AUTHOR=Yuan Yanyan , Tao Yucheng , Cheng Shaowen , Liang Yanhong , Jin Yongbin , Wang Hongtao TITLE=Imitation-relaxation reinforcement learning for sparse badminton strikes via dynamic trajectory generation JOURNAL=Frontiers in Neurorobotics VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2025.1649870 DOI=10.3389/fnbot.2025.1649870 ISSN=1662-5218 ABSTRACT=Robotic racket sports provide exceptional benchmarks for evaluating dynamic motion control capabilities in robots. Due to the highly non-linear dynamics of the shuttlecock, the stringent demands on robots' dynamic responses, and the convergence difficulties caused by sparse rewards in reinforcement learning, badminton strikes remain a formidable challenge for robot systems. To address these issues, this study proposes DTG-IRRL, a novel learning framework for badminton strikes that integrates imitation-relaxation reinforcement learning with dynamic trajectory generation. The framework demonstrates significantly improved training efficiency and performance, achieving faster convergence and twice the landing accuracy. Analysis of the reward function within a specific parameter space hyperplane intuitively reveals the convergence difficulties arising from the inherent sparsity of rewards in racket sports and demonstrates the framework's effectiveness in mitigating local and slow convergence. Implemented on hardware with zero-shot transfer, the framework achieves a 90% hitting rate and a 70% landing accuracy, enabling sustained humanrobot rallies. Cross-platform validation using the UR5 robot demonstrates the framework's generalizability while highlighting the requirement for high dynamic performance of robotic arms in racket sports.