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Introduction: Accurate vehicle analysis from aerial imagery has become 
increasingly vital for emerging technologies and public service applications 
such as intelligent traffic management, urban planning, autonomous navigation, 
and military surveillance. However, analyzing UAV-captured video poses several 
inherent challenges, such as the small size of target vehicles, occlusions, 
cluttered urban backgrounds, motion blur, and fluctuating lighting conditions 
which hinder the accuracy and consistency of conventional perception 
systems. To address these complexities, our research proposes a fully end-to-
end deep learning–driven perception pipeline specifically optimized for UAV-
based traffic monitoring. The proposed framwork integrates multiple advanced 
modules: RetinexNet for preprocessing, segmentation using HRNet to preserve 
high-resolution semantic information, and vehicle detection using the YOLOv11 
framework. Deep SORT is employed for efficient vehicle tracking, while CSRNet 
facilitates high-density vehicle counting. LSTM networks are integrated to predict 
vehicle trajectories based on temporal patterns, and a combination of DenseNet 
and SuperPoint is utilized for robust feature extraction. Finally, classification is 
performed using Vision Transformers (ViTs), leveraging attention mechanisms to 
ensure accurate recognition across diverse categories. The modular yet unified 
architecture is designed to handle spatiotemporal dynamics, making it suitable 
for real-time deployment in diverse UAV platforms.

Method: The framework suggests using today’s best neural networks that 
are made to solve different problems in aerial vehicle analysis. RetinexNet is 
used in preprocessing to make the lighting of each input frame consistent. 
Using HRNet for semantic segmentation allows for accurate splitting between 
vehicles and their surroundings. YOLOv11 provides high precision and quick 
vehicle detection and Deep SORT allows reliable tracking without losing track 
of individual cars. CSRNet are used for vehicle counting that is unaffected by 
obstacles or traffic jams. LSTM models capture how a car moves in time to 
forecast future positions. Combining DenseNet and SuperPoint embeddings 
that were improved with an AutoEncoder is done during feature extraction. In 
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the end, using an attention function, Vision Transformer-based models classify 
vehicles seen from above. Every part of the system is developed and included to 
give the improved performance when the UAV is being used in real life.

Results: Our proposed framework significantly improves the accuracy, reliability, 
and efficiency of vehicle analysis from UAV imagery. Our pipeline was rigorously 
evaluated on two famous datasets, AU-AIR and Roundabout. On the AU-AIR 
dataset, the system achieved a detection accuracy of 97.8%, a tracking accuracy 
of 96.5%, and a classification accuracy of 98.4%. Similarly, on the Roundabout 
dataset, it reached 96.9% detection accuracy, 94.4% tracking accuracy, and 
97.7% classification accuracy. These results surpass previous benchmarks, 
demonstrating the system’s robust performance across diverse aerial traffic 
scenarios. The integration of advanced models, YOLOv11 for detection, HRNet 
for segmentation, Deep SORT for tracking, CSRNet for counting, LSTM for 
trajectory prediction, and Vision Transformers for classification enables the 
framework to maintain high accuracy even under challenging conditions like 
occlusion, variable lighting, and scale variations.

Discussion: The outcomes show that the chosen deep learning system is 
powerful enough to deal with the challenges of aerial vehicle analysis and gives 
reliable and precise results in all the aforementioned tasks. Combining several 
advanced models ensures that the system works smoothly even when dealing 
with problems like people being covered up and varying sizes.

KEYWORDS

Unmanned Aerial Vehicle, neural network models, deep learning, multi-object 
recognition, transfer learning, intelligent detector, autonomous system

1 Introduction

Robotic perception has transformed greatly because of neural 
network–based algorithms and deep learning models that can learn 
real-world data, adjust to different situations, and decide intelligently. 
Technological progress has allowed robots to adjust their automation 
and intelligence in many different environments (Hanzla and Jalal, 
2025). In the field of UAVs, it is tough for perception systems because 
the environment is very changeable, featuring occlusions, distorted 
views, fast movement, changing sizes, and uneven lighting 
(Mohammed et  al., 2025). Since these factors are important, 
technologies must be efficient, reliable, and scalable for rapid handling 
of scene comprehension and instant decisions. Tools such as 
Unmanned Aerial Vehicles are now important for services like traffic 
management, disaster aid, security, and protecting the environment 
(Hossain et al., 2019; Ghulam et al., 2024). They need to be able to 
correctly interpret what takes place from above. On the other hand, 
when there is noise, dynamic scenes or many objects close together, 
old methods of computer vision have difficulty understanding the 
images (Mujtaba et al., 2025). For this reason, DNNs are now widely 
used because they can handle complicated feature extraction and work 
well in various scenarios. While many deep learning models work well 
on individual issues such as locating or tracking objects, there are not 
many that help do several tasks together as a complete system in aerial 
scenarios (Bisma et al., 2025). Many existing solutions do not change 
easily, are not able to grow large or provide inconsistent outcomes in 
the real world. Therefore, this research introduces a neural network-
centered process especially fitted for analyzing aerial vehicles 
(Mohammed et al., 2025). Detection, tracking, counting, trajectory 
prediction, and classification are combined through deep learning 

framework into one operational framework (Waqas et al., 2025a,b). 
Every element is picked or built to handle certain issues in aerial 
imagery, providing high accuracy, strong performance, and easy 
processing in real-time. The conceptual advance of this work lies in 
the integration of diverse neural architectures into a single unified 
pipeline that leverages their complementary strengths (Chughtai, 
2023a,b). RetinexNet enhances visibility under poor lighting 
conditions. HRNet performs high-resolution semantic segmentation 
for precise object localization. YOLOv11 delivers fast and accurate 
vehicle detection (Mujtaba et al., 2025). Deep SORT incorporates 
convolutional appearance features and motion prediction for robust 
tracking. CSRNet is utilized for density map-based vehicle counting, 
while LSTM models capture temporal dependencies for accurate 
trajectory prediction (Mahwish and Ahmad, 2023). To create the 
classifier, the features are improved by mixing DenseNet and 
SuperPoint and AutoEncoder is used to refine them. In the end, a 
Vision Transformer uses attention to both improve performance and 
make results easier to interpret. The primary objective of this study is 
to develop a unified, end-to-end deep learning framework for 
UAV-based vehicle perception that integrates multiple neural models 
to perform image enhancement, detection, tracking, counting, 
trajectory prediction, and classification in real-world 
aerial environments.

The key contributions of this work are as follows

 • Unified End-to-End Neural Architecture: This study presents a 
fully integrated deep learning–based perception pipeline for UAV 
traffic monitoring. Each module in the system ranging from 
image enhancement and semantic segmentation to detection, 
tracking, counting, trajectory prediction, and vehicle 
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classification is individually optimized using state-of-the-art 
neural models tailored for aerial vehicle surveillance.

 • Seamless Spatiotemporal Integration: The architecture is designed 
to allow robust interconnection between neural modules, 
enabling the efficient fusion of spatial and temporal information. 
This design significantly improves system coherence, adaptability, 
and reliability in dynamic aerial environments.

 • Robust Performance: Our proposed framework demonstrates 
outstanding generalizability and accuracy when evaluated on two 
benchmark datasets which is AU-AIR and Roundabout. It 
effectively handles occlusions, lighting variations, and multi-scale 
object scenarios, confirming its practical applicability for aerial 
traffic monitoring and autonomous systems in Real word.

 • Cross-Platform Versatility and Scalability: Designed for 
deployment across various UAV platforms, the proposed system 
shows strong adaptability to diverse urban and semi-urban 
conditions. This makes it suitable for widespread implementation 
in intelligent transportation systems, surveillance operations, and 
many military operations.

The system is tested on two benchmark datasets, AU-AIR and 
Roundabout, which are known to be very difficult for aerial traffic 
analysis. This is shown by an excellent accuracy rate, as well as 
generalization skills, as the pipeline achieves better results than other 
methods in all three areas.

2 Literature review

In recent years. UAVs have gained significant traction because of 
their applications in traffic monitoring and urban planning. However, 
many challenges like occlusion, scale variation, and complex 
environments demand robust and efficient deep learning solutions. In 
recent research, researchers explored advanced architectures including 
a convolutional and transformer-based model for detection, tracking, 
and classification the following literature review highlights key 
developments in these domain.

2.1 Vehicle detection and tracking systems

Accurate vehicle detection and tracking in aerial imagery is a 
critical task for enabling intelligent transportation systems, urban 
traffic analysis, and autonomous navigation. The unique constraints 
imposed by UAV-captured data including small object sizes, 
occlusions, variable illumination, and motion-induced artifacts have 
driven extensive research in this area. Several prior studies have 
attempted to tackle these challenges using a range of classical and deep 
learning-based approaches. In a recent study, Bouguettaya et al. (2021) 
present a comprehensive review of deep learning techniques for 
vehicle detection in UAV imagery, highlighting both the opportunities 
and limitations of current methods. Their work systematically 
categorizes deep architectures such as CNNs, RNNs, Autoencoders, 
and GANs and discusses their suitability for aerial perspectives where 
traditional handcrafted features struggle. Importantly, they point out 
that shallow learning approaches often fall short in generalizing across 
complex UAV scenarios, thereby reinforcing the relevance of deep 
learning framework. This directly aligns with our pipeline’s adoption 

of advanced architectures like YOLOv11, HRNet, and Vision 
Transformers, which were chosen precisely for their ability to 
generalize across diverse and noisy aerial environments. In another 
study, Yu et al. (2020) take a complementary approach by introducing 
a high-quality UAV dataset specifically designed to challenge 
conventional object detection and tracking algorithms. Their dataset 
features high-density traffic, fast camera motion, and small object 
scale characteristics that mirror the real-world complexities tackled in 
our experiments using the AU-AIR and Roundabout datasets. 
Moreover, their proposed Context-aware Multi-task Siamese Network 
(CMSN) integrates contextual cues to improve tracking robustness, a 
concept that resonates with our fusion of spatio-temporal modeling 
through LSTM and feature-level enhancements using SuperPoint and 
DenseNet (Bisma and Ahmad, 2023a). Their study confirms that 
effective performance in UAV contexts often requires an ensemble of 
modules capable of reasoning across frames and features an approach 
we fully adopt in our unified pipeline.

Another author, Singh et al. (2022) present a hybrid intelligent 
framework combining classical image processing with modern 
machine learning for vehicle detection, tracking, and geolocation in 
UAV imagery. While their methodology includes adaptive filtering, 
morphological transformations, and clustering-based motion analysis, 
they also integrate a Fast-RCNN module to refine detection. Although 
their architectural choices differ from ours focusing more on 
lightweight classical pipelines their recognition of real-time 
constraints and the need for robustness in dynamic traffic scenes 
strongly complements our goal of building an end-to-end, real-time 
UAV system. Their emphasis on practical deployment, noise handling, 
and multi-step reasoning is particularly relevant to our motivation for 
using modules like Deep SORT for tracking and CSRNet for vehicle 
density estimation (Mujtaba and Ahmad, 2024). Collectively, these 
works establish a strong theoretical and empirical foundation that 
motivates the need for a comprehensive, modular, and adaptable 
vehicle analysis framework. However, while each prior study addresses 
specific sub-tasks such as detection, tracking, or trajectory prediction 
our research advances the field by integrating all core functionalities 
into a single deep learning-driven pipeline.

2.2 Vehicle detection and classification 
systems

Accurate vehicle detection and classification underpin many UAV 
applications such as traffic management, parking supervision, and 
intelligent transportation systems. The small size of vehicles in aerial 
images, complex backgrounds, and the presence of visually similar 
objects pose persistent challenges to traditional algorithms. In a recent 
study, Kumar et  al. (2022) addressed these issues by proposing a 
CNN-based vehicle detection and classification algorithm capable of 
distinguishing between light and heavy vehicles. Their method, validated 
on multiple aerial image datasets like VEDAI and VIVID, achieved high 
accuracy and robustness across varied scenarios. This work supports the 
need for specialized classification modules that handle vehicle diversity 
and complex visual context elements embedded in our DenseNet and 
Vision Transformer classification components. Similarly, Lin et al. (2020) 
introduced the VAID dataset, a well-annotated aerial image collection 
designed for training and evaluating vehicle detection algorithms under 
diverse traffic conditions. Their experiments demonstrated that 
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domain-specific datasets significantly improve detection accuracy, a 
principle we have adopted by utilizing datasets such as AU-AIR and 
Roundabout to ensure model generalization in real-world UAV 
environments. Berwo et al. (2023) provide a recent, extensive review of 
DL-based vehicle detection and classification techniques relevant to 
Intelligent Transportation Systems. Their overall survey emphasizes 
advances in network architectures, benchmark datasets, and real-time 
applications including toll management and traffic density estimation. 
They identify challenges in appearance-based recognition and highlight 
the growing demand for robust, scalable, and efficient deep learning 
solutions, corroborating the rationale behind our adoption of YOLOv11, 
HRNet, and Vision Transformers for the detection and classification 
stages (Shuja and Ahmad, 2023). By synthesizing insights from the 
above works, we build upon state-of-the-art methodologies, tailoring 
deep learning architectures and leveraging rich datasets to address the 
multifaceted challenges of aerial vehicle analysis. In contrast to existing 
models that often struggle with real-time adaptability, our pipeline is 
designed to sustain high precision across diverse environments by 
integrating temporal consistency and attention-based reasoning. The 
incorporation of Deep SORT enhances tracking stability, while CSRNet 
ensures the precise vehicle counting even in congested scenes. The use 
of LSTM and Vision Transformers ensure accurate vehicle classifications. 
This makes our system responsive under varying lighting conditions, 
motion blur, and occlusions commonly encountered in UAV operations.

3 Pipeline design and implementation

3.1 Proposed methodology

The core conceptual advance of this work is the design of a unified, 
end-to-end deep learning based framework that integrates diverse deep 
learning models each tailored to a specific perception task into a 

coherent system optimized for aerial vehicle analysis. As shown in 
Figure 1, the pipeline begins with image enhancement using RetinexNet 
to correct illumination and recover details in aerial frames captured 
under suboptimal lighting (Ghulam and Ahmad, 2024). This is followed 
by HRNet, which performs high-resolution semantic segmentation to 
preserve spatial precision in object boundaries. YOLOv11 is then 
employed for rapid and accurate vehicle detection, after which Deep 
SORT ensures robust tracking. CSRNet is utilized to estimate object 
density for precise vehicle counting, even in densely populated scenes 
(Azmat and Ahmad, 2021). To capture temporal dynamics for 
trajectory prediction, LSTM networks model motion patterns across 
consecutive frames. Rich spatial features are extracted using DenseNet 
and SuperPoint, and subsequently refined via an AutoEncoder to 
enhance compactness and discriminability. The final classification is 
handled by a Vision Transformer (ViT), which applies attention-based 
modeling to improve classification accuracy and interpretability 
(Naseer and Jalal, 2025a,b). This interconnected pipeline enables 
seamless spatiotemporal integration by allowing spatial information 
from HRNet, YOLOv11, and CSRNet to be temporally correlated using 
Deep SORT and LSTM modules. Each module communicates through 
shared feature maps and object identities, enabling consistent 
understanding of vehicle behavior across both space and time. The 
proposed methodology is fully modular, scalable, and entirely driven 
by neural networks, offering a robust and efficient solution for aerial 
robotic perception in complex, real-world environments.

3.2 Pre-processing of dataset via 
RetinexNet

The preprocessing stage supports the entire pipeline by making 
sure the images from UAVs are fit for use in training deep-learning 
tools (Waqas et al., 2025a,b). Images taken from the high altitude 

FIGURE 1

Overview of the proposed deep learning–based aerial vehicle analysis system.
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are easily affected by varying amounts of light, shadows and a 
difference between bright and dark spots. We  therefore use 
RetinexNet, a model trained with machine learning that applies 
the Retinex concept to split an image into its reflectance and 
lighting portions (Hai et al., 2023). RetinexNet was selected due to 
its ability to enhance contrast and visibility in UAV images 
captured under uneven or low lighting conditions, which are 
common in aerial surveillance (Ahmed et al., 2024; Muneeb et al., 
2023). The data is preprocessed in advance by making all frames 
the same size, 512 × 512 pixels and changing the pixel values to fall 
within the range 0 to 1. The training set is processed using random 
cropping, horizontal flipping and changes in brightness to help the 
model perform better in many scenarios. This method helps the 
framwork discover features that do not depend on the light source 
which is essential for using the system in different types of light 
(Mahammed et  al., 2023). RetinexNet operates through a 
decomposition-and-enhancement mechanism, formally defined in 
Equation 1:

 ( ) ( ) ( )=, , . ,I x y R x y L x y  (1)

Here, ( ),I x y  represents the observed aerial image at pixel location 
( ) ( )=, ,x y R x y  is the reflectance component containing structural and 
color information, and ( ),L x y  denotes the illumination map. The 
network first learns to estimate ( ,L x y ) using a Decomposition 
Network (Decom-Net), after which an Enhancement Network 
(Enhance-Net) adjusts illumination while preserving reflectance. The 
loss function guiding decomposition is a combination of structure-
preserving and smoothness constraints as presents in Equation 2:

 1 1 1 2 1. L|| R 1||decomL I R L= − +λ ∇ +λ −  (2)

where ∥·∥1 denotes the L1 norm, ∇L represents the spatial 
gradient of the illumination map enforcing smoothness, and λ1, λ2 are 
weighting factors controlling the balance between fidelity and 
regularization. To further improve feature visibility under harsh 
lighting, we define a contrast enhancement objective. This process is 
mathematically defined in Equation 3:

 
( )( )µ=

 −  ∑
2

,
,enh

x y
L R x y R

 
(3)

where µR is the mean reflectance across the image, promoting 
contrast maximization. The enhanced images produced from this step 
serve as higher-quality inputs for segmentation and detection, 
effectively reducing errors caused by low-visibility regions and 
enabling the neural components of the pipeline to operate under more 
consistent and informative visual conditions. This process is defined 
in Equation 1.

3.3 Segmentation via high-resolution network

We integrate a high-resolution semantic segmentation 
mechanism that preserves spatial fidelity in aerial imagery, 

enabling precise foreground-background separation critical for 
downstream tasks. Traditional segmentation models often suffer 
from spatial degradation due to repeated pooling and 
downsampling operations, which are especially detrimental when 
processing aerial scenes where object boundaries are small and 
closely packed (Wang et al., 2017; Ahmad et al., 2021). To address 
this, we incorporate the High-Resolution Network (HRNet) a deep 
convolutional neural architecture that maintains high-resolution 
representations throughout the entire forward pass (Naseer et al., 
2024). HRNet maintains high-resolution features throughout the 
network, making it suitable for precise vehicle segmentation in 
UAV imagery, especially for small and overlapping objects. HRNet 
processes aerial frames enhanced by RetinexNet and outputs dense 
semantic masks, classifying each pixel as either vehicle or 
background with fine-grained accuracy (Xie et  al., 2020). The 
model achieves this by concurrently executing multiple 
convolutional branches at different resolutions and continuously 
exchanging information across them, allowing it to learn both 
global context and local structural details in Equation 4 (Naseer 
and Jalal, 2024). The segmentation task is mathematically defined 
in Equation 4 as a pixel-wise classification problem, optimized 
through a composite loss function. The categorical cross-entropy 
loss guides the primary objective:

 
( ) ( )

=
=∑∑

, 1
, log ,

C

tv c c
x y c

L Y x y P x y
 

(4)

where ( ),cY x y  is the ground truth label for class ccc at pixel location 
( ) ( ), log ,cx y P x y  is the predicted class probability, and C is the number 
of segmentation categories. To reinforce spatial smoothness and mitigate 
prediction noise near object boundaries, we include a total variation loss 
as presents in Equation 5:

 
( ) ( )( )= ∇ + ∇∑

,
, || , ||tv x y

x y
L P x y P x y

 
(5)

This term penalizes sharp transitions in adjacent pixels, 
encouraging the network to produce coherent object masks. 
Additionally, we implement a boundary alignment loss to improve 
edge precision as shown in Equation 6:

 
( ) ( )= ∇ −∇∑ 2

,
P , Y ,edge

x y
L x y x y∣ ∣

 
(6)

where ( )∇P ,x y  and ( )∇Y ,x y  represent the gradient maps of the 
predicted and ground truth masks, respectively. The final 
segmentation loss is expressed as α= + +total seg tv edgeL L L BL  with α 
and β controlling the regularization strength (Chughtai, 2023a,b). 
The results of the segmentation module are illustrated in Figure 2, 
while a comprehensive overview of the high-resolution segmentation 
framework is depicted in Figure 3. The figure outlines the complete 
HRNet-based pipeline, including data preprocessing, training, and 
inference stages (Abrar et  al., 2019). During training, multi-level 
supervision is employed through pixel-wise, image-level, and 
boundary-level loss components, all of which contribute to enhancing 
segmentation accuracy and robustness.
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3.4 YOLOv11-based vehicle detection

The core conceptual advance at this stage lies in the integration 
of an ultra-fast and accurate object detection framework YOLOv11, 
within the aerial vehicle analysis pipeline (He et al., 2025). Designed 
to deliver improved performance without compromising detection 
precision, YOLOv11 addresses key challenges posed by aerial 
imagery, including small object scales, varied orientations, and 
dense scene layouts (Hanzla et al., 2024a). YOLOv11 was chosen for 
its balance between detection accuracy and incredible performance, 
particularly for detecting small, fast-moving objects from aerial 
views. Unlike traditional region proposal-based detectors that are 
computationally intensive, YOLOv11 employs a single-stage, fully 
convolutional architecture that directly predicts bounding boxes and 
class probabilities from input images, enabling efficient inference on 

UAV-captured data streams. In the context of the proposed pipeline, 
YOLOv11 processes the segmentation-refined frames and identifies 
vehicle instances across diverse spatial configurations, providing 
precise bounding box coordinates for downstream tracking and 
counting operations (Ayesha and Ahmad, 2021). YOLOv11 extends 
the foundational YOLO architecture through multiple enhancements 
(Chaman et  al., 2025). It integrates Cross-Stage Partial (CSP) 
connections to improve gradient flow and reduce computational 
complexity, Spatial Pyramid Pooling Fast (SPPF) for robust multi-
scale feature aggregation, and an improved anchor-free detection 
head to better localize small vehicles in aerial views. The input to 
YOLOv11 is a high-resolution image where non-vehicle regions 
have been suppressed via segmentation, allowing the network to 
focus computational attention on relevant areas (Waheed et  al., 
2023). The detection head generates a fixed grid of anchor points, as 
illustrated in Equation 7 each predicting object presence and 

FIGURE 2

Output masks generated by HRNet demonstrating fine-grained vehicle segmentation.

FIGURE 3

Overview of the HRNet-based semantic segmentation architecture.
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bounding box adjustments, optimized using the Complete IoU 
(CIoU) loss:

 

( )
α= − + +

2

2

.
1

gtP b b
LCIou IoU v

C  
(7)

Here, IoU  is the intersection-over-union between the predicted 
box b and ground truth gtb  P denotes the Euclidean distance 
between their center points, c is the diagonal length of the smallest 
enclosing box, and v captures aspect ratio consistency. The term α 
balances the influence of shape alignment, resulting in more stable 
convergence. To improve classification robustness, YOLOv11 
incorporates Focal Loss. This complete CIoU formulation is defined 
in Equation 8:

 
( ) ( )α

=
= − −∑

1
1 log

N

cls t
i

L t P pt
 

(8)

where pt is the predicted confidence for the true class label, αt is a 
class-specific weighting factor, and γ modulates the down-weighting 
of easy examples. This formulation mitigates class imbalance by 
focusing learning on hard-to-detect vehicles, especially in cluttered 
aerial scenes. The main conceptual advance in this stage is the 
integration of YOLOv11, which delivers real-time, high-precision 
vehicle detection in complex aerial imagery (Chughtai and Jalal, 2024). 
By applying Non-Maximum Suppression (NMS), the model eliminates 
redundant predictions and outputs refined bounding boxes with class 
labels and confidence scores. As illustrated in Figure 4, YOLOv11 
accurately detects vehicles across varying scales, orientations, and 
densities. Figure  5 provides a high-level architectural overview of 
YOLOv11, highlighting the flow of multi-scale feature maps through 
the backbone, neck, and detection head. This structure enables the 
model to robustly detect objects at different resolutions by fusing 
spatial and semantic information effectively. The integration of the 
YOLOv11 in our proposed pipeline marks a pivotal enhancement, 

addressing key UAV-specific challenges such as occlusion, very dense 
environment, and scale variations. YOLOv11 architectural innovations 
enable high recall and precision, especially in very complex aerial 
scenes. This very robust detection capability serves as the backbone of 
subsequent tracking and counting modules. YOLOv11 is not merely a 
detection module but it acts as a critical enabler of accurate, scalable, 
and timely aerial vehicle analysis in the proposed end-to-end pipeline.

3.5 Robust vehicle tracking in aerial 
imagery using deep SORT integration

The principal conceptual advance introduced at this stage is the 
deployment of Deep SORT (Simple Online and Real-time Tracking 
with a Deep Association Metric), which enables robust, vehicle 
tracking with sustained identity preservation across video frames 
(Hou et  al., 2019). Deep SORT was selected for its ability to 
maintain identity consistency over frames, even under occlusion or 
rapid movement, which is essential for stable tracking in UAV 
footage (Alonazi et al., 2023; Raza et al., 2023). In the context of 
aerial vehicle analysis, Deep SORT effectively addresses challenges 
such as occlusion, abrupt motion, and appearance variations, 
ensuring consistent tracking of vehicles over time in dynamic 
environments. Deep SORT builds upon traditional SORT by 
incorporating appearance features extracted via a Convolutional 
Neural Network (CNN), which are used alongside Kalman filtering 
for motion estimation and the Hungarian algorithm for optimal 
data association (Mahwish et al., 2021). The tracking process begins 
by feeding the bounding boxes and detection confidences from 
YOLOv11 into the Deep SORT tracker. Each detected vehicle 
initializes a new track or updates an existing one, depending on 
how well it matches existing trajectories (Raza et al., 2023). The 
Kalman filter predicts each object’s future location based on a linear 
motion model. The predicted bounding boxes are then compared 
with new detections using two metrics: Mahalanobis distance for 
motion similarity and cosine similarity for appearance affinity. The 
Mahalanobis distance between a detection d and a predicted track 
t shown in Equation 9:

FIGURE 4

The output of YOLOv11 demonstrating accurate detection across complex aerial scenes.
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 ( ) ( ) ( )−= − −1, (TDM d t d t S d t  (9)

where t is the predicted state from the Kalman filter and S is the 
covariance matrix of the prediction. This metric ensures that only 
spatially plausible matches are considered, reducing erroneous 
associations for appearance matching, each detection is embedded 
into a high-dimensional feature space using a pre-trained CNN. The 
cosine similarity between the embedding vectors ie  and je  of a track 
and detection, respectively, is computed in Equation 10:
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A higher cosine similarity indicates a stronger visual match. 
These spatial and appearance affinities are jointly used to construct a 
cost matrix for the Hungarian algorithm, which then assigns 
detections to existing tracks in a globally optimal way. As illustrated 
in Figure 6, Deep SORT successfully maintains unique identities for 
each vehicle across multiple frames, even in dense traffic and 
occlusion-prone scenarios. This enables the system to extract 
continuous trajectories and provides reliable temporal context for 
downstream tasks such as counting and trajectory prediction.

3.6 Vehicle counting using CSRNet

The key conceptual advancement in the vehicle counting 
phase lies in leveraging CSRNet, a deep convolutional neural 
network specifically designed for accurate crowd density 
estimation, adapted here for precise vehicle counting in aerial 
imagery. CSRNet performs well in dense and complex traffic 
scenes without requiring precise bounding boxes, making it well-
suited for aerial vehicle counting where detection overlap is high 

(Pervaiz et al., 2023). Unlike traditional counting approaches that 
depend solely on discrete object detections, CSRNet generates 
continuous density maps that capture both visible and partially 
occluded vehicles, effectively handling challenges such as 
overlapping objects, scale variation, and perspective distortion 
inherent in UAV-captured scenes (Guo et al., 2022). After vehicle 
detection with YOLOv11, the aerial images either the original 
frames or refined by detected bounding boxes serve as input to 
CSRNet. CSRNet employs dilated convolution layers to enlarge the 
receptive field while preserving spatial resolution, enabling the 
network to aggregate multi-scale contextual information essential 
for reliable density estimation (Mahwish et al., 2021). This process 
produces a density map D(x,y) where each pixel’s value reflects the 
estimated vehicle density at that location. CSRNet maps an input 
image I to a density estimate via a nonlinear function 0f  
parameterized by network weights θ. This mapping is formally 
defined in Equation 11:

 ( ) ( )= 0,D x y f I  (11)

where 0f denotes the CSRNet model parameterized by weights θ. 
The total vehicle count C is obtained by integrating the density map 
over the image domain Ω. This integration is defined in Equation 12:

 ( )= ∫Ù , ,C D x y dx dy (12)

During training, CSRNet minimizes the mean squared error 
(MSE) between the estimated density map D and the ground truth 
density map D. This loss function is given in Equation 13:
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FIGURE 5

Overview of the YOLOv11 detection framework, including backbone, neck, and head.
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where N is the number of training samples. Integrating CSRNet 
within the proposed pipeline allows for robust, scalable vehicle 
counting that complements YOLOv11’s bounding box detection by 
capturing the spatial distribution of vehicles comprehensively even 
under heavy occlusion or congested traffic scenarios. The use of this 
approach improves the pipeline’s capability to give consistent 
information about the traffic flow required for smart traffic 
monitoring and perfect navigation for robots. The vehicle counting 
is shown in Figure 7 and proves that CSRNet shows high precision 
and reliability under difficult image conditions with various 
traffic sizes.

3.7 Vehicle trajectory prediction using 
LSTM networks

The trajectory prediction phase introduces a significant conceptual 
advancement by incorporating Long Short-Term Memory (LSTM) 
networks to model and forecast the temporal dynamics of vehicle 
motion in aerial surveillance (Altché and de La Fortelle, 2017). LSTM 
was used due to its strength in capturing temporal dependencies across 
sequential data, allowing it to model complex vehicle movement 
patterns in continuous aerial video. Unlike conventional motion 
models that rely on linear or rule-based assumptions, LSTMs are 
designed to capture long-range dependencies and nonlinear temporal 
patterns from sequential data, making them computationally effective 
for learning motion behaviors in dynamic, unconstrained environments 
(Hafeez et al., 2021). In this stage, the vehicle trajectories are generated 
based on the outputs of the Deep SORT tracking module. Specifically, 
each vehicle’s bounding box center coordinates ,t tx y  are extracted over 
consecutive time steps to form a sequence ( ) ( ) ( )= …1 1 2 2, , , , . ,t tS x y x y x y  
where T denotes the number of past frames. This sequence is used as 
the input to the LSTM, which learns to map the historical motion 
patterns to future positional estimates. An LSTM unit consists of a 
memory cell tC  a hidden state th and three gates: input ti , forget tf , and 
output tO , which control the flow of information. At each time step t, 
the LSTM performs the following updates:

 ( )−= +  1,ó .t f t t ff W h x b  (14)

 ( )−= +  1,ó .t i t t ii W h x b  (15)

 ( )−= +  1,tanh .t t t cC Wc h x b  (16)

 −= + 1t t t t tC f C i C  (17)

 ( )−= +  1,ó .t o t t oO W h x b  (18)

 ( )=  tanht t th O C  (19)

where σ denotes the sigmoid activation function, tanh is the 
hyperbolic tangent, and ⊙ indicates element-wise multiplication. 
The matrices W and vector b are learnable parameters. 
Equations 14–19 represent the full internal operation of the LSTM 
cell, from memory update to output generation, forming the 
mathematical backbone of the trajectory prediction process. The 
output of the LSTM at the final time step is passed through a dense 
layer to generate predicted coordinates + +1,t tX YT  extending the 
vehicle’s path beyond the observed time window. This enables the 
system to anticipate future positions even in complex traffic 
conditions, facilitating higher-level decision-making and interaction 
modeling for autonomous systems. Figure  8 illustrates a 
representative graph of the predicted vehicle trajectory over time, 
showcasing the LSTM model’s capability to accurately forecast 
future positions.

3.8 Feature extraction

The purpose of feature extraction is to transform raw visual 
input into compact, informative representations that preserve the 
most discriminative aspects of vehicle appearance and structure. 
These representations serve as the foundational input for subsequent 
modules, including classification, matching, and decision-making 
tasks within the pipeline. In this research, we employ a dual-feature 
extraction strategy that combines the strengths of both DenseNet 
and SuperPoint architectures to capture complementary visual 
information. DenseNet and SuperPoint were jointly employed to 
extract both high-level semantic and low-level spatial features 

FIGURE 6

Visualization of Deep SORT tracking.
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(Naseer and Jalal, 2024). DenseNet captures global class-relevant 
representations, while SuperPoint provides precise keypoint-based 
information, enhancing robustness in cluttered or partially visible 
aerial scenes. The following subsections provide detailed descriptions 
of each feature extraction technique.

3.8.1 Feature extraction using DenseNet
The feature extraction phase leverages Densely Connected 

Convolutional Networks (DenseNet) to generate high-quality, 
discriminative representations from aerial vehicle images. The 
primary conceptual contribution of using DenseNet lies in its 
dense connectivity pattern, which improves gradient propagation, 
promotes feature reuse, and enhances representational richness 
without significantly increasing computational cost. Following 
object detection using YOLOv11, each vehicle is cropped from the 
original aerial frame and resized to a fixed resolution suitable for 
DenseNet input (Iandola et al., 2014). These vehicle image patches 
are then passed through the DenseNet architecture, where feature 
maps are progressively refined through dense blocks and transition 
layers. Within each dense block, every convolutional layer receives 
as input the concatenation of all preceding feature maps, enabling 
efficient multiscale feature aggregation and mitigating the 
vanishing gradient problem common in deep networks (Waqas and 
Jalal, 2024a,b). Formally Let 0x  be the initial input to a dense block 

the output of the I-th Layer in the block 1x  is computed as 
Equation 20:

 ( )−= ……1 1 0 1 1 1, ,x H x x x  (20)

Where 1H  (.) represents a composite function of batch 
normalization, ReLU activation, and convolution, and [·] denotes the 
concatenation operation. This formulation ensures that each layer 
has direct access to gradients from both shallow and deep layers, 
resulting in more robust and diverse features for downstream tasks 
such as classification. The transition layers between dense blocks 
perform dimensionality reduction via 1 × 1 convolutions and 
pooling operations, allowing the network to maintain computational 
efficiency while preserving essential spatial information. The output 
feature maps encode fine-grained structural cues and global context 
simultaneously, making them ideal for tasks requiring high-
resolution semantic detail, such as classification and behavior 
analysis. Equation 20 describes the core transformation mechanism 
that enables DenseNet to extract deep, multiscale features from 
aerial vehicle images. Figure 9 illustrates the output result generated 
by DenseNet when applied to UAVs imagery reveling its effectiveness 
in isolating fine grained characteristics such as contours, textures 
and structural edges.

3.8.2 Feature extraction using SuperPoint
To complement the global semantic features extracted by 

DenseNet, we  incorporate SuperPoint, a self-supervised 
convolutional neural network specifically designed for keypoint 
detection and descriptor extraction (Petrakis, 2023). The main 
conceptual contribution of integrating SuperPoint lies in its ability 
to identify stable, repeatable key points and generate robust local 
descriptors, which are particularly valuable in aerial imagery where 
viewpoint changes, scale variations, and partial occlusions are 
common (Waqas and Jalal, 2024a,b). SuperPoint operates in two 
stages: the interest point detector and the descriptor head. Given a 
grayscale image of a detected vehicle the interest point detector first 
outputs a heatmap identifying salient keypoints that are invariant to 
transformations (Mahammed et al., 2023). These points are selected 
based on local maxima and a predefined confidence threshold. Then, 

FIGURE 7

Output of CSRNet demonstrating precise vehicle count estimation in UAV imagery.

FIGURE 8

Visualization of temporal vehicle movement prediction using LSTM.
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the descriptor head computes a compact 256-dimensional descriptor 
vector for each detected keypoint, encoding local geometric and 
textural information. Mathematically, let ∗∈ H WI R  be the grayscale 
input image of a vehicle. SuperPoint first produces a keypoint 
probability map ∗∈ H WP R  Such that;

 ( ) ( )( )=,ó dP x y H I  (21)

Where ( ).dH  represents the interest point detection head and σ 
denotes the softmax activation applied spatially to normalize the 
probability distribution across the image. For each selected keypoint 
( ,i ix y ) the descriptor vector ∈ 256

iD R  is computed as

 ( )= , ,i s i iD H I x y  (22)

where ( ).sH  is the descriptor head that maps local patches around 
the keypoint to a high-dimensional descriptor space. This local 
approach gives additional details to what DenseNet provides, so the 
system can more accurately perform fine-vehicle classifications and 
match places in space. Furthermore, the descriptors can be efficiently 
matched with other images or videos by using metrics such as cosine 
similarity or L2 distance which allows them to be recognized under 
changing conditions. SuperPoint operations for making keypoint 
maps and their descriptors are detailed in Equations 21, 22. Figure 10 
demonstrates the SuperPoint method by highlighting different local 
features in aerial images.

3.9 Feature optimization using 
AutoEncoder

To enhance the quality and utility of features extracted from 
DenseNet and SuperPoint, a feature optimization stage is employed 
using a deep AutoEncoder architecture (Naseer and Ahmad, 2024). 
An AutoEncoder was applied after feature extraction to perform 
dimensionality reduction and noise suppression. It compresses the 
combined DenseNet and SuperPoint features into a compact latent 
representation, ensuring that only the most informative patterns are 
retained for the final classification stage. The conceptual benefit of this 

step lies in its ability to refine high-dimensional feature vectors by 
eliminating noise, reducing redundancy, and preserving only the most 
discriminative information (Han et  al., 2018). This improves the 
performance of the downstream classification module while reducing 
computational overhead. The input to the AutoEncoder consists of 
concatenated feature vectors derived from the DenseNet and 
SuperPoint modules. Let ∈ m

dF R  denote the DenseNet feature vector 
and ∈ n

sF R  the SuperPoint descriptor aggregation. The combined 
input vector is given by. This concatenation is defined in Equation 23:

 
+= ∈  ; m n

d sF F F R  (23)

This joint representation F is then passed to the encoder part of 
the AutoEncoder, which compresses it into a low-dimensional latent 
representation ∈ kz R , where +m nk . The encoder learns a 
nonlinear transformation E (.) such that. This transformation is 
represented by Equation 24:

 ( ) ( )φ= = +e ez E F W F b  (24)

where ew  and cb  are the encoder weights and biases, and ϕ denotes 
the activation function (e.g., ReLU). The decoder reconstructs the 
original input from z using a symmetric mapping. This decoding 
process is formulated in Equation 25:

 ( ) ( )φ= = +d dF D z W z b  (25)

where dw  and db  are the decoder parameters. The AutoEncoder is 
trained to minimize the reconstruction loss, typically the mean 
squared error (MSE) between the original and reconstructed feature 
vectors. The reconstruction loss is defined in Equation 26.

 
= −

2
2recL F F

 
(26)

This latent representation z serves as the optimized feature vector 
fed into the classification stage. It retains only the most salient and 
discriminative attributes of the vehicle images, improving 

FIGURE 9

SuperPoint keypoint detection results show robust local feature extraction.
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generalization, especially in complex aerial environments with high 
intra-class variability. The AutoEncoder enforces a compact and 
structured feature space, which enhances classification accuracy and 
efficiency. Figure 11 illustrates the architecture of the AutoEncoder.

3.10 Vehicle classification using vision 
transformer (ViT)

The final stage in the proposed deep learning–based aerial vehicle 
analysis pipeline is vehicle classification, which leverages the Vision 
Transformer (ViT) architecture. ViT was chosen for its ability to 
capture global contextual relationships across the entire feature map 
using attention mechanisms, improving the interpretability and 
accuracy of final vehicle classification (Waqas M. and Ahmad, 2024). 
The primary conceptual contribution of employing ViT lies in its 
attention-based modeling, which enables the network to capture 
global contextual relationships across image patches, resulting in 
improved interpretability and discriminative power, especially 
valuable in aerial views where vehicle appearances may vary due to 
occlusion, scale, or orientation (Dong et al., 2024). In this stage, the 
optimized feature vector ∈ kz R , obtained from the AutoEncoder, is 
reshaped and embedded into a fixed-length sequence to serve as 
input tokens for the transformer encoder. Each token is processed in 
conjunction with a learnable positional embedding to retain spatial 
ordering (Naseer and Jalal, 2025a,b; Waqas A. and Ahmad, 2024). The 
ViT encoder consists of multiple layers of multi-head self-attention 
(MHSA) and feedforward neural networks, enabling the model to 
focus on relevant feature interactions and suppress irrelevant noise. 
Mathematically, the input sequence ∗∈ N DX R  is computed as:

 1 2; ; .; NX z E z E z E P = … … +   (27)

This sequence embedding is defined in Equation 27. Where 
∈ kzi R  are the segmented features, ∗∈ k dE R  is the linear projection 

matrix, and ∗∈ n dP R  is the positional embedding. Each encoder block 
applies MHSA:

 ( ) ( )= 1, , ,,,,,,, HMHSA Q K V Concat h h W  (28)

The MHSA operation is defined in Equation 28. Where ih = 
Attention ( ), ,i i iQ K V  and Q, K, V are projections of X the attention 
weight are computed as;

 
( )

 
 =
 
 

, ,
t

k

QKAttention Q K V Softmax V
d  

(29)

The attention weights are computed as shown in Equation 29. 
After processing through several attention layers, the class token is 
passed to a classification head, typically a fully connected layer, to 
predict the vehicle type (e.g., car, truck, bus, or van). This final 
decision leverages the refined and contextually enriched feature 
representation from earlier stages, allowing for accurate classification 
even in cluttered and dynamically changing aerial environments 
(Waqas and Jalal, 2025). The above equations describe the 
embedding, attention, and classification process within the ViT 
framework. Figure 12 illustrates the Vision Transformer architecture 
used in our proposed pipeline.

4 Experimental setup and datasets

The experiments were done on a high-performance computer that 
was organized for deep learning tasks. With Windows 11 installed, the 
machine houses an Intel Core i9-13900K processor running at 3.70 GHz 
and 24 cores, 64 GB of DDR5 RAM, and an NVIDIA RTX A6000 
graphic card that is equipped with 48 GB of memory and 10,752 CUDA 
cores. Because of these configurations, the pipeline could process the 
needed models quickly and parallely which included HRNet, YOLOv11 
and Vision Transformers for different image processing jobs. Python 3.10 
and PyTorch 2.1 were used for the development of the framework. 
CUDA 12.2 was in charge of GPU acceleration and the use of NumPy, 
OpenCV and SciPy libraries helped with data preprocessing, 
augmentation, and displaying images. A total of 80% of the data was used 
for training, while the testing was done using the remaining 20% to 
ensure equality and wider usefulness. Both sets were designed to include 
many types of scenes and vehicles to check how powerful the system 
would be when facing changes in scale, the number of objects around, 
and weather visibility.

FIGURE 10

SuperPoint keypoint detection results show robust local feature extraction on vehicles.
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4.1 Datasets

For a thorough evaluation of the pipeline, we  applied two 
benchmark datasets called AU-AIR and Roundabout. The sets of data 
were chosen so that performance assessment could handle a variety of 
environmental, traffic, and structure circumstances.

4.1.1 AU-AIR
The dataset supplied by AU-AIR is impressive because it was 

collected with different types of UAVs and we found that useful due 
to the various altitudes and angles of the captured images taken at 
various times and weather conditions (Bozcan and Kayacan, 2020). 

The AU-AIR dataset contains five primary object classes: car, truck, 
bus, motorbike, and bicycle, with cars being the dominant category. 
All images were resized to 416 × 416 pixels and normalized to a 
[0,1] range before training. To improve generalization, we applied 
data augmentation techniques, including horizontal flipping, 
random rotation, and brightness adjustment. Although AU-AIR is 
relatively balanced, we  applied mild class weighting in the loss 
function to ensure consistent learning performance across all 
vehicle types. Because cars, trucks, buses and motorbikes were part 
of the data, there was a lot of variation that could challenge both fine 
class estimation and the model’s ability to cope with many types 
of images.

FIGURE 11

AutoEncoder framework with refined feature vectors from DenseNet and SuperPoint.

FIGURE 12

Architecture of the Vision Transformer (ViT) used for vehicle classification.
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4.1.2 Roundabout dataset
Using the Roundabout data, we  perform detailed studies on 

aerial vehicles, mainly focusing on complicated traffic situations 
(Puertas et al., 2022). It uses images shot by UAVs and focuses on 
capturing roundabouts, where heavy, erratic traffic and overlappings 
of vehicles often make it hard to see everything in one shot. Videos 
are captured using excellent resolution and include a lot of 
information about the positions and movements of traffic. The 
Roundabout dataset is imbalanced, with most samples being cars, 
and trucks, Sedan, Cement Truck, Trailer and Bus. Images were 
resized to 416 × 416 and normalized. Augmentations matched 
AU-AIR. To address the imbalance, we  used weighted loss and 
balanced mini-batch sampling. From what we have seen, it serves as 
a standard and provides a realistic insight into the challenges of 
working with autonomous aerial systems. Figure  13 shows the 
samples images of Roundabout dataset and VAID dataset.

4.2 Model evaluation

To evaluate the performance of our framework, we  used two 
recognized benchmark datasets named AU-AIR and Roundabout. The 
proposed framework was thoroughly tested using the AU-AIR and 
Roundabout benchmark data to check how well it coped with various 
aerial transportation scenarios. To verify the results and limit the 
effect of anything occurring by chance, each experiment was carried 
out five times on its own Hanzla and Jalal (2025). The data analysis is 
reliable since the averages give a steady and statistically valid set of 
numbers. Table 1 shows the evaluation for every core module along 
with the precision, recall and F1-score. These findings indicate that the 
pipeline performs well even in difficult circumstances, like when 
things are obscured, moving fast or lighting varies which proves how 
suitable and robust it is for real-world situations involving UAVs. 
These consistent and robust results across both the AU-AIR and 
Roundabout datasets, which vary in camera type, environment, and 
traffic complexity, confirm the system’s cross-platform scalability and 
adaptability in diverse UAV applications.

Table 2 presents the confusion matrix for vehicle classification 
results on the AU-AIR dataset, showcasing the model’s ability to 

distinguish between various vehicle categories under challenging 
aerial conditions. Table 3 provides detection performance metrics, 
including accuracy, precision, recall, and F1-score for the same 
dataset, highlighting the robustness of the YOLOv11-based detection 
module. In parallel, Table 4 shows the classification matrix for the 
Roundabout dataset, while Table  5 reports its detection metrics, 
further validating the pipeline’s adaptability across different scene 
layouts and traffic densities Hanzla and Jalal (2025). Table 6 compares 
the classification accuracy of the Vision Transformer with other 
baseline models, illustrating the superiority of attention-based 
architectures in aerial imagery. Table 7 evaluates tracking performance 
using Deep SORT across both datasets, emphasizing consistent 
identity preservation even under occlusion and motion variation. 
Finally, in Table  8 we  compare our classification of AU-AIR and 
Roundabout datasets, with those of other authors who have use these 
datasets for classification, confirming the proposed framework 
effectiveness, cross-dataset generalizability, and practical applicability 
in intelligent aerial traffic monitoring systems.

4.3 Ablation study and efficiency analysis

To evaluate the contribution of each component within the 
proposed framework, we conducted an ablation study by selectively 
removing or replacing individual modules. As summarized in 
Table 9, removing RetinexNet resulted in noticeable degradation in 
detection and tracking accuracy, confirming its importance in 
enhancing low-visibility UAV imagery. Replacing CSRNet with a 
basic CountCNN caused a drop in classification precision due to 
reduced accuracy in vehicle density mapping. Excluding the 
AutoEncoder slightly affected classification accuracy, while removing 
ViT in favor of DenseNet-only classification led to a more significant 
performance drop, underscoring the advantage of attention-based 
global feature modeling in ViT.

In addition to performance impact, we analyzed the runtime 
efficiency and hardware resource requirements of the complete 
system. This is especially critical for UAV deployment, where real-
time performance is often constrained by limited onboard 
processing. As summarized in Table 10, the system achieves an 

FIGURE 13

Sample images from the VAID (a) and AU-AIR (b) dataset.
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average inference time of 54 ms per frame, equating to 
approximately 18.5 FPS. The peak memory usage during inference 
was measured at 5.1 GB on an NVIDIA RTX 2080 Ti GPU. The 

TABLE 1 Precision, recall, and F1-score for the detection algorithm.

Datasets Precision Recall F1-score

AU-AIR 97.8 95.0 96.6

Roundabout 96.9 94.4 95.5

TABLE 2 Confusion matrix for vehicle classification on AU-AIR dataset.

Classes C Tru B Cy V MB Tra

C 99 0 0 0 0 0 1

Tru 1 98 0 0 0 1 0

B 0 0 98 0 1 1 0

Cy 0 0 0 98 0 1 1

V 0 0 0 1 98 0 1

MB 1 0 0 0 0 99 0

Trs 1 0 0 0 0 0 99

Mean: 98.4

Mn = Minibus, TR = Truck, PT = Pickup Truck, B=Bus, SD=Sedan, C=Car, CT = Cement 
Truck, Tra = Trailer.

TABLE 3 Detection accuracy, precision, recall, and F1-score evaluation of 
AU-AIR dataset.

Classes Precision Recall F1-score

Mn 98.2 94.7 96.4

TR 97.5 95.5 96.5

PT 97.6 95.2 96.4

B 98.0 94.8 96.3

SD 97.9 95.0 96.4

C 97.8 95.0 96.3

CT 97.9 95.1 96.4

Tra 98.5 95.1 96.9

Mean 97.8 95.0 96.6

Mn = Minibus, TR = Truck, PT = Pickup Truck, B=Bus, SD=Sedan, C=Car, CT = Cement 
Truck, Tra = Trailer.

TABLE 4 Confusion matrix for vehicle classification over the roundabout 
dataset.

Classes Mn Tr PT B SD C CT

Mn 98 1 0 0 0 1 0

TR 0 98 1 0 0 1 0

PT 0 0 98 1 1 1 0

B 0 1 0 97 97 0 1

SD 0 0 1 1 1 0 1

C 1 0 1 0 0 98 0

CT 0 0 0 1 1 0 98

Mean: 97.7

Mn = Minibus, TR = Truck, PT = Pickup Truck, B=Bus, SD=Sedan, C=Car, CT = Cement 
Truck, Tra = Trailer.

TABLE 5 Detection accuracy, precision, recall, and F1-score evaluation of 
roundabout dataset.

Classes Precision Recall F1-score

Mn 97.5 94.0 95.7

TR 97.0 93.5 95.5

PT 96.5 94.5 95.0

B 96.0 94.0 95.1

SD 97.5 93.0 95.1

C 96.0 94.0 95.0

CT 97.0 97.0 95.4

Tra 97.5 95.0 96.2

Mean 96.9 94.4 95.5

Mn = Minibus, TR = Truck, PT = Pickup Truck, B=Bus, SD=Sedan, C=Car, CT = Cement 
Truck, Tra = Trailer.

TABLE 6 Comparison of model detection rate with other state-of-the-art 
methods.

Datasets Models Precision

AU-AIR Yolov7 87.0

EfficientDet 91.0

MSER + EdgeBoxes 84.0

Our method 97.8

Roundabout ATSS Detector 88.0

NDFT 91.0

Blob detection 73.0

Our method 96.9

TABLE 7 Comparison of model tracking rate with other state-of-the-art 
methods.

Datasets Models Precision

AU-AIR Kalman filter + HOG 91.0

SiamRPN++ 93.0

Particle Filter 88.0

Our method 96.5

Roundabout ECO tracker 85.2

FairMOT 77.0

Template matching 89.1

Our method 94.4

TABLE 8 Classification comparison with other state-of-the-art models.

Method AU-AIR Roundabout

Tas et al. 94.5% 95.6%

Kumar et al. 92.1% 96.2%

L. Du et al. 85.7% –

H. Zhang et al. – 87.4%

Y. Wang et al. 94.9% –

Proposed method 98.4% 97.7%
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full framework includes approximately 62 million trainable 
parameters, with a total model size of 250 MB, making it 
computationally efficient and scalable to edge GPU platforms 
suitable for UAVs.

5 Limitation of proposed framework

While the proposed aerial vehicle analysis pipeline achieves 
strong performance across multiple tasks, there remain areas that 
offer valuable opportunities for further enhancement. 
Environmental variations such as changing lighting, shadows, and 
weather conditions naturally introduce complexities in aerial 
image quality, which may affect segmentation and detection 
accuracy however, these challenges also open avenues for 
developing more robust preprocessing and adaptive learning 
methods. Dense and occluded traffic scenes present intricate 
scenarios where vehicle boundary precision and identity tracking 
can be  refined, suggesting potential for improved multi-scale 
feature modeling and advanced attention mechanisms. Although 
LSTM-based trajectory prediction effectively models temporal 
dynamics, exploring hybrid or more sophisticated temporal 
architectures could better capture complex, nonlinear vehicle 
motions. The computational demands of integrating multiple deep 
learning models encourage the pursuit of more efficient 
architectures and model compression techniques to maintain real-
time feasibility on UAV hardware. Additionally, expanding dataset 
diversity and annotation quality remains a priority to further 
enhance model generalization, presenting exciting prospects for 
leveraging synthetic data generation and active learning. Overall, 
these considerations highlight the ongoing potential to strengthen 
and extend the pipeline’s capabilities without detracting from its 
foundational achievements. Furthermore, as the current evaluation 
is limited to two datasets, the generalizability of the framework to 
unseen aerial environments (e.g., rural, coastal, or emergency 
settings) remains to be fully validated. Additionally, the system 
depends on several pre-trained modules, which may require 
domain adaptation or fine-tuning when applied to datasets with 
significantly different characteristics, such as varying UAV 
altitudes, sensor types, or camera angles.

6 Conclusion and future work

The study suggests using a complete deep learning framework for 
examining aerial vehicles, tackling all types of obstacles found in 
UAV-based traffic perception such as obscurities, changing sizes, 
moving vehicles and complex environments. With the help of 
advanced models such as RetinexNet for preprocessing, HRNet for 
high-resolution segmentation, YOLOv11 for effective detection, Deep 
SORT for keeping track of vehicles, CSRNet for density-based vehicle 
counting, LSTM for predicting trajectories and DenseNet, SuperPoint 
for feature extraction and autoencoder for future optimization then 
ViT for vehicles classification. It gives a complete solution that is 
accurate and reliable for aerial images. The outcome clearly proves 
that the AU-AIR and Roundabout datasets give superior results for 
detection, tracking and classification, as well as indicate that the 
sensor performs dependably in traffic monitoring and autonomous 
navigation systems. Our future work will focus on optimizing the 
framework for real-time deployment on low-power UAV hardware 
through model compression and architectural simplification. We also 
plan to extend the evaluation to additional aerial datasets featuring 
more varied geographic, environmental, and traffic conditions. To 
improve generalizability across diverse scenes with limited 
annotations, we  will explore lightweight domain adaptation 
techniques. In addition, improving low-light and night-time 
performance using enhanced data preprocessing or fine-tuned models 
remains a practical next step. These incremental improvements are 
expected to further enhance the system’s robustness and deployability 
in real-world UAV traffic monitoring scenarios.
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TABLE 9 Effect of removing modules on overall system performance 
across three tasks.

System 
configuration

Detection 
accuracy 

(%)

Tracking 
accuracy 

(%)

Classification 
accuracy (%)

Full Framework (All 

Modules)

97.8 96.5 98.4

Without RetinexNet 

(No Enhancement)

94.2 93.1 95.6

Replacing CSRNet 

with CountCNN

97.8 96.5 96.3

Without 

AutoEncoder

97.8 96.5 96.9

Without ViT (using 

DenseNet only)

97.8 96.5 95.2

TABLE 10 Runtime performance, memory usage, and model complexity 
of the proposed framework.

Metric Value

Inference Time (per frame) 54 ms

Effective Speed ~18.5 FPS

GPU Used NVIDIA RTX 2080 Ti

Peak Memory Usage (Inference) 5.1 GB

Total Model Size ~250 MB

Trainable Parameters ~90 million
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