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Introduction: To address the challenges of current 4D trajectory prediction—
specifically, limited multi-factor feature extraction and excessive computational 
cost—this study develops a lightweight prediction framework tailored for real-
time air-traffic management.

Methods: We propose a hybrid RCBAM–TCN–LSTM architecture enhanced 
with a teacher–student knowledge distillation mechanism. The Residual 
Convolutional Block Attention Module (RCBAM) serves as the teacher network 
to extract high-dimensional spatial features via residual structures and channel–
spatial attention. The student network adopts a Temporal Convolutional 
Network–LSTM (TCN–LSTM) design, integrating dilated causal convolutions 
and two LSTM layers for efficient temporal modeling. Historical ADS-B 
trajectory data from Zhuhai Jinwan Airport are preprocessed using cubic spline 
interpolation and a uniform-step sliding window to ensure data alignment and 
temporal consistency. In the distillation process, soft labels from the teacher 
and hard labels from actual observations jointly guide student training

Results: In multi-step prediction experiments, the distilled RCBAM–TCN–LSTM 
model achieved average reductions of 40%–60% in MAE, RMSE, and MAPE 
compared with the original RCBAM and TCN–LSTM models, while improving R² 
by 4%–6%. The approach maintained high accuracy across different prediction 
horizons while reducing computational complexity.

Discussion: The proposed method effectively balances high-precision modeling 
of spatiotemporal dependencies with lightweight deployment requirements, 
enabling real-time air-traffic monitoring and early warning on standard CPUs and 
embedded devices. This framework offers a scalable solution for enhancing the 
operational safety and efficiency of modern air-traffic control systems.
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1 Introduction

In recent years, the rapid expansion of the air-transport industry has driven a continuous 
increase in air-traffic density, leading to frequent flight delays and increasingly congested airspace 
(Ma et al., 2024). To address the mounting challenges imposed on Air Traffic Control (ATC), the 
International Civil Aviation Organization (ICAO) has incorporated Trajectory-Based Operations 
(TBO) into the global aviation framework (Ramasamy et al., 2014). TBO relies on four-dimensional 
(4D) trajectories—comprising three spatial coordinates plus time—shared dynamically among 
ATC, airports, airlines, and aircraft to enable collaborative, real-time decision making (Zeng et al., 
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2022; Hao et al., 2018). In March 2020, the Air Traffic Management 
Bureau of the Civil Aviation Administration of China (CAAC) published 
its “Civil Aviation Modernization Strategy (CAAMS) Roadmap,” 
designating TBO and 4D trajectory prediction as core objectives for 
future ATC modernization (Vaugeois, 2018; Chang et al., 2020). High-
precision trajectory forecasting is therefore essential to enhancing both 
the safety and efficiency of air-traffic management. Unlike single-step 
forecasts, multi-step prediction projects an aircraft’s position over an 
extended horizon, facilitating proactive rerouting and conflict avoidance. 
However, multi-step trajectory prediction remains subject to severe 
challenges—cumulative prediction errors, insufficient capture of 
spatiotemporal dependencies, and high computational costs—which 
underscore the urgent need to improve its accuracy and efficiency in 
current aviation research.

Methods for short-term trajectory prediction broadly fall into three 
categories: kinematic-particle models, state-estimation approaches, and 
machine-learning techniques. Kinematic-particle models (Peng et al., 
2005) treat the aircraft as a point mass, applying force analyses and 
combining flight-dynamics equations with aircraft parameters to predict 
motion; however, they demand extensive vehicle-specific and kinematic 
data. State-estimation methods (Tang et  al., 2020) regard aircraft 
movement as a state-transition process, constructing transition matrices 
from equations of motion to relate future positions to past states (position, 
velocity, acceleration). While mathematically rigorous, these linear 
models struggle with the nonlinear dynamics and external disturbances 
inherent in real trajectories and incur high computational cost.

Machine learning-based algorithms have gradually been applied to 
trajectory prediction. Machine learning mines hidden information from 
large amounts of trajectory data, constructs neural networks, and extracts 
nonlinear relationships between trajectory information, which is crucial 
for improving the accuracy of trajectory prediction. Short-term trajectory 
prediction is divided into single-step prediction and multi-step prediction 
according to the prediction range. Currently, classical neural networks 
used for trajectory prediction include Back Propagation (BP) neural 
networks (Wu et al., 2019), Long Short-Term Memory (LSTM) networks 
(Shi et al., 2018; Sahadevan et al., 2022; Shi et al., 2019), Gated Recurrent 
Units (GRU) (Han et al., 2021; Han et al., 2023), and other variants of 
Recurrent Neural Networks (RNN). Lu et al. (2024) proposed an airport 
terminal area trajectory prediction model based on a sequence-to-
sequence framework, which combines an attention mechanism and an 
exponential decay sampling method in teacher forcing to predict 
trajectory sequences, thereby improving prediction accuracy and model 
training efficiency. Huang and Ding (2022) proposed a novel trajectory 
prediction model based on Temporal Convolutional Networks (TCN) 
and Bidirectional Gated Recurrent Units (BiGRU), and optimized the 
model’s hyperparameters using a Bayesian algorithm. Shi et al. (2024) 
proposed a multi-step 4D trajectory prediction model (GTA-Seq2Seq) 
that uses GRU, TCN, and Temporal Pattern Attention (TPA) mechanisms 
in the sequence-to-sequence (Seq2Seq) model. Experiments showed that 
the number of parameters required by this model during training was 
reduced by 67.42% compared with STED (the optimal model), improving 
the model’s operational efficiency. Shafienya and Regan (2022) proposed 
a hybrid deep learning method for trajectory prediction at Hartsfield-
Jackson International Airport. They preprocessed ADS-B data, fused 
CNN-GRU with 3D-CNN, enhanced robustness through Monte Carlo 
dropout, and reduced the post-average error rate by 21%, significantly 
optimizing prediction errors. Chuan et al. (2023) developed a new model 
fusing temporal convolutional recurrent neural networks and LSTM 
networks to enhance the ability to predict future flight routes of aircraft. 

The model uses the former to capture key navigation attributes and the 
latter to correct prediction deviations and suppress error accumulation. 
Simulation experiments verified that the model exhibits high accuracy in 
route prediction. Dong et al. (2023) proposed a trajectory prediction 
model that performs deep learning after feature extraction. This hybrid 
model combines a Temporal Convolutional Network and an improved 
transformer model, and the results showed that the proposed 
TCN-Informer architecture performs better in various evaluation metrics. 
Zhang and Liu (2025) proposed a 4D trajectory prediction method based 
on K-medoids clustering and Conditional Tabular Generative Adversarial 
Networks (CTGAN). Comparative experiments with four LSTM-based 
models and the original CTGAN model demonstrated that the proposed 
model has significantly higher trajectory prediction accuracy than other 
models when predicting medium and long-term trajectories. Wu et al. 
(2022) proposed a long-term 4D trajectory prediction model based on 
Generative Adversarial Networks (GAN). They designed three deep 
generative models for trajectory prediction based on 1D Convolutional 
Neural Networks (Conv1D-GAN), 2D Convolutional Neural Networks 
(Conv2D-GAN), and LSTM-GAN, and the results indicated that 
Conv1D-GAN is the most suitable generative adversarial network for 
long-term aircraft trajectory prediction. LSTM is widely used in 
processing and predicting time series data. Liu and Hansen (2018) 
developed an encoder-decoder-based LSTM generative model for 
predicting aircraft 4D trajectories. Zhao et al. (2019) proposed a Deep 
LSTM (D-LSTM) neural network to improve the prediction accuracy of 
aircraft in complex flight environments. Lei et al. (2025) introduced a 
novel Deep Multimodal Network (DMN), which integrates a shared 
feature extractor and a multi-task prediction module with a translation 
encoder to capture intra-modal and inter-modal dependencies. 
Compared with baseline models using real datasets, it shows superior 
performance. Li et  al. (2025) proposed a noise-robust autoregressive 
transformer that enhances prediction reliability by integrating noise-
regularization embeddings into multi-head attention equipped with 
hybrid positional encodings. The model effectively captures essential 
spatiotemporal relationships and more accurately manages positional 
information across diverse trajectories. Guo et al. (2024) introduced a 
speech-instruction-aware trajectory-prediction framework that treats 
controller voice as an independent modality for 4-D trajectory forecasting. 
By employing a three-stage progressive multimodal learning paradigm, 
the framework bridges the heterogeneous gap between speech and 
trajectory data, achieving over 20% relative reduction in mean deviation 
error on real-world datasets and enabling the first real-time coupling of 
“control intent–trajectory.” This work opens a new avenue for future 4-D 
trajectory research by integrating spoken intentions. Gao et al. (2025) 
proposed the CORR-CNN-BiLSTM-Attention model, which combines 
convolutional feature extraction, bidirectional LSTM temporal modeling, 
and attention correction. Applied to projectile trajectory prediction, it 
achieved end-point errors below 8 m at 20 s in single-step, multi-step, and 
recursive forecasting, and accomplished reverse launch-point prediction 
for the first time with a total error of 8.31 m. Although focused on 
projectiles, its integration of short- and long-term dependencies, recursive 
refinement, and multi-step extrapolation closely parallels our 4D aircraft 
trajectory forecasting task and provides a direct reference for joint single- 
and multi-step trajectory modeling.

With the continuous advancement of deep learning networks, the 
issues arising from model complexity have gradually become inevitable 
challenges in this field. Among these, the enormous demand for 
computational resources is the most prominent. Knowledge 
distillation, as an efficient model compression method in the field of 
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deep learning, has been widely applied in various scenarios. Gou et al. 
(2024) proposed a novel knowledge distillation approach, namely 
Forward and Feedback Knowledge Distillation (FFKD). Experimental 
results demonstrated that FFKD outperforms existing state-of-the-art 
knowledge distillation methods on five visual recognition datasets, 
showing great potential in deploying compact deep models in 
intelligent applications such as intelligent transportation, smart 
healthcare, and distributed intelligence. Xie et al. (2024) put forward a 
knowledge distillation method based on hierarchical feature logits. 
This method is particularly suitable for deployment on edge devices 
with limited memory and computing capabilities to achieve real-time 
decision-making and reduce data communication costs. Extensive 
experiments verified the effectiveness of the proposed model and 
proved its application potential in detecting internal defects of key 
components in electrical and mechanical systems within modern 
industry. Zhou et al. (2024) designed a model combining Graph Neural 
Networks (GNN) and Knowledge Distillation (KD), named 
Reconstructed Graph with Global–Local Distillation (RG-GLD), for 
lightweight anomaly detection in Internet of Things (IoT) 
communication networks. Through a graph network reconstruction 
strategy and a refined graph attention mechanism, the model effectively 
extracts and fuses features, thereby improving knowledge transfer 
efficiency. Experiments indicated that the RG-GLD model outperforms 
baseline methods in terms of knowledge transfer efficiency, 
classification accuracy, and computational load, making it suitable for 
deployment in sustainable IoT computing environments. Zhang et al. 
(2025) proposed a new Diversity-Enhanced Knowledge Distillation 
(DivKD) model for solving Mathematical Word Problems (MWP). 
This model adopts an adaptive diversity distillation method, enabling 
the student model to selectively transfer high-quality knowledge from 
the teacher model and learn to generate diverse mathematical 
equations. Experimental results on four MWP benchmark datasets 
showed that the DivKD model achieves higher answer accuracy than 
existing strong baseline models while maintaining high efficiency. Shen 
et al. (2025) addressed the issue of deploying large-scale GNN on 
resource-constrained devices and proposed a GNN knowledge 
distillation method based on adaptive meta-learning. This method 
allows the teacher model to dynamically update its parameters 
according to the learning feedback from the student model, thereby 
transferring knowledge more effectively. Additionally, a local structure 
preservation loss is introduced to avoid over-smoothing. Experimental 
results demonstrated that this method performs excellently in four 
benchmark tests, proving its effectiveness in reducing computational 
resource requirements while maintaining performance. Knowledge 
distillation and model compression technologies have become core 
means to achieve lightweight deep models. Through distillation, the 
representational capabilities of large-capacity teacher models are 
condensed into compact student networks, compressing the number 
of parameters and computational load several times without significant 
loss of accuracy. This directly reduces storage and power consumption, 
significantly alleviating the resource bottleneck of edge devices. 
Meanwhile, quantization and pruning can further eliminate 
redundancy at the bit level and structural level, collaborating with 
distillation to form a pipeline of “distillation followed by compression” 
or “alternating optimization.” This enables models to approach the 
theoretical limit of lightweight while maintaining task performance.

To address the issues of insufficient multi-factor feature extraction 
and excessive computational resource consumption in 4D trajectory 

prediction, this paper proposes an RCBAM-TCN-LSTM knowledge 
distillation model. This model consists of three main modules: the 
teacher model RCBAM, the student model TCN-LSTM, and the 
knowledge distillation mechanism between them. Each module works 
synergistically to achieve high-precision spatiotemporal coupling 
modeling of trajectory data.

	(1)	 Teacher model RCBAM: Based on the ResNet framework, it 
incorporates the CBAM mechanism with dual channel-spatial 
attention, enabling dynamic allocation of weights to different 
feature dimensions and key time windows in deep networks. 
Channel attention is responsible for highlighting important 
dimensions in multi-channel features, while spatial attention 
focuses on turning points and segments with drastic changes 
on the sequence timeline, thereby extracting more delicate 
spatial feature representations and providing high-quality soft 
label information for the student network.

	(2)	 Student model TCN-LSTM: It combines the advantages of 
TCN and LSTM. TCN captures multi-scale temporal patterns 
in parallel through multi-layer dilated convolutions and 
residual connections, while LSTM specializes in mining long-
term dependencies within sequences.

	(3)	 Knowledge distillation mechanism: During the training 
process, the prediction distribution of the teacher model (soft 
labels) and the real labels (hard labels) are jointly used to 
construct the distillation loss, and the student network is 
guided through hybrid strategies such as cross-entropy or 
mean squared error. This mechanism not only smoothly 
transfers the deep spatial-channel-temporal coupling features 
of RCBAM to TCN-LSTM but also promotes the student 
network to optimize its overall expressive ability for complex 
trajectories while retaining its own advantages in temporal 
memory, achieving an optimal balance between lightweight 
performance and high precision.

The remaining parts of this paper are organized as follows. Section 
2 describes the data sources and preprocessing. Section 3 elaborates 
on the basic knowledge of TCN, LSTM, ResNet, and CBAM networks. 
Section 4 presents the construction of the 4D trajectory model. 
Section 5 compares the performance of the main model through 
ablation experiments and conducts a comparative analysis with other 
mainstream baseline models. Finally, Section 6 summarizes the results 
and provides an outlook.

2 Data collection and preprocessing

2.1 ADS-B data

ADS-B historical trajectory data is the data basis for the 4D 
trajectory prediction in this paper. ADS-B is an aircraft operation 
monitoring technology, in which the transmitter of aircraft on-board 
equipment sends aircraft information to the ADS-B ground station or 
other aircraft loaded with ADS-B on-board equipment at a certain 
period, and the specific content includes: sampling time, position, 
altitude, speed, flight number, heading, climb or descent rate, etc. The 
data is collected from the ADS-B data, which is the data basis for the 
4D trajectory prediction in this paper. The experimental data in this 
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paper comes from Frequent Flyer Technology Company,1 and some 
data examples are shown in Table 1. As seen in Table 1, there are 
problems such as unequal sampling time intervals between 
neighboring trajectory points, and duplication of latitude and longitude 
data in different sampling points, which need to be preprocessed.

2.2 Data preprocessing

The preprocessing process includes steps such as outlier 
processing, track point interpolation, and normalization of the raw 
data, as well as data alignment and data construction.

2.2.1 Outlier processing
Outliers are mainly categorized into three types: missing values, 

duplicates, and abnormal values. For missing points, the data is first 
sorted by flight number and timestamp. A record is deemed missing if 
the interval between adjacent records exceeds a preset threshold (set to 
5 s in this study). When the proportion of missing points is low (<5%), 
linear interpolation is used to reconstruct fields such as longitude, 
latitude, and altitude. For longer missing segments, KNN interpolation 
(k = 3–5) can be combined for weighted smoothing. If excessive missing 
values lead to large interpolation errors, the entire trajectory is discarded.

Duplicate data is removed by comparing records with identical 
flight numbers, timestamps, and coordinates, or those with a distance 
<1 m and a time difference <0.5 s. Only the first observation is retained. 
For numerical anomalies, key indicators such as speed and climb rate 
are first evaluated using the Z-score (marked when |x–μ| > 3σ) to 
identify anomalies. Meanwhile, isolated jump points can be eliminated 
in the longitude-latitude-time space using simple distance-threshold-
based clustering (the DBSCAN algorithm in this study, with 
eps = 0.001° and min_samples = 3). If the proportion of abnormal 
points is extremely low (<1%), they are replaced using Kalman filtering. 
However, if there are too many abnormal points or the duration of 
continuous anomalies exceeds 10 s, the trajectory is directly deleted to 
ensure the smoothness and reliability of subsequent model inputs.

2.2.2 Track point interpolation and data 
alignment

To address the problem of non-uniform temporal intervals in 
historical trajectory records, we  reconstruct each trajectory via 

1  http://www.variflight.com/

cubic-spline interpolation, enforcing an identical sampling frequency 
so that every pair of consecutive points is separated by the same time 
span. After interpolation, all trajectories share this uniform interval; 
however, because the total flight times differ, the resulting trajectories 
contain different numbers of points—that is, they have unequal 
sequence lengths, as shown in Figure 1a. To capture the overall trend 
of each trajectory, we then uniformly resample N points along the 
entire interpolated path, thereby aligning all sequences to the same 
fixed length and satisfying the input requirement of a uniform step 
count for the trajectory-prediction model, as illustrated in Figure 1b.

2.2.3 Normalization
The trajectory data consists of different feature sequences, and the 

features have different scales and large differences in the data range, 
which may cause the model to be more sensitive to some features and 
less sensitive to other features, making it difficult for the training 
process to converge. Therefore, in this section, in order to avoid this 
situation from affecting the prediction results, the trajectory data need 
to be normalized. By using normalization, the training process can 
be stabilized, the convergence speed of the model can be improved, 
the occurrence probability of gradient explosion and gradient 
disappearance can be  reduced, and the generalization ability and 
prediction accuracy of the model can be improved. This model uses 
min-max normalization in training to map all values between (0,1), 
and the normalization formula is as follows in Equation 1:

	
( ) −

=
−
min

max min

x xNormalized x
x x 	

(1)

Where Normalized is the normalization result, X is the input 
value of the independent variable, and max and min are the maximum 
and minimum values of the corresponding input tensor, respectively.

2.2.4 Data construction
In this section, we first regard the historical flight trajectory dataset 

{ }…1 2, , , mD D D  as a whole composed of a sequence of Features-
dimensional feature vectors. Fixed-length subsequences with (Time-step) 
are sequentially extracted as model inputs using a sliding window method. 
For single-step prediction scenarios, the trajectory point at the moment 
immediately following the end of the window serves as the label. After 
receiving the input tensor with the shape (Batch-size, Time-step, Features), 
the network only needs to compress and aggregate the spatiotemporal 
features captured within the time window through a mapping layer—
typically a fully connected layer or a sequence-to-scalar output module—
and output the next-moment position prediction with the shape 

TABLE 1  Examples of ADS-B raw data.

Sampling time Altitude/ft Speed/kt Direction/° Latitude/° Longitude/°
2022-11-07 t08:46:50 8,250 165 217 25.0771 102.9203

2022-11-07 t08:47:05 8,650 167 217 25.0706 102.9143

2022-11-07 t08:47:20 9,050 166 217 25.0641 102.9088

2022-11-07 t08:47:38 9,575 180 216 25.0559 102.9019

2022-11-07 t08:47:50 10,000 194 218 25.0679 102.8949

2022-11-07 t08:48:07 10,400 216 207 25.0378 102.8949

2022-11-07 t08:48:22 10,700 234 203 25.0263 102.8759
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(Batch-size, 1, Features) or (Batch-size, Features). This design enables the 
model to focus on extracting the most valuable feature mappings for a 
single future point from the information of the past Time-step.

In multi-step prediction scenarios, the sliding window of the same 
length is required to predict not only the trajectory point at the next 
moment after each movement but also output the complete trajectory 
sequence for the subsequent H time steps simultaneously. To this end, 
the model structure usually incorporates a sequence-to-sequence 
multi-output branch design at the end of the network to ensure that the 
time dimension of the output tensor is consistent with the H-step 
length expected by the label. Specifically, the encoder part receives the 
input tensor and extracts high-dimensional representations through a 
series of temporal convolutions or recurrent units. In the decoder or 
multi-branch output layer, the model generates or parallelly outputs the 
trajectory features for the future H steps based on these representations. 
The final shape of the output tensor is (Batch-size, H, Features), which 
is consistent with the real label. During the training process, single-step 
prediction typically only requires calculating the mean squared error 
or cross-entropy loss once, while multi-step prediction needs to weight 
or overall calculate the errors of the H time steps to balance the 
prediction accuracy of both short-term and slightly long-term periods.

In the data construction phase, regardless of single-step or multi-step 
prediction, the window starts from the first row and slides backward with 
a step size of 1 until covering the entire trajectory sequence, thereby 
generating a sufficient number of training samples. The core differences 
between single-step and multi-step prediction lie in the label selection 
method, model output dimension, and design of the network tail: the 
former focuses on single-point mapping with small and simple output 
dimensions; the latter needs to have the ability to generate or parallelly 
output multi-step sequences and simultaneously consider the overall error 
of these H steps in the training loss function. Figures 2, 3 respectively 
show the intuitive illustrations of these two different label construction 
and network output frameworks. In this way, we not only maintain the 
consistency of the data construction process but also clearly distinguish 
the procedures and architectural differences between single-step and 
multi-step predictions at the model structure level.

3 Basic algorithm principle

3.1 Long short-term memory network 
(LSTM)

LSTM is an improved model of RNN for solving the problem of 
gradient vanishing and gradient explosion. The LSTM model 
contains three main gates, which are forgetting gate, memory gate 
and output gate.

The operational steps of LSTM are as follows:
The forgetting gate is used to determine whether the information 

in the cell state of the previous time step needs to be  forgottenas 
shown in Equation 2:

	 ( )σ −= × ⋅ +  1t f t t ff W y x b
	 (2)

The input gate is used to determine the new  
information added to the cell state. tS  is the candidate value 
generated by the input gate ti , as shown in Equation 3 and 
Equation 4:

	 ( )σ −= × +  1,t i t t ii W y x b 	 (3)

	
 ( )−= × +  1tanh ,t c t t cS W y x b 	 (4)

Combining the outputs of the forgetting gate and the input gate 
updates the cell state as shown in Equation 5:

	


−= + 1t t t t tS f S i S 	 (5)

The output gate, outputs the cell state value; ty  is the hidden state 
output, as shown in Equation 6 and Equation 7:

FIGURE 1

Comparison of data alignment pre-processing for trajectory data. (a) Unaligned data. (b) Undergone data alignment.
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	 ( )σ −= +  1 o,t o t to W y x b 	 (6)

	 ( )=  tanht t ty o S 	 (7)

Where ti , tf , to  are the input gate, forgetting gate and output gate 
respectively; where −1ty  denotes the previous cell output and tx  
denotes the current cell input; σ denotes the sigmoid activation 
function; W and b are the weight coefficients and the bias function, 
respectively; tS  and tS  are the candidate memory cell state and the 
memory cell state, respectively; tanh is the hyperbolic tangent 
activation function. The architecture of the proposed LSTM model is 
shown in Figure 4.

3.2 Time convolutional network (TCN)

Temporal Convolutional Network is an improved novel network 
based on CNN proposed by Bai et al. (2018), which enables TCN 
network to capture features in time series data more efficiently due to 
its special dilation causal convolution and residual module, which 
makes TCN network have longer time dependence compared to 
CNN. The structure of dilation causal convolution with dilation 
coefficients D of 1, 2 and 4 in TCN is shown in Figure 5.

In depthwise convolution, a separate convolutional filter is applied 
to each input channel. If the input consists of M state features, there 
are M input channels and thus M filters, each operating on its 
corresponding channel independently. This produces one feature map 
per input feature. Pointwise Convolution then follows, using a 1 × 1 
kernel to merge information across these channels. While it does not 
expand spatial dimensions, it effectively integrates the per-channel 
features into a richer, combined representation. By decomposing a 
standard convolution into these two steps, depthwise separable 

convolutions dramatically reduce both parameter count and 
computational cost—eliminating the need for full connections 
between all input and output channels at every spatial location. 
Moreover, the reduced parameterization helps mitigate overfitting and 
makes the model well suited for deployment on resource-
constrained devices.

3.3 ResNet network

Residual Network (ResNet) is a deep convolutional neural 
network architecture that solves the problem of training difficulties as 
the depth of the network increases, in particular, the problems of 
gradient vanishing and gradient explosion. The core idea of ResNet is 
the introduction of Residual Learning. Traditional neural network 
layers are directly fitted with a mapping relationship between the 
bottom input x and the top output F(x), i.e., y = F(x). Such a mapping 
can lead to the introduction of errors, especially if the number of 
network layers is large and the network is deep. In contrast, ResNet 
lets each layer of the network learn the residual mapping, i.e., the 
difference between the input and the output. If the input is x, the 
residual learning part is F(x), and y is the output, when F(x) learns a 
residual close to zero, then y is close to x. The basic blocks of ResNet 
can be represented in Equation 8 as follows:

	 ( )= +y F x x	 (8)

The basic building blocks of ResNet are residual blocks. Each 
residual block contains two or three convolutional layers, and a skip 
connection that skips over these layers. This connection is made by 
simply adding the inputs of the block to its outputs, allowing the 
gradient of the deep network to also pass directly through these skip 

FIGURE 2

Schematic diagram of single step time series construction.
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connections. During training, the gradient is propagated back through 
both F(x) and x paths by the backpropagation algorithm. If F(x) learns 
a residual close to zero, then this residual will have a small effect on 
the gradient propagation, thus avoiding the gradient vanishing 
problem. In summary, by introducing the residual learning 

mechanism, ResNet enables the network to maintain convergence 
even if more levels are added, effectively solving the gradient vanishing 
and gradient explosion problems in deep neural network training, 
thus realizing the construction of deeper network structures and the 
extraction of deeper features.

FIGURE 4

LSTM network structure diagram.

FIGURE 3

Multi-step time series construction principle diagram.
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3.4 CBAM network

The Convolutional Block Attention Module (CBAM) is a 
lightweight mechanism that enhances feature representations in 
convolutional neural networks by sequentially applying channel and 
spatial attention. As illustrated in Figure 6, CBAM first routes the 
input feature map through the Channel Attention module, which 
computes per-channel weights based on pooled descriptors and 
reweights each channel accordingly. The reweighted feature map is 
then fed into the Spatial Attention module, which generates a spatial 
mask by aggregating channel-wise information and highlights 
important spatial regions. Finally, both attention maps are element-
wise multiplied with the original feature map to yield an adaptively 
refined representation. This two-stage attention process enables the 
network to focus on both “what” (channel importance) and “where” 
(spatial importance), thereby improving its ability to capture 
salient information.

The goal of the Channel Attention module (Channel Attention) is 
to determine the importance of individual channels (i.e., different 
feature maps), which works as shown in Figure 7. It first uses global 
average pooling and global maximum pooling operations to generate 
two different feature maps, which capture the distribution information 
of the channels, respectively. Then, these two feature maps are fed into 
a shared fully connected layer, which contains a hidden layer. Finally, 
the outputs of these two MLPs are summed by elements and a Sigmoid 
activation function is applied to obtain the attention weights for 
each channel.

The Spatial Attention module (Spatial Attention) follows the 
Channel Attention and its purpose is to highlight important regions 
in the spatial dimension and works as shown in Figure 8. This module 
uses the output of channel attention and processes it to generate a 
two-dimensional attention map. Specifically, it first performs average 
and maximum pooling in the channel direction on the input feature 
maps to generate two 2D feature maps, which are then stitched 
together in the channel dimension and passed through a convolutional 
layer to produce the final spatial attention map. This attention feature 
map is also activated by a Sigmoid function in order to weight the 
original input feature map.

4 Teacher model—student model 
predictive model

4.1 Student model (TCN-LSTM)

The TCN-LSTM model prediction process established in this 
paper is shown in Figure 9. The data enter the TCN layer from the 
input layer, which consists of five one-dimensional convolutional 
neural networks (Conv1D), of which Conv1D_4 and Conv1D_5 
belong to the residual block. The TCN layer is connected to two LSTM 
layers after the TCN layer, and finally accesses to the output layer. The 
TCN layer can efficiently capture the local features of the time-series 
data, and the LSTM layer is responsible for modeling the long-term 
dependency, which together constitute the TCN-LSTM model. 
Constitute the main framework of the TCN-LSTM model.

4.2 Teacher model (ResNet-CBAM)

The RCBAM model is essentially a combination of a convolutional 
neural network and an attention mechanism, aiming at feature 
extraction and prediction of the trajectory data from a spatial and state 
change perspective. Figure 10 shows the working schematic of the 
RCBAM model.

The role of ResNet is to efficiently extract high-level features from 
flight trajectory data using a deep structure. By treating the sequence 
data as a one-dimensional image (time as width), the change in 
features over time is captured. Meanwhile residual learning is 
introduced to solve the problem of overfitting and network 
degradation that deep learning models are prone to when dealing with 
complex time series prediction tasks, and to solve the problem of 
gradient vanishing and gradient explosion in deep networks. The role 
of CBAM’s channel attention is to allow the model to dynamically 
assign weights to each input feature, thereby highlighting the features 
that will be most helpful for prediction. The role of CBAM’s spatial 
attention is to dynamically assign weights to each specific point in 
time, thereby highlighting the time windows that are most helpful for 
prediction. The combination of the two CBAM attention mechanisms 

FIGURE 5

TCN expansion of causal convolution structure.
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FIGURE 6

Schematic diagram of CBAM network.

FIGURE 7

Schematic diagram of the channel attention module.

FIGURE 8

Schematic diagram of the spatial attention module.
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allows the model to identify both important feature channels and also 
features at important moments in the trajectory sequence. This helps 
to build more refined prediction models that take into account both 
time dependence and feature importance.

4.3 Model working principle

The student network is implemented as a lightweight TCN-LSTM, 
which has a total of 823,423 parameters (573,213 trainable and 

348,210 non-trainable), roughly one-fifth the size of the RCBAM 
teacher. Its simple combination of dilated causal convolutions and a 
two-layer LSTM makes it an ideal candidate for efficient temporal 
modeling. Figure 11 illustrates the overall architecture of the RCBAM-
TCN-LSTM framework.

In our distillation scheme, the high-capacity RCBAM model 
serves as the teacher, supplying “soft labels” in the form of its 
predicted longitude, latitude, altitude, speed, and heading. These 
soft labels act as smooth, auxiliary supervisory signals that convey 
the teacher’s learned data distributions and help regularize the 

FIGURE 9

TCN-LSTM network structure.

FIGURE 10

Working schematic of the RCBAM model.
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student, mitigating overfitting. Concurrently, the true trajectory 
measurements provide “hard labels,” offering precise, observation-
based targets that the student is explicitly trained to match. During 
training, we compute two mean-squared-error losses: one between 
the student’s outputs and the soft labels, and another between the 
student’s outputs and the hard labels. A weighted sum of these two 
losses forms the total training objective, balancing guidance from 
both the teacher’s predictions and the real data. This joint-
supervision strategy leverages the complementary strengths of 
model-based and data-driven signals to significantly enhance the 
student’s predictive performance.

5 Simulation verification and analysis

5.1 Experimental data and experimental 
environment

The trajectory dataset used in this paper is the real ADS-B 
historical trajectory data of inbound flights at Zhuhai Jinwan 
Airport, which retains the trajectory features such as time, speed, 
altitude, longitude, latitude, etc., and the dataset is stored in the 
form of csv. Based on this dataset, a 4D trajectory prediction 
model based on neural network is constructed for trajectory 
feature and position prediction. From the whole dataset, about 
2,842 complete trajectories, totaling 288,200 trajectory points, 
were intercepted, screened, and retained. All the data were divided 
into training set, validation set and test set according to the ratio 
of 8:1:1.

The experimental equipment is a laboratory desktop computer 
with Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz, 2.90 GHz, and 
16 GB of RAM on board.

5.2 Model evaluation metrics

In order to compare the performance of different algorithms, 
this paper uses the Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE) and Mean Absolute Percentage Error 
(MAPE) and the Coefficient of Determination (R2) were used as 
evaluation indexes. Among them, the smaller the values of 
MAE, RMSE and MAPE are, the better the model prediction effect 
is; the closer the value of R2 is to 1, the better the fitting effect of 
the prediction model is. The specific calculation formula is as 
follows in Equations 9-12:
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Where n is the number of samples, iy  is the actual value of the 
samples, iY  is the predicted value of the model, and iy  is the summed 
average of the actual values of the samples.

FIGURE 11

Schematic diagram of knowledge distillation model based on RCBAM-TCN-LSTM.
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TABLE 3  Parameter configuration of RCBAM model.

Parameter name Parameter value

Optimizer Adam

Batch size 32

Learning rate 0.0005

Optimizer Adam

Number of epochs 50

Window length 32

Input shape (32,6)

Output shape 3

Residual block configuration [2,2,2]

Number of filters [64,128,256,512]

5.3 Model parameter settings

5.3.1 Student model
The TCN-LSTM hybrid network consists of five stacked 1D 

dilated convolutional layers followed by a two-layer LSTM module 
(see Table 2 for hyperparameters).

In the convolutional block, Conv1D_1 through Conv1D_3 
successively reduce the channel count from 16 to 8 to 4, each using a 
kernel size of 3, dilation factor of 1, and ReLU activation to ensure 
strong nonlinear representation and rapid convergence. Conv1D_4 
and Conv1D_5 then maintain 8 and 4 channels respectively, with 
identical kernel and dilation settings, and introduce residual 
connections at each layer. These skip links preserve low-level features 
and mitigate vanishing gradients as the network deepens. After 
extracting and fusing multi-scale temporal features, the output is fed 
into the LSTM block. Both LSTM_1 and LSTM_2 are configured with 
8 hidden units and ReLU activations, balancing efficient gating with 
the capacity to model long-term dependencies. Stacking two LSTM 
layers further deepens the model’s representational power.

Overall, the convolutional layers focus on parallelized local 
pattern extraction—with residual paths to reinforce information 
flow—while the LSTM layers handle dynamic sequence memory. The 
uniform kernel size and activation choice simplify tuning, and the 
progressive channel reduction controls model size without sacrificing 
expressiveness. This design strikes a practical balance between 
accuracy and computational efficiency for medium-length 
sequence forecasting.

5.3.2 Teacher model
The parameter configuration of the hyperparameters is critical for 

model training and directly affects the learning ability and prediction 
performance of the model. The parameters of the model must 
be carefully set and adjusted prior to trajectory prediction to ensure 
that the model can effectively learn from the data and make accurate 
predictions. These parameters include, but are not limited to, the 
window length, the number of filters, the learning rate, and the 
number of iterations. Table 3 details the important parameters that 
need to be set during the model training process, and the selection of 
each parameter is based on extensive experiments and analyses, 
aiming to provide an optimal model training environment for the 
trajectory prediction task.

5.3.3 Pseudocode
Algorithm 1 shows the RCBAM-TCN-LSTM Knowledge-

Distillation 4D Trajectory Prediction.

5.4 Comparison of ablation experiments

In the single-step prediction scenario (Table 4), the distilled 
RCBAM-TCN-LSTM model markedly outperforms both the 
original RCBAM teacher and the TCN-LSTM student. Specifically, 
its MAE in longitude, latitude, and altitude decreases to 0.0415°, 
0.0456°, and 264.9 ft—representing reductions of approximately 
32, 36, and 48% relative to the teacher (0.0613°, 0.0711°, 509.3 ft) 
and 55–58% relative to the student (0.0913°, 0.1032°, 632.5 ft). 
RMSE follows a similar trend, with the distilled model achieving 
0.0411°/0.0466°/265.8 ft. (42–46% lower than the teacher, >55% 
lower than the student). In terms of MAPE, errors fall to 6.44, 
8.66, and 21.37%, compared with 11.94–63.44% for the teacher 
and up to 85.32% for the student, while R2 improves from 0.9343–
0.9355–0.9211 to 0.9867–0.9794–0.9675, confirming the distilled 
model’s superior integration of spatial attention and 
temporal dynamics.

Under multi-step prediction, the advantages of the distilled model 
are further amplified. Its MAE decreases to 0.0378°, 0.0256°, and 
237.6 ft—corresponding to additional reductions of 9, 44, and 10% 
relative to its single-step performance—whereas the teacher and 
student models remain above 0.0645°/534.5 ft. and 0.0684°/544.8 ft., 
respectively. RMSE declines from 0.0411°/0.0466°/265.8 ft. to 
0.0211°/0.0367°/203.7 ft. (49%/21%/23% further improvement), and 
MAPE drops to 4.75, 4.32, and 13.43% (reductions of 26–50% from 
single-step). R2 also increases to 0.9932, 0.9798, and 0.9833, whereas 
both teacher and student models fail to exceed R2 = 0.95 in this setting. 
These results demonstrate that, rather than suffering from error 

TABLE 2  Main hyperparameters of TCN-LSTM model.

Network type Number of channels Convolutional kernel size Expansion factor Activation function

Conv1D_1 16 3 1 Relu

Conv1D_2 8 3 1 Relu

Conv1D_3 4 3 1 Relu

Conv1D_4 (residual block) 8 3 1 Relu

Conv1D_5 (residual block) 4 3 1 Relu

LSTM_1 8 — — Relu

LSTM_2 8 — — Relu
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accumulation, our distilled model leverages extended context and 
global sequence information to achieve higher accuracy and robustness 
in multi-step forecasting.

In evaluating our trajectory prediction models, we not only 
compared the overall performance of the full model against the 
RCBAM teacher and the TCN-LSTM student, but also conducted 
systematic ablation studies to isolate each component’s contribution. 
We introduced an intermediate RCBAM-LSTM variant to quantify 
the individual effects of spatial attention and temporal modeling. 
The ablation results for single-step forecasting show that the 
RCBAM-LSTM model (channel-and-spatial attention followed by 
LSTM) reduces MAE by approximately 40% compared to the 
baseline TCN. Adding the TCN structure on top of RCBAM-LSTM 
(i.e., the TCN-LSTM variant) further reduces error by another 12% 

through multi-scale temporal feature extraction. The distilled 
RCBAM-TCN-LSTM model then builds on these gains: knowledge 
distillation lowers MAE by an additional 40–60% on average and 
raises R2 above 0.98. Concretely, latitude MAE drops from 0.185° 
with the TCN to 0.091° with TCN-LSTM, then to 0.060° with 
RCBAM-LSTM, and finally to 0.041° with the distilled model. In 
multi-step forecasting, the ablations similarly confirm cumulative 
benefits: RCBAM-LSTM improves resistance to error accumulation 
by about 20%, TCN-LSTM adds a further 15% reduction in long-
term dependency error, and the distilled model—leveraging both—
lowers overall MAE by roughly 40% compared to RCBAM-LSTM 
and boosts R2 by 0.02–0.05.

By including the RCBAM-LSTM control group, we  clearly 
quantify how the spatial attention module and the temporal 

Input: Raw ADS‑B trajectories D = {D₁,…,Dₘ}, Time_step, Distill_weight α

Output: Trained student model S

1:  // Data Preprocessing

2:  for each trajectory Dᵢ in D do

3:    Dᵢ_interp ← Cubic Spline Interpolation(Dᵢ) 

4:    windows ← Sliding Window(Dᵢ_interp, length=Time_step)

5:    for each window w in windows do

6:      X ← w.features

7:      Y_hard ← w.next_steps // one or H future points

8:      collect (X, Y_hard) into Dataset

9:    end for

10: end for

11: // Model Construction

12: Teacher T ← RCBAM()               // ResNet with channel + spatial attention

13: Student S ← TCN_LSTM()           // 5 dilated convolution layers + 2 LSTM 
layers

14: // Knowledge Distillation Training

15: for epoch = 1 to MaxEpochs do

16:   for each batch (X_batch, Y_hard_batch) in Dataset do

17:     Y_soft_batch ← T.predict(X_batch)

18:     Loss_hard ← MSE(S.predict(X_batch), Y_hard_batch)

19:     Loss_soft ← MSE(S.predict(X_batch), Y_soft_batch)

20:     Loss_total ← α·Loss_soft + (1−α)·Loss_hard

21:     update S parameters by minimizing Loss_total

22:   end for

23: end for

24: return S

ALGORITHM 1

RCBAM-TCN-LSTM knowledge-distillation 4D trajectory prediction.
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TABLE 4  Comparison of RCBAM-TCN-LSTM knowledge distillation model indicators.

Time step Evaluation metrics Prediction model Longitude/° Latitude/° Altitude/ft

Single-step

MAE

TCN 0.1853 0.1743 831.5

TCN-LSTM 0.0913 0.1032 632.5

RCBAM 0.0613 0.0711 509.3

RCBAM-LSTM 0.6002 0.0684 431.5

Teacher-Student Model 0.0415 0.0456 264.9

RMSE

TCN 0.2193 0.1843 753.5

TCN-LSTM 0.0926 0.1151 599.1

RCBAM 0.0716 0.0828 495.6

RCBAM-LSTM 0.6732 0.0742 475.5

Teacher-Student Model 0.0411 0.0466 265.8

MAPE

TCN 0.2142 0.8532 0.8984

TCN-LSTM 0.1231 0.6311 0.8532

RCBAM 0.1194 0.3432 0.6344

RCBAM-LSTM 0.1134 0.4891 0.8219

Teacher-Student Model 0.0644 0.0866 0.2137

R2

TCN 0.7432 0.7443 0.7321

TCN-LSTM 0.8322 0.8132 0.7753

RCBAM 0.9343 0.9355 0.9211

RCBAM-LSTM 0.9456 0.9378 0.9324

Teacher-Student Model 0.9867 0.9794 0.9675

Multi-step

MAE

TCN 0.1054 0.1424 621.6

TCN-LSTM 0.0797 0.0684 544.8

RCBAM 0.0688 0.0645 534.5

RCBAM-LSTM 0.0563 0.0521 397.3

Teacher-Student Model 0.0378 0.0256 237.6

RMSE

TCN 0.1532 0.1288 682.1

TCN-LSTM 0.0867 0.0955 565.4

RCBAM 0.0663 0.0746 455.4

RCBAM-LSTM 0.0432 0.0489 405.3

Teacher-Student Model 0.0211 0.0367 203.7

MAPE

TCN 0.1343 0.7422 0.8422

TCN-LSTM 0.1077 0.2789 0.5323

RCBAM 0.0977 0.1889 0.5323

RCBAM-LSTM 0.0843 0.1942 0.4211

Teacher-Student Model 0.0475 0.0432 0.1343

R2

TCN 0.7742 0.8022 0.8223

TCN-LSTM 0.8477 0.8521 0.8212

RCBAM 0.9475 0.9374 0.9482

RCBAM-LSTM 0.9423 0.9354 0.9321

Teacher-Student Model 0.9932 0.9798 0.9833

convolution module each enhance predictive accuracy, and 
demonstrate how knowledge distillation synergistically fuses their 
strengths. These findings provide strong empirical guidance for model 
design and architectural optimization.

Figure  12 presents the single-step prediction results of our 
RCBAM-TCN-LSTM distilled model across longitude, latitude, and 
altitude, alongside the corresponding 4D trajectory overlay. In the 
longitude and latitude plots, the predicted curves nearly coincide 
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with the ground truth, with negligible error throughout. The 4D 
trajectory visualization further confirms that the model faithfully 
reconstructs each segment of the flight path, closely matching the 
actual aircraft trajectory.

Figure 13 illustrates the multi-step predictions in the same four 
subplots. Even over an extended horizon, the distilled model 
maintains high fidelity: latitude and longitude deviations shrink 
further, and altitude predictions more closely track the true 
profile—especially in steep climbs and descents—than in the single-
step case. The 4D trajectory map shows that the predicted path 
comprehensively covers the real trajectory, exhibiting greater 
continuity and spatial coherence compared to the original 
network outputs.

Taken together, Figures  12, 13 demonstrate that our distilled 
framework effectively fuses the teacher’s fine-grained spatial 
representations with the student’s long-range temporal memory in 
single-step forecasts, and further refines accuracy over longer windows 
through iterative, context-aware learning. These results confirm that 
combining knowledge distillation with a multi-step prediction strategy 
yields a robust and precise solution for 4D trajectory forecasting.

5.5 Baseline model comparison experiment

To verify the generalization performance of the Teacher-Student 
Model, this model was compared with existing mainstream trajectory 
prediction models, including LSTM, GRU, BiLSTM (Zhou et al., 2024), 
CNN-LSTM (Wang et al., 2025), and TCN-LSTM-attention (Li et al., 
2025). All models were evaluated using the same ADS-B dataset. The 
sliding window size L was set to 60, and the number of filters for LSTM 
and GRU in each baseline model was set to 64. These models were used 
to predict the spatial positions of trajectory points 10 steps ahead. For 
quantitative analysis of the prediction results, MAE, RMSE, MAPE, 
and R2 were adopted as error evaluation metrics to measure the 
accuracy of trajectory prediction.

The analysis of the prediction results based on the three geographic 
dimensions of longitude, latitude, and altitude shows that the Teacher-
Student Model (RCBAM-TCN-LSTM Knowledge Distillation Model) 
significantly outperforms the other baseline models in all the 
assessment indicators. As can be visualized from the comparison of the 
model assessment metrics in Table  5, the Teacher-Student Model 
performs most prominently in terms of the R2 coefficient of 

FIGURE 12

Comparison of single-step prediction of Teacher-Student Model. (a) Three-dimensional trajectories. (b) Latitude-time plot. (c) Longitude-time plot. (d) 
Altitude-time plot.
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FIGURE 13

Comparison of multi-step prediction of Teacher-Student Model. (a) Three-dimensional trajectories. (b) Latitude-time plot. (c) Longitude-time plot. (d) 
Altitude-time plot.

determination, reaching 0.9757 in the longitude prediction, 0.9845 in 
the latitude prediction, and 0.9756 in the altitude prediction, which is 
significantly better compared to the traditional LSTM model (0.6733 
for latitude, 0.6835 for longitude, and 0.6578 for altitude), respectively. 
0.6578) by about 45, 44 and 48%, respectively. The 4D bar chart in 
Figure 14 clearly shows the performance gap between the models, and 
the Teacher-Student Model presents the highest bar heights in all the 
evaluation dimensions, indicating that the knowledge distillation 
architecture effectively improves the model fitting ability and 
prediction accuracy.

In terms of error control, the Teacher-Student Model exhibits 
excellent performance. As shown in Figure 14, the model’s MAE 
index is the lowest value in all three dimensions, with only 0.0415 
MAE for longitude prediction, 0.0521 MAE for latitude prediction, 
and 235.4 MAE for height prediction. Compared with other baseline 
models, such as the GRU model, which has a MAPE of 0.3233, 0.2756 
for the longitudinal, latitudinal, and height dimensions, respectively, 
763.8000, the Teacher-Student Model shows significant advantages 
in longitude and latitude prediction. This error control ability is not 

only reflected in the numerical indicators, but also intuitively verified 
in the 4D trajectory comparison visualization results in Figure 15. 
From Figure 15, it can be clearly observed that compared to baseline 
models such as LSTM, GRU, BiLSTM, CNN-LSTM, and TCN-LSTM-
attention, the predicted trajectory (red dashed line) of Teacher-
Student Model has the highest degree of overlap with the real 
trajectory (blue solid line), and in particular, the key turning points 
and altitude changes of the trajectory regions show better 
fitting results.

The teacher–student framework delivers clear structural 
advantages over any single-architecture model by unifying 
RCBAM’s spatial attention with TCN-LSTM’s temporal modeling. 
As shown in Table 5 and Figure 14, in longitude prediction our 
model achieves an R2 of 0.9773—an increase of 43% over GRU 
(0.6843) and 31% over BiLSTM (0.7422). For latitude, R2 improves 
by 42% relative to GRU (0.6923) and 25% relative to BiLSTM 
(0.7845). In altitude prediction the teacher–student model attains 
an R2 of 0.9756, outperforming LSTM (0.6578) by 48% and GRU 
(0.6967) by 40%. Figure  15’s trajectory overlays further 
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corroborate these gains. The LSTM and GRU baselines exhibit 
substantial deviations on complex segments; BiLSTM and 
CNN-LSTM reduce but do not eliminate localized errors; and 
even the TCN-LSTM-attention model—while stronger—fails to 
match the consistent accuracy of our distilled framework. 
Notably, height-dimension comparisons in Figure  14c and the 
vertical trajectory traces in Figure  15 highlight our model’s 
superior cross-dimensional consistency: with an R2 of 0.9756 in 
altitude, it exceeds the TCN-LSTM-attention model’s 0.8467 by 
over 15%.

The 4D visualizations in Figure 15 confirm that the teacher–
student model tracks real flight paths across longitude, latitude, and 
altitude with remarkable fidelity, aligning perfectly with its leading 
quantitative performance across all metrics in Figure  14. In 
summary, by fusing attention mechanisms, temporal convolutions, 
and long-short-term memory, the RCBAM-TCN-LSTM knowledge-
distillation model achieves a comprehensive uplift in geographic 
coordinate forecasting.

5.6 Evaluation of model efficiency

As can be  seen from the above Table  6, the RCBAM-TCN-
LSTM model after knowledge distillation achieves significant 

lightweight and acceleration effects while maintaining high 
prediction accuracy. Compared with the original teacher model, its 
number of parameters has been reduced by more than 58%, the 
model file size has been reduced by nearly 59%, the inference delay 
has been reduced to less than half on the CPU platform, and it can 
complete a full prediction within 25 ms on the Jetson Nano edge 
device, fully meeting the requirements of real-time applications. 
The memory usage has been reduced from 150 MB to only 65 MB, 
making the model more feasible for deployment in resource-
constrained embedded or mobile terminal environments. In 
contrast, although the pure LSTM performs slightly better in terms 
of delay, its prediction accuracy is much lower than that of the 
distilled model; CNN-LSTM is not conducive to edge deployment 
due to higher delay and memory overhead. In summary, the 
RCBAM-TCN-LSTM knowledge distillation framework achieves a 
good balance among accuracy, speed, and resource usage, making 
it most suitable for real-time or edge-based 4D trajectory 
prediction scenarios.

6 Discussion and outlook

The proposed RCBAM-TCN-LSTM knowledge-distillation 
framework demonstrates strong performance in 4D trajectory 

TABLE 5  Evaluation metrics of different baseline models.

Evaluation metrics Prediction model Longitude/° Latitude/° Altitude/ft

MAE

LSTM 0.2994 0.3094 843.3

GRU 0.2893 0.2963 823.2

BiLSTM 0.1625 0.1488 764.1

CNN-LSTM 0.0981 0.0815 721.3

TCN-LSTM-attention 0.0994 0.1066 631.6

Teacher-Student Model 0.0415 0.0521 235.4

RMSE

LSTM 0.2684 0.2832 785.2

GRU 0.2997 0.2655 763.8

BiLSTM 0.1982 0.1778 686.6

CNN-LSTM 0.1746 0.1478 702.4

TCN-LSTM-attention 0.0979 0.1134 542.4

Teacher-Student Model 0.0344 0.0445 202.4

MAPE

LSTM 0.3233 0.2756 0.8776

GRU 0.2906 0.2644 0.8156

BiLSTM 0.2934 0.2645 0.7355

CNN-LSTM 0.2422 0.1466 0.7786

TCN-LSTM-attention 0.1134 0.1046 0.6046

Teacher-Student Model 0.0566 0.0464 0.2464

R2

LSTM 0.6733 0.6835 0.6578

GRU 0.6843 0.6923 0.6967

BiLSTM 0.7422 0.7845 0.7756

CNN-LSTM 0.7643 0.7576 0.7732

TCN-LSTM-attention 0.8422 0.8378 0.8467

Teacher-Student Model 0.9757 0.9845 0.9756
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FIGURE 14

Comparison of model evaluation metrics. (a) Longitude. (b) Latitude. (c) Altitude.

prediction by combining the teacher’s spatial attention strengths 
with the student’s long-range temporal modeling, thus achieving 
an effective balance between accuracy and efficiency. Compared 
to both the undistilled teacher and student networks, our distilled 
model consistently reduces error across multiple metrics while 
substantially shrinking model size and inference time, enabling 
real-time prediction on standard CPU and embedded devices and 
confirming its lightweight, deployable nature.

Nonetheless, two limitations remain. First, our experiments are 
confined to data from a single airport, leaving the model’s 
generalizability to other airspaces and operational scenarios untested. 

Second, under extreme weather conditions or aggressive maneuvers, 
localized prediction errors tend to increase, indicating that the 
model’s adaptability to sudden distribution shifts needs 
further enhancement.

To address these issues, future work will proceed in three 
directions. We  will assemble a large, multi-site, multi-aircraft 
trajectory dataset and explore domain-adaptation and transfer-
learning strategies to improve cross-scenario performance. Next, 
we plan to integrate meteorological radar and other heterogeneous 
inputs through cross-modal fusion to bolster robustness in 
complex weather and airspace conditions. Finally, we will develop 
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an online continual-distillation mechanism so that the edge-
deployed student model can continuously update its knowledge as 
new routes and aircraft types emerge. These enhancements are 

expected to further strengthen the model’s universality and 
stability, supporting more reliable intelligent airspace management 
and autonomous flight decision-making.

FIGURE 15

4D comparison of Teacher-Student Model with the baseline model. (a) LSTM model. (b) GRU model. (c) BiLSTM model. (d) CNN-LSTM model. (e) 
TCN-LSTM-attention model. (f) Teacher-Student Model.
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TABLE 6  Inference performance and resource usage comparison.

Model Params (M) Size (MB)
Inference Latency (CPU 

ms/Jetson Nano ms)
Memory Usage (MB)

RCBAM (Teacher) 2.42 49.2 18.5/52.4 150

TCN-LSTM (Student) 0.82 19.2 7.2/21.8 60

Teacher-Student Model 1.02 20.4 8.1/24.5 65

LSTM 0.64 14.4 9.0/27.1 55

CNN-LSTM 1.34 25.6 12.8/38.3 80
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