularities, we introduce 
the Adaptive Spline Linear Unit (ASLU), which enhances the model’s capacity to 
represent nonlinear transformations. ASLU improves responsiveness to microstructural 
variations, morphological distortions, and local discontinuities, thereby boosting 
robustness across different domains. We further develop a Structure-aware Multi-
stage Evolutionary Optimization (SMEO) strategy, which guides the training process 
through three phases: structural perception exploration, feature stability enhancement, 
and global perturbation. This strategy combines breadth sampling, convergence 
compression, and local escape mechanisms to improve convergence speed, 
global search efficiency, and generalization performance. Extensive evaluations 
on the Crack500, CFD, and DeepCrack datasets—including ablation studies and 
comparative experiments—demonstrate that RSA-TransUNet achieves superior 
segmentation accuracy and robustness in complex road environments, highlighting 
its potential for real-world applications.
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1 Introduction

Road construction is one of the most critical infrastructure 
projects globally, playing a key role in public welfare. Road safety is a 
fundamental factor in ensuring safe driving and smooth traffic 
conditions (Sohail et al., 2023). If cracks on road surfaces are not 
repaired promptly, they may enlarge over time, and under the 
influence of natural elements such as rainfall, erosion may penetrate 
the roadbed, potentially leading to localized road collapses, thereby 
posing significant traffic safety hazards. Studies indicate that traffic 
accidents caused by road cracks are common occurrences each year, 
highlighting the importance of timely and efficient crack repair 
(Deme, 2020). Cracks, as a typical pavement hazard, pose a significant 
threat to road  integrity, and repairing these cracks is essential to 
maintaining optimal road conditions (Zhang et al., 2024). Currently, 
crack image segmentation is a vital research direction within the field 
of computer vision, providing a fundamental basis for the 
understanding and analysis of road crack images. Moreover, it offers 
crucial support for various crack image processing tasks and 
applications (Kyem et  al., 2025). During the crack repair process, 
accurate crack segmentation is required to assess the boundaries of 
crack regions, thereby enabling the extraction of precise crack 
information, which is essential for conducting scientifically informed 
repair efforts (Khan et al., 2025).

Early researchers primarily employed machine learning 
approaches to conduct crack segmentation studies. However, with the 
continuous expansion of crack datasets, the research on cracks has 
become increasingly complex, diverse, and constrained (Liu et al., 
2025). To advance crack segmentation technology, extensive 
exploration has been undertaken by researchers. Deng et al. (2023) 
proposed an improved residual unified network algorithm for precise 
pixel-level segmentation within crack regions, effectively addressing 
the challenges related to the pixel representation of crack width and 
length. Chen et al. (2022) proposed a method for detecting potential 
crack regions in pavement using adaptive thresholding. The algorithm 
combines both global and local thresholds to segment the image, 
effectively reducing image noise. Hang et al. (2023) introduced an 
attention-based feature fusion network, which utilizes efficient 
channel attention and feature fusion at each decoder layer to assist in 
the recovery of low-level features for crack localization. This approach 
achieved a detection accuracy of 84.49% for automatic pixel-level 
detection of concrete cracks. Tao et  al. (2023) developed a novel 
convolutional transformer network based on an encoder-decoder 
architecture to address the challenges posed by the elongated and 
sharp topological features of crack as, as well as complex backgrounds. 
This model enables improved segmentation by focusing on the local 
details of cracks and adjusting the feature sizes of other components 
as needed. Tabernik et al. (2023) proposed a novel deep learning 
model that integrates pixel-level segmentation with image-level 
classification, effectively addressing the challenges of capturing both 
local and broader contextual information. This model enables 
automated quality control of concrete surfaces during the 
construction and maintenance stages. Chu and Chun (2024) 
introduced a multi-scale crack feature extraction network that 
employs two cascading operations to achieve collaborative 
enhancement. By incorporating strip pooling operations, the network 
improves the representation of both transverse and longitudinal crack 
pixels in complex backgrounds.

In addition to the aforementioned methods for enhancing crack 
features, several researchers have also addressed the issue of boundary 
segmentation ambiguity. Li et al. (2022) proposed a dense boundary 
refinement network that combines the advantages of short-term dense 
cascading networks and refinement networks. By eliminating 
redundant structures, the model improves detection rates and 
optimizes crack details using binary cross-entropy and Dice loss 
functions. Chen et  al. (2023) modeled cracks as sub-cracks with 
corresponding orientations and introduced a directional sub-crack 
detector. This approach employs multi-branch angular regression loss 
to simultaneously learn the direction and variance of sub-cracks, 
thereby addressing the discontinuity of crack boundaries and the 
ambiguity of sub-crack orientations. Liu et  al. (2022) proposed a 
bridge crack segmentation method based on a densely connected 
U-Net network, which incorporates a background elimination module 
and a cross-attention mechanism. This approach effectively enhances 
the primary features of small cracks and utilizes varying weights to 
retain redundant information. Lin et al. (2023) introduced a deep 
multi-scale crack feature learning model for crack segmentation. By 
employing hybrid dilated convolutions to increase the receptive field, 
the model captures more crack information. The included multilayer 
perceptron then transforms high-dimensional crack features into 
lower-dimensional representations, reducing parameters and 
enhancing the network’s robustness to noise.

It is noteworthy that existing lightweight methods often face 
challenges such as low computational efficiency, complex crack 
patterns, and difficult backgrounds, which result in inaccurate 
detection and make them impractical for real-world applications. To 
address these limitations, Zim et  al. (2025) proposed a crack 
segmentation model that deeply integrates depthwise separable 
convolutional layers and mobile vision modules to capture both 
global and local features, enabling precise crack segmentation. 
Zhang et  al. (2023) introduced an efficient crack segmentation 
neural network that incorporates small-kernel convolutional layers, 
along with parallel max pooling and convolution operations, into the 
architecture for fast crack feature extraction and model parameter 
reduction, thereby accelerating real-time pavement crack detection 
and segmentation without compromising performance. Despite 
significant advancements in the field of crack segmentation, the 
diversity of cracks under various environmental conditions presents 
a considerable challenge, making it difficult for existing single 
models to overcome issues such as unreliability, lack of robustness, 
and low trustworthiness. These challenges remain substantial 
barriers to the practical application of crack segmentation models. 
In their research on crack segmentation, Ha et  al. (2022) 
incorporated five types of crack features (alligator crack, longitudinal 
crack, transverse crack, pothole, and patching) to address the 
requirements of real-world road scenarios. By employing separately 
trained linear CrackU-Nets, they achieved a segmentation accuracy 
of 91.2% on input images. In summary, while the aforementioned 
methods have investigated issues related to segmentation accuracy 
and model training costs, several limitations remain: (1) the models 
exhibit a lack of sensitivity to texture variations during crack 
segmentation, leading to blurred edges and suboptimal segmentation 
accuracy; (2) existing models demonstrate high accuracy for specific 
datasets but suffer from reduced robustness when dealing with a 
diverse range of crack types; (3) the growing volume of large-scale 
crack data has resulted in high training costs, which remain 
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inadequately addressed. To tackle these challenges, we  have 
conducted extensive research, and the main contributions of this 
paper are as follows:

	 1.	 We propose the Axial-Shift Multi-Path Attention (ASMA) 
mechanism, which enables fine-grained modeling of multi-
scale crack texture features. This approach addresses the 
challenges of edge blurring, weak textures, and significant 
width variations in crack images, which contribute to the 
difficulty of segmentation. The ASMA module integrates axial 
shift perception with sparse contextual modeling to enhance 
attention. By introducing directional perception through 
multi-path axial perturbation operations and embedding a 
Criss-Cross spatial attention mechanism within each path, the 
module captures long-range dependencies in both row and 
column structures. Subsequently, a channel dynamic fusion 
mechanism adaptively integrates the three feature paths. 
ASMA effectively enhances the model’s ability to capture fine-
grained structural details and multi-scale textures of crack 
regions, while maintaining a lightweight architecture. It is 
particularly well-suited for the representation of irregularly 
shaped crack structures.

	 2.	 We propose the Adaptive Spline Linear Unit (ASLU), a novel 
linear transformation module designed to enhance structural 
representation. This module addresses the limitations of 
traditional linear layers in modeling complex structures and 
distribution shifts in high-heterogeneity crack images. The 
ASLU, which can be seamlessly integrated into various neural 
network architectures, consists of two components: a basic 
linear path that preserves computational efficiency and linear 
combination capabilities, and a spline kernel path that 
constructs a local kernel response mechanism based on 
B-spline basis functions. This enables effective modeling of 
nonlinear structural variations across input dimensions. 
Through the additive fusion of two distinct paths, the ASLU 
achieves a high-response representation of microstructural 
variations, morphological distortions, and local discontinuities, 
while maintaining a compact architecture. This significantly 
enhances the model’s ability to fit complex crack structures and 
improves its robustness across diverse domains.

	 3.	 To enhance the robustness and ability to escape local optima 
during model training, we propose a Structure-aware Multi-
stage Evolutionary Optimization (SMEO) strategy. This 
approach addresses common challenges such as premature 
convergence to local optima, insufficient feature representation, 
and difficulties in achieving convergence across diverse data 
domains. SMEO consists of a three-stage evolutionary 
optimization strategy that simulates structural state transitions. 
The method is divided into three phases: structure-aware 
exploration, feature stabilization and fine-tuning, and global 
perturbation escape. These phases correspond to broad 
sampling during the initial training stage, convergence 
compression in the mid-stage, and local escape in the later 
stage. Each phase employs differentiated position update 
formulas and perturbation mechanisms, dynamically switching 
behavior modes based on feature response states, thereby 
enhancing the model’s global search capability, local stability, 
and generalization adaptability during training.

	 4.	 We conducted extensive experiments to validate the 
effectiveness and advanced performance of the network. First, 
an ablation study was performed on RSA-TransUNet to assess 
the contribution of each module. Next, the model was 
compared with seven state-of-the-art crack segmentation 
networks to demonstrate its superiority. Furthermore, to 
evaluate the generalization ability of each model, generalization 
experiments were carried out on three public datasets. The 
experimental results demonstrate that the proposed method 
exhibits high stability and can accurately segment fine textures 
and multi-class road cracks in complex scenarios. 
RSA-TransUNet offers an effective tool for road crack detection 
and provides a better solution for mitigating traffic 
safety hazards.

2 Materials and methods

2.1 Materials

This study utilized the following public datasets: Crack500 (Yang 
et al., 2019), DeepCrack (Zou et al., 2018), and CFD (Shi et al., 2016), 
which are described in detail below.

2.1.1 Crack500
The Crack500 dataset consists of 500 images, each with a 

resolution of 2,560 × 2,592 pixels. These images feature various crack 
shapes and widths against complex background textures, which 
include interference from shadows, lighting variations, and pavement 
stains. This complexity challenges the generalization ability of crack 
detection algorithms.

2.1.2 DeepCrack
DeepCrack is a widely recognized dataset for evaluating crack 

detection algorithms. It consists of 537 images, each with a 
resolution of 384 × 544 pixels. The dataset features significant 
intensity differences between cracks and the background, including 
various types of cracks (e.g., longitudinal cracks, transverse cracks) 
under different environmental conditions (e.g., sunny, rainy). The 
background is also relatively complex, with noise interference, 
which aids in the effective identification of cracks in 
pavement images.

2.1.3 CFD
The CFD Road Crack Dataset comprises 118 images that 

reflect the pavement conditions of urban roads in Beijing, China. 
Each image is manually annotated with the true ground contours. 
All images were captured using an iPhone 5, with a focal length of 
4 mm, an aperture of f/2.4, and an exposure time of 1/134 s. The 
image width ranges from 1 to 3 mm. Notably, these images contain 
various types of noise, such as shadows, oil stains, and 
water marks.

To ensure consistency and reproducibility of the experimental 
setup, we adopted a unified partitioning strategy for all three datasets: 
70% as the training set, 10% as the validation set, and 20% as the test 
set. This partitioning method can ensure sufficient training while 
reasonably evaluating the model’s generalization ability on unseen 
samples (Figure 1).
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2.2 Methods

In practical applications, crack images often present complex 
challenges, such as weak texture details, blurred boundaries, and 
significant background interference, making accurate pixel-level 
segmentation tasks particularly demanding. First, within fine-
grained crack regions, crack edges frequently appear discontinuous, 
blurred, or nearly indistinguishable from the background, especially 
under environmental influences like dust contamination, surface 
weathering, and lighting shadows. These conditions lead to highly 
irregular variations in crack width. Additionally, in crack 
segmentation tasks, models are required to handle images of cracks 
from diverse materials, such as concrete and asphalt, captured using 
various devices, including smartphones and drones, in different 
construction environments like underground spaces or tunnels (Jin 
et al., 2025). This diversity introduces significant differences in data 
distribution, leading to a sharp decline in accuracy for many existing 
methods when applied to new scenarios, thereby hindering their 
generalization capability and severely affecting the feasibility of real-
world engineering deployments. Furthermore, deep learning models 
exhibit a growing dependence on large and diverse datasets, 
resulting in increased computational resource consumption and 
longer training times. These factors limit the widespread application 
of such models in resource-constrained platforms or small 
sample scenarios.

In this study, we  adopt the TransUNet framework, which 
integrates Transformer (Han et al., 2021) and U-Net (Ronneberger 
et  al., 2015) architectures, as the backbone for achieving high-
precision semantic segmentation of crack images. TransUNet 
combines the strengths of Convolutional Neural Networks (CNNs) 
in  local feature extraction with the Transformer architecture’s 
capability to model long-range dependencies, demonstrating excellent 
segmentation accuracy in tasks such as medical image analysis and 
structural texture modeling. However, the original TransUNet 
architecture still faces challenges when applied to crack images, which 
possess fine-grained textures, blurred edges, and significant multi-
scale variations. These challenges include insufficient structural 
representational power, weak cross-domain robustness, and low 
optimization efficiency.

To address the aforementioned issues, this paper proposes the 
RSA-TransUNet, where “RSA” stands for Robust Structure-Adaptive, 
reflecting the model’s ability to generalize across complex crack 
patterns and variable imaging conditions. Building upon the 
TransUNet backbone, we introduce three complementary structural 
improvements and optimization mechanisms, targeting attention 
enhancement, feature transformation expression enhancement, and 
training process optimization. These enhancements collectively form 
a unified framework for crack segmentation. The overall structure of 
the RSA-TransUNet crack image segmentation network is depicted in 
Figure 2.

FIGURE 1

Sample images from the crack public dataset.

https://doi.org/10.3389/fnbot.2025.1633697
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hou et al.� 10.3389/fnbot.2025.1633697

Frontiers in Neurorobotics 05 frontiersin.org

FIGURE 2

Block diagram of RSA-TransUNet structure.

https://doi.org/10.3389/fnbot.2025.1633697
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hou et al.� 10.3389/fnbot.2025.1633697

Frontiers in Neurorobotics 06 frontiersin.org

Firstly, we introduce the ASMA module after the Transformer 
encoding block in the intermediate layer of TransUNet to enhance the 
global attention’s ability to capture local spatial texture structures. The 
ASMA module adopts a multi-path axial modeling architecture. The 
input features are initially divided into three sub-paths, each subjected 
to spatial translation along different directions to enhance directional 
perception. Subsequently, sparse horizontal and vertical spatial 
attention mechanisms are incorporated within each path, and long-
range contextual dependencies are modeled through the Criss-Cross 
path, thereby strengthening the model’s understanding of structural 
relationships. The enhanced features from the three paths are then 
dynamically weighted and fused using a channel attention mechanism, 
adaptively integrating information across different directions and 
scales. Finally, a linear mapping and residual connection are employed 
to output the overall enhanced feature representation. Despite its 
lightweight structure, ASMA effectively unifies local detail perception 
and global semantic aggregation, significantly improving the 
segmentation accuracy and robustness of the model for crack-
like objects.

Furthermore, to enhance the adaptability of the linear layers in 
TransUNet when confronted with structural deformations and 
variations in data distribution, we replace all standard linear projection 
layers in the original network—such as Patch Embedding, MLP layers, 
and the fully connected layers in the Decoder—with the newly 
developed ASLU (Adaptive Spline Linear Unit). This module builds 
upon traditional linear transformation structures and incorporates a 
nonlinear local response pathway based on B-spline kernel functions, 
enabling the model to adapt to structural variations in the input. By 
combining the linear and kernel pathways additively, ASLU improves 
the model’s ability to capture complex structural responses, such as 
fractures, widening, and boundary blurring in different crack regions. 
This enhancement ultimately boosts the overall segmentation 
network’s expressiveness and stability.

Finally, during the model training phase, we replace the default 
optimizer AdamW in the backbone network with a custom-designed 
Structure-aware Multi-Stage Evolution Optimization strategy (SMEO) 
to enhance the model’s convergence and robustness across different 
data sources and training conditions. SMEO simulates the structural 
evolution process by incorporating three key stages: structure-aware 
exploration, feature-constrained fine-tuning, and perturbation-based 
jump recovery. These stages dynamically update the model parameters, 
effectively mitigating issues such as local optima, slow convergence, 
and accuracy fluctuations during training. Furthermore, SMEO 
enhances the model’s robust training performance in cross-
domain scenarios.

In summary, this study enhances the TransUNet framework by 
introducing three modules—ASMA, ASLU, and SMEO—across the 
key stages of perceptual modeling, structural representation, and 
optimization training. These synergistic improvements significantly 
enhance the model’s structural adaptability and segmentation 
performance in complex crack imaging scenarios.

2.2.1 Axial-shift MLP attention(ASMA)
In the field of road crack segmentation, we observe that the texture 

changes in the edge areas of small cracks are very small, especially 
when facing challenges such as blurry crack edges and blurry crack 
features. In this situation, human recognition is neither accurate nor 
efficient. Effectively addressing these issues can significantly enhance 

the saliency of crack feature maps, thereby improving the segmentation 
model’s ability to perceive fine details. Given that the essence of the 
above issues stems from the complexity of cracks in spatial direction 
and context dependence, we have developed a unified strategy that 
combines directional modeling and context awareness - the ASMA 
module. This strategy aims to enhance the feature expression ability 
from multiple scales and dimensions, and improve the perception 
accuracy of the model for complex crack structures. The main goal of 
the ASMA module is to enhance the modeling ability of the model for 
complex edges, subtle textures, and irregular line structures in crack 
images. The ASMA module adopts a processing strategy of “multi path 
axial modeling spatial context enhancement channel adaptive fusion,” 
which improves fine-grained structure perception while maintaining 
a balance between expressive power and computational efficiency. This 
method is particularly effective for high-resolution image scenes. The 
input feature map is represented as × ×∈ WRH CX . The processing flow 
of ASMA can be divided into the following four stages:

	(1)	 Axial shift encoding

To enhance direction perception ability, we  introduce two 
modeling paths with differentiated axial perturbation strategies in the 
ASMA module. To introduce directional perception capability, we first 
perform a linear transformation on the input feature map X, increasing 
the number of channels by three to obtain the feature map 

× ×′∈ 3H W CX R . For relevant details, see (Equations 1–11):

	 ( ) × ×′ ′= ∈ 3, H W cX Linear X X R 	 (1)

Then we evenly divide ′X  prime into three sub paths along the 
channel dimension: 1X , 2X , and 3X , each with a size of × ×3H W CR . 
Then, spatial perturbation operations are introduced for different 
paths to capture structural features in different directions:

	
× ×= ∈ =  ′′ 1 2 3, , , , 1,2,3H W C

iX X X X X R i 	 (2)

	•	 Path 1X : Apply symmetrical axial perturbations to the divided 
channel groups. Specifically, the channel is divided into multiple 
groups and offset in equal but opposite directions along the 
horizontal positive direction (plane W axis) and horizontal 
negative direction (plane H axis) (as indicated by the green 
arrows in the figure: the first group rotates clockwise and the 
second group rotates counterclockwise alternately), forming a 
staggered symmetrical offset structure;

	•	 Path 2X : Apply symmetrical axial perturbations to the divided 
channel groups as well. However, each subgroup rotates in the 
opposite direction to 1X  (as indicated by the green arrow in the 
figure: the first group rotates counterclockwise and the second 
group rotates clockwise alternately), forming an opposite 
staggered symmetric offset structure;

	•	 Path 3X : Keep unchanged to preserve global structure and 
texture consistency.

There are differences in the perturbation direction between 1X  
and 2X , forming complementary structures that ultimately provide 
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diverse and direction sensitive feature foundations for subsequent 
attention modeling along with the path 3X  that preserves the original 
information. The above-mentioned rotation disturbance method is 
different from traditional axial translation operations, as it is more like 
performing directional cyclic displacement in the spatial feature plane. 
The paths 1X  and 2X are arranged in a staggered manner in the initial 
offset direction, forming a mirrored and staggered perturbation layout 
in the spatial structure, further enhancing the modeling ability of the 
model for crack morphology, direction changes, and texture mutation 
areas. The joint modeling of three paths provides high-quality feature 
representations with directional differences and expression 
redundancy for subsequent attention mechanisms.

	(1)	 Criss-cross attention for each branch

After obtaining the three axial perception paths, ASMA further 
introduces a spatial context modeling mechanism on each path to 
enhance its ability to model long-range structural dependencies. For 
each path feature map iX , three sets of convolutions are first applied to 
generate the corresponding Query, Key, and Value representations:

	 = = = V
i iiQ , ,Q K

i i i i i iW X K W X V W X 	 (3)

	
× ×∈ dQ , , H W

i i iK V R 	 (4)

For any given position ( )=u ,h w in the feature map, attention 
pathways are established only along the corresponding row (the h-th 
row) and column (the w-th column), thereby forming a sparse Criss-
Cross path set × ×∈ dQ , , H W

i i iK V R

	 ( ){ } ( ){ }= ∀ ≠ ∪ ∀ ≠N , , , ,u h j j w i w i h 	 (5)

Within this path range, the similarity between the Query and Key 
is computed to obtain the attention weights:

	

( )
( )∈

⋅
=

⋅∑
u

,
uN

exp
a

exp
u

T
v

u v T
vv

Q K

Q K
	

(6)

Finally, the attention weights are used to perform a weighted sum 
of the Value, aggregating contextual information while preserving the 
feature response of the current position itself:

	

 ( ) ( ) ( )
∈

= ⋅ +∑
u

i ,
N
a V X uu v i i

v
X u v

	
(7)

Each path of ( )µ˜
iX  aggregates multi-directional information, 

encompassing both directional dependency information and 
context-enhanced feature representations. The output is 
denoted as   

× ×∈1 2 3, , H W CX X X R

	(2)	 Path fusion and channel weighting attention

To further integrate the aforementioned three structurally 
enhanced features, ASMA introduces a channel-level dynamic fusion 

module. This module learns the relative importance of the three 
features based on channel descriptors and performs the integration in 
a weighted manner.

Specifically, global average pooling is first applied to each 
enhanced feature ˜

iX
 to extract the channel descriptor vectors:

	
( )= ∈ =i i , 1,2,3Cz GAP X R i

	
(8)

The three channel descriptors are concatenated to form a fused 
vector = ∈  

3
1 2 3;; ;; Cz z z z R , which is then passed through two layers 

of shared MLP (Multilayer Perceptron) to generate three sets of 
channel-level fusion weights:

	 ( )( ) ×= ∈  
3 C

1 2 3, , za a a Softmax MLP R
	 (9)

The Softmax operation is applied along the path dimension for 
normalization, ensuring that the weights are competitive. Ultimately, 
the three features are aggregated through a weighted sum along the 
channel dimension to produce the fused feature map:

	   = ⋅ + ⋅ + ⋅f 1 1 2 2 3 3X a X a X a X 	 (10)

fX  effectively leverages semantic information from multiple 
directional paths while enhancing its adaptability to texture 
discontinuities and directional structures.

	(3)	 Output mapping and residual connection

The fused feature map × ×∈RH W C
fX  undergoes a linear 

transformation to restore its expressive capacity, and is then subjected 
to a residual connection with the original input feature X, yielding the 
final output:

	 ( )= + fY X MLP X 	 (11)

This ensures stable information propagation while enhancing 
gradient flow and expression consistency during the training process.

In summary, ASMA effectively integrates spatial axial modeling 
with context-aware perception within its overall structure, explicitly 
capturing the directional patterns of cracks and fine-grained texture 
details in images. By incorporating a multi-path axial displacement 
mechanism, sparse attention modeling within paths, and channel-
level dynamic fusion strategies, ASMA achieves a unified approach to 
local structure modeling and global dependency aggregation. This 
significantly improves the model’s ability to handle complex crack 
features, such as edge blurring, texture discontinuity, and scale 
inconsistency. It provides a more efficient and reliable feature 
representation for the precise extraction of crack-like targets.

2.2.2 Adaptive spline linear unit (ASLU)
In the cross-domain segmentation task of crack images, the 

model often faces challenges such as unstable input feature 
distributions and complex structural responses due to significant 
differences in data acquisition conditions, material textures, and 
lighting environments. Traditional linear mapping layers, such as 
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fully connected layers, rely solely on fixed weight matrices, making it 
difficult to effectively model the complex nonlinear relationships 
between input dimensions. This limitation restricts the model’s 
expressive power and generalization performance under 
heterogeneous structures. To address this issue, we  propose the 
Adaptive Spline Linear Unit (ASLU) as a replacement for traditional 
linear layers to enhance modular expression. ASLU maintains the 
efficiency of linear transformations while incorporating learnable 
spline paths with local kernel response capabilities, thereby 
enhancing the structural expressiveness and improving 
input adaptability.

The input to the ASLU is a feature vector dimension inC , and the 
output is denoted as y . The overall output is composed of the sum of 
the outputs from the base linear path and the kernel-enhanced path. 
For relevant details, see (Equations 12–14):

	 = + lnbs sy y y 	 (12)

The base path bsy  follows the same formulation as a standard 
linear layer, expressed as:

	 ( )σ= •bs basey W Z 	 (13)

The weight matrix baseW  is a learnable linear parameter matrix, and 
( )σ ·  represents an element-wise activation function, typically utilizing 

continuous and differentiable functions such as SiLU or ReLU. This path 
captures the global linear structural relationships between inputs, 
ensuring computational efficiency in the base operation.

To enhance the structural expressiveness, ASLU introduces a 
kernel response path, which models regions of the input space that 
exhibit local structural variations or nonlinear response characteristics. 
This path defines a set of M B-spline kernel functions ( ){ }

=1

M
t j t

b z  for 

each input dimension jz , forming a local support kernel basis. These 
kernel functions are then combined using a learnable kernel coefficient 
tensor, yielding the following output:

	
( )

= =
= ⋅∑∑

in

sin ,
1 1

y
C M

j t t j
j t

a b z
	

(14)

Here, j,ta  represents the output weight of the t-th spline basis 
function corresponding to the j-th input dimension, while M controls 
the number of kernel functions and their smoothing degree. Each 
B-spline kernel function has a non-zero response over a subinterval of 
its domain, thereby introducing sensitivity to local perturbations in the 
input. This enables the model to capture fine-grained structural details.

The two paths of the ASLU are ultimately combined in the output 
space through a channel-wise sum, allowing the model to leverage the 
global compositional advantage of the linear layer while also 
integrating the local expressiveness of the kernel path. The 
computational structure is highly parallelizable, ensuring excellent 
scalability and training stability. Furthermore, since the spline path is 
based on explicitly learnable kernel basis functions, the entire module 
exhibits strong interpretability, supporting visual analysis of the 
model’s response patterns across different regions of the feature space.

2.2.3 Structure-aware multi-stage evolutionary 
optimization (SMEO)

In the task of crack image segmentation, model training often 
faces challenges such as uneven distribution of structural features, 
blurred boundary information, and unstable gradient responses, 
which in turn affect segmentation accuracy and training efficiency. 
To address these issues, we propose a Structure-aware Multi-stage 
Evolutionary Optimization (SMEO) strategy. The pseudocode for 
the SMEO optimization algorithm is presented in Algorithm 1. 
SMEO aims to guide the adaptive adjustment of model parameters 
through a three-stage dynamic feedback process in the feature 
space, including structure-aware exploration, feature-constrained 
fine-tuning, and global perturbation correction. This process 
enables a more efficient and structurally adaptive optimization 
procedure, thereby enhancing the model’s responsiveness to crack 
structure modeling.

2.2.3.1 Stage one: Structure-guided exploration
In the early stages of training, or when the feature distribution is 

still unstable, SMEO first activates the structure-aware exploration 
mechanism, guiding the optimization individuals to perform extensive 
sampling around the potential edge regions in the image. The first 
stage emphasizes the initial coverage of the target structural areas, 
preventing the model from getting trapped in local optima due to 
insufficient early gradients.

The update of the individual parameters is defined by the 
following formula. For relevant details, see (Equations 15–17):

	 ( )µ+ = + ⋅ +∈⋅1
i i · r St t

i egx x u	 (15)

Here, ir  represents the directional disturbance vector, egS  is the 
structural edge response map derived from the current feature 
map, µ  controls the strength of the structural guidance, and 

( )−~ 1,1u U denotes the uniform disturbance term. The first stage 
integrates spatial structural cues with global disturbance 
capabilities, thereby enhancing the model’s exploratory breadth 
and structural sensitivity in the early stages of training.

2.2.3.2 Stage two: Feature-constrained refinement
As training progresses and the model’s perception of crack 

textures and boundaries stabilizes, SMEO transitions to the local 
refinement stage, guided by the optimal solution. During the 
feature-constrained fine-tuning phase, the optimization process 
focuses on modeling feature consistency and edge continuity. This 
is achieved by steering the individuals closer to the current global 
optimum, allowing for a more precise approximation of high-
response regions. The update mechanism is as follows:

	 ( )η δ+  = − − + ∇  
t 1 t t t

sx x · · x x ·i g t g iw
	

(16)

Here, tx g  represents the current optimal individual, =t
max

tw
T

 

is the self-adaptive convergence factor, and ∇s denotes the structural 
gradient information derived from the feature map. The feature-
constrained fine-tuning update strategy facilitates a smooth 
transition from coarse-grained perception to fine segmentation by 

https://doi.org/10.3389/fnbot.2025.1633697
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hou et al.� 10.3389/fnbot.2025.1633697

Frontiers in Neurorobotics 09 frontiersin.org

coupling the structural guidance term with the positional 
discrepancy, thereby further enhancing the segmentation accuracy 
of boundary regions.

2.2.3.3 Stage three: global perturbation and recovery
When the training process encounters performance bottlenecks 

or the model reaches a local convergence state, SMEO initiates the 
global disturbance mechanism. This mechanism enhances the 
diversity of the parameter search through an asymmetric jump 
strategy, enabling the model to escape local optimum regions. To 
minimize excessive disruption to training stability, the disturbance 
amplitude is controlled using a logarithmic suppression model. The 
disturbance update strategy is defined as follows:

	 ( ) ( )+ = + ⋅ ⋅ +1
i log 1 | |t t

gx x k sign n n
	 (17)

Here, k  represents the disturbance amplitude coefficient, and 
( )σ 2n ~ N 0,  denotes a zero-mean Gaussian distribution variable. 

The global disturbance correction strategy effectively enhances 
the model’s adaptability to non-stationary regions, such as fracture 
patterns and blurred boundaries, during the later stages of 
training, thereby improving its overall ability to recognize 
structural integrity.

In summary, SMEO dynamically adapts the optimization 
behavior to the feature response states, thereby overcoming the 
drawbacks of the “single search mode throughout the entire 
process” commonly found in traditional optimization algorithms. 
Through stage-wise strategy transitions driven by structural 
perception, SMEO automatically switches to the most suitable 
optimization behavior based on the model’s training state, thereby 
enhancing training efficiency and improving the model’s ability to 
fit complex fracture structures.

ALGORITHM 1

Schematic diagram of the SMEO optimization algorithm.
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3 Results

3.1 Experimental setup

To ensure the reliability of the RSA-TransUNet experimental 
results and eliminate potential confounding factors arising from 
environmental differences, all experiments in this study were 
conducted on the same hardware and software platform. In terms of 
software, a unified development environment was utilized, including 
a specific version of the operating system and a set of software tools, 
to maintain experimental consistency. To simplify the network output, 
BCEWithLogitsLoss was selected to handle the problem data caused 
by imbalance. (BCEWithLogitsLoss combines the Sigmoid activation 
function and binary cross-entropy loss). It avoids the problems of 
large loss function values or vanishing gradients at probability 
extremes (0 or 1). The number of training rounds is 300. A detailed 
list of the hardware configuration and software settings used for the 
experiments is provided in Table 1.

3.2 Evaluation indicators

To comprehensively evaluate the model’s performance, four 
evaluation metrics were employed: Dice, IoU, Accuracy, and Recall, 
ensuring the accuracy of the experiments. First, four region definitions 
were introduced: True Positives (TP) – areas where cracks are present 
and predicted as such; True Negatives (TN) – areas where no cracks 
are present and predicted as such; False Positives (FP) – areas where 
no cracks are present but predicted as having cracks; and False 
Negatives (FN) – areas where cracks are present but predicted as not 
having cracks, as detailed in Table 2 (Zheng et al., 2025).

Recall measures the proportion of actual positive samples that are 
correctly predicted. The calculation formula for Recall is as 
Equation 18. There are two possible outcomes: one is when the true 
positive (TP) class is correctly predicted, and the other is when the 
true positive (FN) class is predicted as negative. This metric represents 
the ratio of all tomato leaf images that are considered for segmentation 
relative to all those that truly require segmentation.

	
=

+
TPRecall

TP FN 	
(18)

Precision refers to the ratio of the number of samples correctly 
predicted as positive to the total number of samples predicted as 

positive by the model. The calculation formula for Precision is as 
Equation 19:

	
=

+
TPPrecision

TP FP 	
(19)

The advantage of the F1-score lies in its ability to combine both 
Precision and Recall, providing a balanced evaluation of model 
performance. Since improving precision may lead to a reduction in 
recall, the F1-score is particularly useful for assessing model 
performance in imbalanced classification problems. The calculation 
formula for F1-score is as Equation 20.

	

∗
=

+
2Precision RecallF1 score
Precision Recall

-

	
(20)

IoU refers to the ratio of the intersection of the actual and 
predicted areas. In this context, it represents the proportion of the 
overlap between the tomato disease regions and the corresponding 
labeled areas.

	
=

+ +
TPIoU

TP FN FP 	
(21)

Accuracy represents the proportion of correctly segmented 
tomato leaf images relative to the total number of correctly and 
incorrectly segmented samples in the dataset.

	
+

=
+ + +
TP TNAccuracy

TP FP TN FN 	
(22)

3.3 Experiment and discussion

3.3.1 Ablation experiment
To ensure the fairness of the RSA-TransUNet experimental results 

and the stability of the network, ablation experiments involving three 
methods were conducted on the Crack500 crack dataset. This 
experiment utilized a controlled variable approach, combining ASMA, 
ASLUand SMEO for seven sets of ablation experiments. The F1-score 
was used as the primary evaluation metric, and the experimental 
results are recorded in Tables 3–5.

In our ablation study comparisons, the ASMA module achieved a 
0.42% improvement in image data performance. This enhancement 
can be  attributed to the incorporation of directional awareness 
through the multi-path axial perturbation operation within ASMA, 
which, when combined with the Criss-Cross spatial attention 

TABLE 1  Hardware and software parameters.

Hardware 

environment

CPU Intel(R) Core(TM) i9-10980XE CPU @ 

3.00GHz 3.00 GHz

GPU NVIDIA GeForce RTX 2080 Ti

RAM 32.0 GB

Video Memory 32GB

Software 

environment

OS Windows 10

CUDA Toolkit V10.2

CUDNN V8.2.0

Pytorch 1.8.1

TABLE 2  Four regional definitions for segmentation results.

Labeled Predicted Regional 
definitions

Positive Positive TP

Positive Negative FN

Negative Positive FP

Negative Negative TN
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mechanism, effectively captures long-range dependencies within the 
crack row-column structure. Furthermore, the incorporation of the 
ASLU network resulted in a 0.58% improvement over the baseline 
model. This enhancement is attributed to the efficiency and linear 
combination capabilities maintained by the fundamental linear paths 
in ASLU, while the local kernel response mechanism, constructed 
using B-spline basis functions, significantly enhances the model’s 
ability to capture and learn multi-class features of road cracks. Finally, 
the application of SMEO resulted in a 0.69% improvement, 
demonstrating that the model’s ability to learn road crack 
segmentation features has been effectively optimized across the three 
stages. Upon integrating the entire network into the model, the 
F1-score increased by 0.9%. These experimental results provide a clear 
indication of the exceptional segmentation performance of the 
RSA-TransUNet model. In the study of the Deepcrack dataset (see 
Table 4), after adding ASMA, the Recall metric of the model increased 
by 0.74%, the F1 metric increased by 0.3%, the IoU increased by 
0.17%, and the Accuracy increased by 0.11%. This is due to the fine-
grained construction of multi-scale crack texture features, making the 
model more sensitive to texture features. After adding ASLU, the 

Recall index of the model increased by 1.22%, the F1 index increased 
by 1.01%, the IoU increased by 0.48%, and the Accuracy increased by 
1.01%. This is attributed to the high response representation of the 
linear variation module to weak crack variations. After adding SMEO, 
the Recall metric of the model increased by 1.46%, the F1 metric 
increased by 1.12%, the IoU increased by 0.76%, and the Accuracy 
increased by 1.49%. This indicates that the SMEO optimization 
algorithm can still improve during the process of enhancing the 
training speed. When the three modules act together, RSA-TransUNet 
has the greatest growth in the Recall metric, increasing by 3.49 to 
82.51%, which is lower than 91.62% in the crack500 dataset. This 
might be  because the resolution of the crack500 dataset is 
2,560 × 2,592. Compared with the Deepcrack384 × 544 resolution 
image dataset, the model can better capture the transformation 
features of fine cracks, improve the feature extraction ability of the 
model, and is different from the Crack500 and CFD datasets. The 
Deepcrack dataset contains more multi-branch fine cracks and is more 
difficult to learn. In the study of ablation on CFD datasets (see 
Table 5), when the three modules acted together, the Recall metric of 
RSA-TransUNet reached 89.62%, the F1 metric reached 88.56%, the 

TABLE 3  Effectiveness of RSA-TransUNet.

Method ASMA ASLU SMEO Recall/% F1-score/% IoU/% Accuracy/%

1 - - - 89.72 89.20 84.45 94.35

2 √ - - 90.56 89.62 84.66 94.42

3 - √ - 91.98 89.78 84.89 94.51

4 - - √ 91.45 89.89 84.97 94.45

5 √ √ - 91.30 89.95 85.21 95.77

6 √ √ 91.60 89.98 85.56 95.20

7 √ √ √ 91.62 90.10 85.54 95.80

Bold indicates that our experimental parameters have reached the best level, playing a prominent role.

TABLE 4  Effectiveness of RSA-TransUNet (DeepCrack).

Method ASMA ASLU SMEO Recall/% F1-score/% IoU/% Accuracy/%

1 - - - 79.02 77.99 74.15 84.23

2 √ - - 79.76 78.29 74.32 84.34

3 - √ - 80.41 79.13 74.56 84.56

4 - - √ 80.98 79.34 75.14 85.72

5 √ √ - 81.45 80.52 75.46 85.89

6 √ √ 82.13 81.12 75.97 86.15

7 √ √ √ 82.51 81.45 76.89 86.24

Bold indicates that our experimental parameters have reached the best level, playing a prominent role.

TABLE 5  Effectiveness of RSA-TransUNet (CFD).

Method ASMA ASLU SMEO Recall/% F1-score/% IoU/% Accuracy/%

1 - - - 87.01 86.01 78.21 87.13

2 √ - - 87.56 86.25 78.54 87.62

3 - √ - 88.23 87.02 78.69 88.14

4 - - √ 88.47 87.13 78.97 88.79

5 √ √ - 89.41 87.95 79.13 89.52

6 √ √ 89.52 88.21 80.02 89.98

7 √ √ √ 89.62 88.56 80.65 90.09

Bold indicates that our experimental parameters have reached the best level, playing a prominent role.
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IoU metric reached 80.65%, and the Accuracy metric reached 90.09%. 
They are, respectively, slightly lower than 2, 1.54, 4.89 and 5.71% of 
the crack500 dataset. This might be because the small-scale dataset 
only contains 118 crack datasets, and the model fails to learn the 
complete and slightly varying crack features.

3.3.2 Contrast experiment
To validate the effectiveness and advancement of the proposed 

algorithm, we selected classical segmentation networks and state-of-
the-art models for comparison on the crack dataset, in order to 
demonstrate the generalization ability and superiority of the 
RSA-TransUNet network. To ensure a fair comparison, all models 
were trained for 180 epochs, as shown in Tables 6, 7.

As shown in Table 6, on the classic road crack Crack500 public 
dataset, RSA-TransUNet achieved the best performance. Compared 
to the second-best model, it improved Recall, F1-score, Precision, and 
Accuracy by 0.74, 0.38, 0.57, and 0.91%, respectively. These 
experimental results demonstrate the superiority of the model.

Table 7 presents a comparison between RSA-TransUNet and other 
segmentation networks on the classic road crack CFD public dataset. 
It can be seen that our proposed model achieved the best performance, 
with improvements of 0.97, 0.15, 0.88, and 0.31% in Recall, F1-score, 
Precision, and Accuracy, respectively, compared to the second-best 
model. In conclusion, the results from both experiments further 
validate the advancement and effectiveness of the model.

As shown in Figure 3, we compared the segmentation performance 
of the DeepLabV3, Segnet, PSPNet, TransUNet, SwintNet, and 
Hybrid-Segmentor networks on the Crack500 and CFD datasets. A 
detailed analysis is as follows:

The segmentation performance of DeepLabV3 was the poorest, 
as it incorrectly segmented non-crack regions as crack regions in the 
third column, which may be  attributed to the inclusion of 

Conditional Random Fields (CRF) within the model. While CRFs 
improve boundary precision, they do not fully address the detail-
related issues in high-resolution images. The segmentation accuracies 
for DeepLabV3 on the Crack500 dataset were 87.46, 86.72, 82.89, 
and 92.17%. Furthermore, SegNet’s segmentation results showed 
little difference compared to DeepLabV3. However, in cases 
involving intersecting or overlapping cracks (such as in the third 
column of crack images), SegNet achieved segmentation accuracies 
of 87.65, 87.98, 83.46, and 93.26%. This may be due to its typical 
encoder-decoder architecture, which is more suitable for lower-
resolution input images and struggles to capture global contextual 
information. In particular, when handling complex backgrounds and 
intricate details, SegNet tends to produce blurry segmentation 
results. PSPNet, leveraging its pyramid pooling module, aggregates 
image information across multiple scales, resulting in superior 
performance compared to the first two models. However, its 
segmentation accuracy remains relatively low on the CFD micro-
crack dataset (e.g., the sixth column of crack images in Figure 3), 
with segmentation accuracies of 88.36, 88.46, 84.32, and 94.13%. The 
TransUNet model, serving as the baseline for this study, demonstrates 
strong global crack detection capabilities, achieving segmentation 
accuracies of 89.72, 89.20, 84.45, and 94.35%. Nonetheless, it 
struggles to capture subtle variations in crack features. SwinTNet, 
with its hierarchical Transformer design, effectively captures features 
at multiple scales from low to high layers. It exhibits greater flexibility 
when handling diverse crack images, yielding segmentation 
accuracies of 90.56, 89.13, 84.65, and 94.67%. Finally, the Hybrid-
Segmentor, as an advanced segmentation network, demonstrates a 
significant improvement in crack segmentation performance 
compared to the previous models. This enhancement is likely due to 
the model’s ability to balance the capture of both local and global 
contextual information, especially in terms of detail processing and 

TABLE 6  Compare the experimental results of different classification networks (crack500).

Models Recall/% F1-score/% IoU/% Accuracy/%

DeepLabV3 (Yurtkulu et al., 2019) 87.46 86.72 82.89 92.17

Segnet (Badrinarayanan et al., 2017) 87.65 87.98 83.46 93.26

PSPNet (Zhu et al., 2021) 88.36 88.46 84.32 94.13

TransUNet (Chen et al., 2021) 89.72 89.20 84.45 94.35

SwintNet (Cao et al., 2022) 90.56 89.13 84.65 94.67

Hybrid-Segmentor (Goo et al., 2025) 90.88 89.72 84.97 94.89

RSA-TransUNet 91.62 90.10 85.54 95.80

Bold indicates that our experimental parameters have reached the best level, playing a prominent role.

TABLE 7  Compare the experimental results of different classification networks (CFD).

Models Recall/% F1-score/% IoU/% Accuracy/%

DeepLabV3 (Yurtkulu et al., 2019) 85.76 85.70 80.65 90.09

Segnet (Badrinarayanan et al., 2017) 85.97 85.89 80.84 90.18

PSPNet (Zhu et al., 2021) 86.67 86.38 81.63 91.54

TransUNet (Chen et al., 2021) 87.00 86.59 82.22 92.19

SwintNet (Cao et al., 2022) 87.02 86.97 82.98 92.02

Hybrid-Segmentor (Goo et al., 2025) 88.65 88.41 82.66 93.15

RSA-TransUNet 89.62 88.56 83.54 93.46

Bold indicates that our experimental parameters have reached the best level, playing a prominent role.
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FIGURE 3

The segmentation results of different models on the Crack500 and CFD datasets.

FIGURE 4

Comparative experiment of models.
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large-scale context understanding. The segmentation accuracies 
achieved are 90.88, 89.72, 84.97, and 94.89%. Our proposed 
RSA-TransUNet model, which excels in capturing fine details and 
textures, particularly on the CFD micro-crack dataset, achieves the 
best results (segmentation accuracies of 91.62, 90.10, 85.54, and 
95.80%). In conclusion, the experimental results presented in 
Figure 3 demonstrate that traditional segmentation models exhibit 
similar performance when handling conventional, well-defined 
cracks. However, when applied to small, intertwined, or edge-blurred 
crack images, the proposed RSA-TransUNet model achieves superior 
accuracy, outperforming other state-of-the-art segmentation 
networks, particularly in terms of Recall, where a notable 
improvement is observed.

As shown in Figure 4, we set the model training to 180 epochs. 
After incorporating SMEO, the model exhibits a convergence trend 
around the 60th epoch, which significantly accelerates the convergence 
speed compared to other segmentation models that converge around 
the 120th epoch. Moreover, at the 60th epoch, the F1-score of 
RSA-TransUNet reaches approximately 85.0%, which is substantially 
higher than the 77.5% achieved by other networks at the same stage. 
These experimental results effectively validate the efficacy of the 
proposed SMEO method, while also demonstrating that 

RSA-TransUNet addresses the challenge of high training costs 
associated with large-scale datasets, achieving a balance between 
accuracy and speed.

3.3.3 Generalization experiment
To evaluate the generalization capability of RSA-TransUNet, 

we conducted generalization experiments on the Deepcrack public 
crack dataset. Figure 5 illustrates six types of crack features with 
distinct characteristics, including left-sloping upward cracks, 
horizontal-width cracks, mesh-interwoven cracks, I-shaped cracks, 
wide-to-narrow cracks, and right-sloping downward cracks. Classical 
segmentation models, such as DeepLabV3, SegNet, and PSPNet, 
demonstrate good performance when handling wide cracks or simple 
single-line cracks. In contrast, models like TransUNet, SwinUNet, 
Hybrid-Segmentor, and RSA-TransUNet show higher accuracy in 
segmenting multi-scattered, small, and fine cracks. These 
experimental results indicate that the RSA-TransUNet model 
outperforms other segmentation networks in terms of stability and 
precision, with an F1-score improvement of 1.2% over the second-
best model.

Table 8 shows the comparison results of the Deepcrack dataset 
with other models in RSA-TransUNet. It can be seen that the Recall, 

FIGURE 5

Generalization experiment segmentation map of RSA-TransUNet on the Deepcrack dataset.
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F1, IoU, and Accuracy have reached 82.51, 81.45, 76.89, and 86.24% 
respectively, which are 2.3% higher than the second best model, 
respectively. 1.2, 0.86, 0.24%. The experimental results further verify 
that the RSA-TransUNet we  proposed is advanced and has high 
segmentation efficiency (Figure 6).

4 Conclusion

This paper proposes a novel network for complex road crack 
segmentation, named RSA-TransUNet. RSA-TransUNet is built 
on the nested structure of Transformer and Unet, combining the 
strengths of both architectures. To address challenges such as 
edge-blurred crack texture features, multi-class crack 
segmentation, and slow training speed on large-scale crack 
datasets, the paper introduces ASMA, ASLU, and SMEO. The 
results of ablation, comparative, and generalization experiments 
demonstrate that RSA-TransUNet outperforms six classical and 
state-of-the-art segmentation networks. Specifically, the model 
achieves a Recall of 91.62%, an F1-score of 90.10%, a Precision of 
85.54%, and an Accuracy of 95.80%. The proposed method holds 
significant promise for applications in engineering, with the 
potential for further adaptation to various use cases. Additionally, 

the model is highly effective for crack detection in other types 
of infrastructure.

However, it is important to note that while the proposed 
RSA-TransUNet effectively addresses the segmentation of fine 
textures in edge regions, several issues remain: (1) The model has a 
relatively large number of parameters, which, despite enabling rapid 
optimization during training, poses challenges for hardware 
deployment due to the high computational demand; (2) The 
segmentation accuracy for elongated, interwoven cracks with 
extremely fine textures is lower, although the overall segmentation 
performance still outperforms existing models. Future work will 
focus on the following areas: (1) Reducing the model size and the 
number of parameters to achieve faster segmentation and improved 
accuracy; (2) Expanding the dataset of fine, interwoven crack textures 
to enhance the model’s learning capability.

In conclusion, the RSA-TransUNet segmentation model 
demonstrates high efficiency and accuracy in detecting road crack 
defects, with the segmented regions closely aligning with actual crack 
areas. Looking ahead, we aim to integrate Internet of Things (IoT) sensor 
technology with image segmentation techniques to develop a more 
refined crack segmentation approach, facilitating the creation of a 
precise and efficient crack detection system. The introduction of 
RSA-TransUNet provides a valuable reference for the future development 

TABLE 8  Compare the experimental results of different classification networks (Deepcrack).

Models Recall/% F1-score/% IoU/% Accuracy/%

DeepLabV3 (Yurtkulu et al., 2019) 77.19 78.43 71.97 80.43

Segnet (Badrinarayanan et al., 2017) 77.67 78.96 72.45 81.58

PSPNet (Zhu et al., 2021) 78.29 79.38 73.67 82.12

TransUNet (Chen et al., 2021) 79.24 79.15 74.82 83.46

SwintNet (Cao et al., 2022) 79.38 80.22 75.41 84.15

Hybrid-Segmentor (Goo et al., 2025) 80.21 80.25 76.03 86.00

RSA-TransUNet 82.51 81.45 76.89 86.24

Bold indicates that our experimental parameters have reached the best level, playing a prominent role.

FIGURE 6

Result graph of the generalization experimental dataset.
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of intelligent transportation technologies and offers a novel, intelligent 
solution to address road safety incidents caused by crack defects.
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