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TSLNet: a hierarchical multi-head
attention-enabled two-stream
LSTM network for accurate
pedestrian tracking and behavior
recognition

Shouye Lv*, Rui He, Xiaofei Cheng and Xiaoting Ma

Xiangjiaba Hydropower Plant, Yibin, China

Accurate pedestrian tracking and behavior recognition are essential for intelligent
surveillance, smart transportation, and human-computer interaction systems.
This paper introduces TSLNet, a Hierarchical Multi-Head Attention-Enabled Two-
Stream LSTM Network, designed to overcome challenges such as environmental
variability, high-density crowds, and diverse pedestrian movements in real-world
video data. TSLNet combines a Two-Stream Convolutional Neural Network (Two-
Stream CNN) with Long Short-Term Memory (LSTM) networks to effectively
capture spatial and temporal features. The addition of a Multi-Head Attention
mechanism allows the model to focus on relevant features in complex environments,
while Hierarchical Classifiers within a Multi-Task Learning framework enable the
simultaneous recognition of basic and complex behaviors. Experimental results
on multiple public and proprietary datasets demonstrate that TSLNet significantly
outperforms existing baseline models, achieving higher Accuracy, Precision, Recall,
F1-Score, and Mean Average Precision (mAP) in behavior recognition, as well
as superior Multiple Object Tracking Accuracy (MOTA) and ID F1 Score (IDF1)
in pedestrian tracking. These improvements highlight TSLNet's effectiveness in
enhancing tracking and recognition performance.

KEYWORDS

pedestrian tracking, behavior recognition, two-stream CNN, LSTM, multi-head
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1 Introduction

With the rapid advancement of intelligent surveillance, smart transportation, and human-
computer interaction systems, pedestrian tracking and behavior recognition in video have
emerged as critical research topics in the field of computer vision (Zhan et al., 2019). This
technology demonstrates extensive application prospects across various practical scenarios (Vi
et al., 2016). However, real-world video data often encounters numerous challenges that
significantly hinder the further development of pedestrian tracking and behavior recognition
technologies (Pang et al., 2022). Traditional methods based on handcrafted feature extraction
often exhibit low accuracy when adapting to diverse behavior patterns and dynamic scene
changes (Lian et al., 2025). For example, methods based on Histogram of Oriented Gradients
(HOG) and Histogram of Optical Flow (HOF) features are susceptible to noise and occlusions
in complex backgrounds and high-density crowds, leading to degraded detection and
recognition performance (Pers et al., 2010; Surasak et al., 2018; Déniz et al., 2011).
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1.1 Spatiotemporal feature modeling with
two-stream networks

The advent of deep learning has fundamentally transformed
video-based recognition tasks, offering models capable of
automatically learning hierarchical spatiotemporal representations
from raw data. Early works applying convolutional neural networks
(CNNs) to video frames focused primarily on spatial feature
extraction, enabling improved recognition of static appearance (Rai
etal, 2018; Ibrahim, 2016; Zhao et al., 2023). To incorporate motion
information, researchers extended CNNs with temporal modeling
techniques such as 3D convolutions and recurrent neural networks.
Long Short-Term Memory networks (LSTMs), in particular, were
introduced to capture temporal dependencies, significantly improving
recognition of sequential patterns in pedestrian behaviors (Jobanputra
etal., 2019; Vrigkas et al., 2015). These models demonstrated superior
adaptability compared to handcrafted methods, yet their performance
was often constrained by computational costs and difficulties in
balancing spatial and temporal feature integration. More recently,
DETR-style trackers have been proposed (Carion et al., 2020),
leveraging transformer architectures to model long-range
dependencies and global context in video sequences.

A milestone in this evolution was the introduction of the
Two-Stream Convolutional Neural Network (Two-Stream CNN)
(Tran and Cheong, 2017), proposed by Simonyan and Zisserman. This
architecture introduced the innovative idea of processing spatial and
temporal information in parallel: one stream operated on RGB images
to capture appearance cues, while the other operated on optical flow
to extract motion features (Liu et al., 2019; Liao et al.,, 2020). By
integrating the outputs of these two streams, the model achieved
substantial improvements in video-based action recognition tasks,
marking a turning point in the field (Simonyan and Zisserman, 2014).
The success of the Two-Stream CNN lies in its ability to explicitly
decouple static spatial features from dynamic temporal features,
thereby leveraging complementary information to achieve higher
recognition accuracy.

Nevertheless, the Two-Stream CNN also presents certain
limitations. While effective in capturing short-term spatiotemporal
cues, its ability to model long-term temporal dependencies is limited.
This becomes particularly problematic in scenarios involving extended
sequences of pedestrian behavior, where high-level semantic
understanding requires the integration of information across longer
time spans. Furthermore, the basic fusion strategy of the original
Two-Stream architecture, typically involving simple averaging or late
fusion of the two streams, restricts the model’s capacity to exploit
deeper cross-modal interactions. These shortcomings have motivated
subsequent research to extend the Two-Stream paradigm with
recurrent modules, attention mechanisms, and multi-task
learning frameworks.

Building upon these foundations, the integration of Two-Stream
CNNs with temporal modeling techniques such as LSTMs has
demonstrated significant promise for pedestrian behavior
recognition (Mao et al., 2024; Yu et al., 2019). By combining the
spatial-motion decoupling capability of Two-Stream CNNs with the
sequence modeling strength of LSTMs, such hybrid frameworks are
better equipped to capture both fine-grained visual details and long-
term behavioral dynamics. Moreover, recent advances such as

multi-head attention mechanisms further enhance the ability of
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models to selectively focus on salient features under complex
conditions, while hierarchical classification under a multi-task
learning framework enables simultaneous recognition of basic and
complex behaviors.

1.2 Multi-task learning with hybrid models

In recent years, with the increasing complexity of real-world
scenarios, single-task pedestrian behavior recognition models have
gradually revealed their limitations (Zhang and Yang, 2022; Zhang
and Yang, 2018). In practical applications, pedestrian behaviors often
consist of multiple layers and semantic patterns rather than isolated
actions. For instance, basic actions such as walking, running, or
waving may evolve into more complex social behaviors like
conversing, chasing, or avoiding collisions. If a model focuses only on
one level of recognition, it fails to comprehensively capture the
behavioral spectrum, often leading to reduced accuracy in complex
environments. As a result, Multi-Task Learning (MTL) has become an
important direction in pedestrian behavior recognition research.

The core idea of MTL is to simultaneously learn multiple related
tasks within a single framework, leveraging shared information among
tasks to enhance overall performance. In pedestrian behavior
recognition, MTL enables both basic action classification and higher-
level social behavior inference within the same model, thereby
improving generalization and robustness (Haque and Rao, 2025;
Albornoz et al.,, 2011; Sokolova and Lapalme, 2009). For example,
hierarchical classifiers have been introduced, where low-level
networks recognize individual actions, while higher-level layers infer
group or social behaviors. This hierarchical design not only improves
recognition accuracy but also strengthens adaptability across
diverse scenarios.

At the same time, with advances in deep learning and attention
mechanisms, hybrid models have gained traction in behavior
(e.g., CNN-only or
RNN-only) often struggle to capture high-dimensional spatiotemporal

recognition.  Single-architecture models

features comprehensively, as CNNs excel at spatial representation but
are limited in long-term temporal modeling, while RNNs handle
sequential dependencies but lack spatial expressiveness (Sun et al.,
2021; Wong et al., 2021; Candamo et al., 2010). Hybrid models address
this by integrating complementary structures. A common approach is
to use Convolutional Neural Networks (CNNs) for spatial feature
extraction, followed by Long Short-Term Memory (LSTM) networks
for temporal sequence modeling, effectively capturing long-range
motion patterns. The incorporation of Multi-Head Attention further
enhances the model by adaptively focusing on critical frames and
regions, which is particularly valuable in complex or
crowded scenarios.

Moreover, hybrid models provide a flexible backbone for multi-
task learning (Wang et al., 2023; Tao et al., 2018). Different tasks may
require different feature emphases: basic action recognition benefits
from localized spatiotemporal cues, while complex behavior analysis
relies more on long-range dependencies and contextual semantics. By
embedding MTL into hybrid models, shared low-level representations
can be complemented with task-specific output branches. This allows
the model to balance generalization with specialization, achieving
higher recognition accuracy while maintaining computational

efficiency and scalability in real-world applications.
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1.3Cha llenges and contributions support in real-world surveillance and intelligent
transportation systems.

Despite the rapid advancements in pedestrian tracking and o The integration of LSTM and multi-head attention mechanisms
behavior recognition, several significant challenges remain. First, real- allows TSLNet to model long-term temporal dependencies while
world video scenarios are highly complex, featuring crowded selectively focusing on critical features in complex environments.
environments, frequent occlusions, diverse pedestrian appearances, This combination improves both the precision and robustness of
varying lighting conditions, and dynamic backgrounds. These factors pedestrian tracking and behavior recognition, even in crowded
severely limit the performance of conventional methods relying on and occluded scenes.
handcrafted features or single-stream networks. Although Two-Stream « Extensive experiments on multiple public datasets (UCY, KITTI,
CNNs have demonstrated effectiveness in capturing spatial and CUHK-Avenue) and a self-built dataset demonstrate that TSLNet
motion information separately, they still struggle to model long-term consistently outperforms state-of-the-art baselines in accuracy,
temporal dependencies and complex high-level behaviors. Moreover, Fl-score, mean average precision (mAP), multiple object
traditional single-task models often fail to address multiple objectives tracking accuracy (MOTA), and ID F1 score (IDF1).
simultaneously, such as recognizing both basic actions and complex
social behaviors, or anticipating future actions based on historical In summary, this work addresses key limitations of existing
context (Figure 1). methods by combining dual-stream spatiotemporal feature modeling

To address these challenges, this study proposes TSLNet, a hybrid ~ with multi-task learning and hybrid architectures, thereby improving
framework integrating Two-Stream Convolutional Neural Networks ~ both the predictive capability and practical applicability of pedestrian
(Two-Stream CNNs) with Long Short-Term Memory networks  behavior recognition systems.

(LSTM), Multi-Head Attention mechanisms, and Hierarchical
Classifiers. The main contributions of this work are summarized

as follows: 2 Methods

« We design a dual-stream architecture that separately processes 2.1 Dual-stream feature extraction module
spatial and motion information, efficiently capturing both static
appearance and dynamic movement features of pedestrians. This The overall architecture of TSLNet consists of four main
architecture enhances spatiotemporal feature representation,  components: the dual-stream feature extraction module, the feature
providing a solid foundation for robust behavior recognition. fusion and fully connected layer, the temporal modeling module

o We introduce multi-task learning within a hybrid model = (LSTM), and the multi-head attention and hierarchical classification
framework, allowing simultaneous recognition of basic actions, ~ output module, as shown in Figure 2. The dual-stream feature
complex behaviors, and future action prediction. This approach  extraction module aims to separately process the spatial and motion
not only improves recognition accuracy but also provides a  information in the video to fully capture the appearance and dynamic
predictive capability essential for early warning and decision ~ behavior of pedestrians. This module consists of two parallel

Spatiotemporal

Hybrid
Feature Modeling Model

Multi-Task Learning

R P U SRS S U S S S s eSS ——————— | (S ———

Basic Complex Future action
action behavior prediction

Pedestrian tracking

FIGURE 1
Schematic diagram of the proposed method.
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FIGURE 2

The architecture of TSLNet, an integrated framework combining Two-Stream Convolutional Neural Networks (Two-Stream CNN) with Long Short-

Term Memory networks (LSTM).

convolutional neural networks, namely the Spatial Stream CNN and the
Temporal Stream CNN, which together form the core architecture of
the classic Two-Stream ConvNet model

Zisserman, 2014).

(Simonyan and

2.1.1 Spatial stream (spatial stream CNN)

The spatial stream primarily processes the RGB frames of the
input video to extract the appearance features of the pedestrians.
Specifically, the spatial stream receives a sequence of continuous RGB
frames, which are processed through a series of convolutional layers,
pooling layers, and non-linear activation functions to progressively
extract spatial features from the images. Finally, a Global Average
Pooling (GAP) layer converts the high-dimensional feature maps into
a fixed-dimensional feature vector, denoted as Fs. This feature vector
effectively represents the appearance information of the pedestrian,
such as color, texture, and shape.

The feature extraction process in the spatial stream can
be represented as:

Fs = GAP(CNN (Igg))

Where Izgp denotes the input sequence of RGB frames, CNN
represents the spatial stream convolutional neural network, and GAP
denotes the global average pooling operation.

2.1.2 Temporal stream (temporal stream CNN)

The temporal stream is responsible for capturing the motion
information in the video, specifically by processing optical flow
images. Optical flow images reflect pixel-level motion information
between consecutive frames, thereby effectively capturing the dynamic
behavior of pedestrians. The temporal stream also consists of a series
of convolutional layers, pooling layers, and non-linear activation
functions, similar to the spatial stream. After passing through the
GAP layer, a temporal feature vector Fr is generated. This feature
vector primarily contains the motion patterns and dynamic behavior
information of the pedestrian.
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The feature extraction process in the temporal stream can
be represented as:

Fr =GAP(CNNr (Ior))

Where Ipp denotes the input sequence of optical flow images,
CNNr represents the temporal stream convolutional neural network,
and GAP denotes the global average pooling operation.

2.1.3 Feature fusion and fully connected layer

The feature vectors Fg and Fr obtained from the dual-stream
feature extraction module represent the spatial and temporal features,
respectively. To utilize both types of information, TSLNet concatenates
these two feature vectors to form a fused feature vector F,y, .4 This
fused feature is then processed through a fully connected (FC) layer
to generate a fused feature sequence Fyys.4 over time. This process not
only fuses the spatial and temporal information but also provides
high-dimensional input for subsequent temporal modeling.

The feature fusion and fully connected layer process can
be represented as:

Foncat :[FS;FT:I

Ffused =FC (Fconcat )

Where -
represents the fully connected layer.

"5 denotes the concatenation operation, and FC

2.1.4 Temporal modeling module (LSTM)

To effectively model the temporal features of pedestrian behavior,
TSLNet introduces a Long Short-Term Memory (LSTM) module.
LSTM has the capability to remember information over long time
spans, enabling it to capture the motion patterns and behavioral
changes of pedestrians over extended periods. Specifically, Ffyseq
serves as the input to the LSTM, which processes it through multiple
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LSTM units to generate a high-dimensional feature representation H
with strong temporal dependencies. This representation retains both
short-term dynamic changes and long-term behavioral trends,
facilitating the recognition and prediction of complex behaviors.

The computation process of the LSTM can be represented as:

i :G(WiFt

use

d + Uihtfl +bi)
_ t

fi= G(WfFfused +Urh +bf)
_ t

o = G(WoFﬁm U+ bo)

Ct = fl’ OCt,I + it O tanh(WcF}med + Ucht,I +bc)

hy =o; Otanh(ct)

Where o is the sigmoid activation function, © denotes element-
wise multiplication, W, Wf, W,, W, are the weight matrices for the
input gate, forget gate, output gate, and candidate memory cell,
respectively, U;, U f> U,, U, are the weight matrices for the hidden
state, and by, b, by, b are the bias vectors. ;) and ct_j are the hidden
state and cell state from the previous time step, respectively.

2.1.5 Multi-head attention mechanism

After the LSTM module, TSLNet introduces a multi-head
attention mechanism to further enhance the model’s ability to focus
on important temporal information. The multi-head attention
mechanism, through parallel attention heads, can attend to different
subspaces of the features, thereby capturing richer temporal
dependencies. Specifically, the feature H output by the LSTM is
processed through the multi-head attention layer to obtain a weighted
feature representation H,y,which highlights important temporal
information while suppressing noise and redundant information.

The computation process of the multi-head attention mechanism
can be represented as:

Hyy = Concat(headl,headz,. ..,heady, )WO

head; = Attention(HWiQ HWE HwY )

Attention(Q,K,V):softmax — |V

Where h is the number of attention heads, WiQ, W,»K R W,-V are the
weight matrices for the query, key, and value of the i-th attention head,
and W9 is the output weight matrix. dy. is the dimension of the key vector.

2.1.6 Hierarchical classifier

The output part of TSLNet adopts a hierarchical classifier to
achieve multi-task learning and precise recognition of complex
behaviors. The hierarchical classifier is divided into three levels:

The basic action classifier is responsible for recognizing the
fundamental actions of pedestrians, such as walking, running, and
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stopping. The classification results at this level provide foundational
information for the subsequent recognition of complex behaviors. The
output probability vector py.g. of the basic action classifier can
be represented as:

Pbasic = SOftmaX(WhasicHatt +bpasic )

Where Wy, and by, are the weight matrix and bias vector of
the basic action classifier, respectively.

Based on the results of the basic action classification, the complex
behavior classifier further identifies more intricate behavior patterns,
such as making a phone call, carrying an object, or engaging in
conversation. This level combines the information from the basic
actions and the temporal features to make more detailed distinctions.
The output probability vector peomplex of the complex behavior
classifier can be represented as:

Pcomplex = SOftmaX(WcomplexHatt + bcomplex )

Where Weomplex and beopplex are the weight matrix and bias vector
of the complex behavior classifier, respectively.

The future action predictor aims to predict the action trends of the
pedestrian in the future time period, such as the next movement
direction or the upcoming action. This level leverages the long-term
temporal information captured by the LSTM and multi-head attention
mechanism to achieve accurate predictions, providing support for real-
time decision-making and interaction. The output probability vector

P future = SOftmaX(qutureHatt + bfuture )

Where W g0 and b yg,,re are the weight matrix and bias vector
of the future action predictor, respectively.

The hierarchical classifier shares the feature representations from
the preceding modules (dual-stream feature extraction, feature fusion,
LSTM, and attention mechanism) to achieve joint learning across
multiple tasks, enhancing the overall model’s generalization ability
and recognition accuracy.

2.1.7 Multi-scale features and regularization

To further enhance the model’s adaptability to different scales,
TSLNet introduces a multi-scale feature extraction strategy in the dual-
stream feature extraction module. Specifically, multi-scale features are
extracted at different depths of the convolutional layers and integrated
during the feature fusion stage. This strategy enhances the model’s
ability to recognize pedestrians at various distances and sizes.

Additionally, to prevent overfitting, TSLNet employs several
regularization techniques during training, including Batch
Normalization, Dropout, and Data Augmentation. These techniques
effectively improve the robustness and generalization ability of the
model, ensuring stable performance in complex environments.

2.2 Loss function and training strategy

TSLNet adopts a multi-task joint loss function to comprehensively
optimize the performance of different hierarchical classifiers.
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Specifically, cross-entropy loss functions are used for basic action
classification, complex behavior classification, and future action
prediction, and these losses are combined through a weighted sum to
form the overall loss function. The overall loss function L can
be represented as:

L =oLpasic +BLoomplex + Y['ﬁxture

Where Lpasic, Leomplex ,and Lfuture are the cross-entropy losses
for basic action classification, complex behavior classification, and
future action prediction, respectively. «, £, and y are weight
coefficients used to balance the contributions of each task’s loss. To
determine appropriate values for these weights, we conducted
systematic ablation studies. Various combinations of &, £, and y were
tested on the validation set, evaluating the model’s performance on all
three tasks. The final configuration was selected to provide the best
trade-off, achieving balanced improvements across basic action
accuracy, complex behavior recognition accuracy, and future action
prediction accuracy.

During training, the Adam optimizer is used for parameter
updates, and a learning rate decay strategy is employed to gradually
reduce the learning rate, ensuring stable convergence in the later
stages of training. The parameter update rule can be represented as:

oL
0;1=0; —M——
t+1 =Yt n@ét

Where 6; is the parameter at the ¢-th iteration, and 7 is the
learning rate. The initial learning rate is typically set to 0.001 to limit
the step size of gradient updates in the early stages.

2.3 Dataset construction

To comprehensively evaluate the performance of the proposed
TSLNet model, we conducted experiments on multiple public datasets
as well as a self-built dataset. Initially, we selected several widely-used
public datasets for pedestrian behavior recognition, including the
UCY Dataset, KITTI Dataset, and CUHK-Avenue Dataset.

The UCY Dataset (LDM, 2025) comprises pedestrian trajectory
data collected in various scenarios such as university campuses and
pedestrian streets, making it suitable for testing the model’s
performance in crowded environments.

The KITTI Dataset (Geiger et al., 2013), primarily used in the
autonomous driving domain, contains data captured in real urban
environments under diverse weather and lighting conditions, which
aids in evaluating the model’s robustness in complex traffic scenarios.

The CUHK-Avenue Dataset (Lu et al., 2013) focuses on anomaly
detection in pedestrian behaviors, encompassing a variety of normal
and abnormal behaviors across different scenes, thereby facilitating
the assessment of the model’s capability in recognizing anomalous
behaviors. These public datasets provide diverse training and testing
environments, ensuring the comprehensiveness and comparability of
the evaluation results.

In addition to public datasets, we constructed a self-built
dataset to further validate the effectiveness of TSLNet in specific
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application scenarios. The construction process of the self-built
dataset involves three main steps: data collection, annotation, and
preprocessing. During the data collection phase, high-definition
cameras were deployed in various public locations such as
shopping malls, train stations, and streets to capture video data,
ensuring diversity and coverage of different behavior patterns and
scene variations. Approximately 50 h of video data were collected,
encompassing over 1,000 pedestrian samples. In the annotation
phase, the VGG Image Annotator (VIA) tool was utilized for
manual frame-by-frame annotation, defining a multi-level
behavior categorization scheme that includes basic actions (e.g.,
walking, running, stopping, biking) complex behaviors (e.g.,
making phone calls, carrying objects, conversing), and future
action prediction categories (e.g., movement direction prediction,
imminent actions).

In our dataset annotation process, two annotators independently
labeled the samples, and we obtained a Kappa score of 0.82, indicating
strong inter-annotator agreement. Moreover, since the data collection
was conducted in a random manner, the dataset covers diverse
genders, age groups, and scenarios, which supports the robustness of
our model. Finally, in the preprocessing stage, videos were extracted
into individual frames with standardized resolutions and frame rates
to meet the model’s input requirements. Optical flow images between
consecutive frames were computed using the Farneback method to
serve as input data for the temporal stream. Additionally, data
augmentation techniques such as random cropping, rotation, and
flipping were applied to increase data diversity and enhance the
model’s generalization capabilities (Table 1).

By training and evaluating TSLNet on diverse datasets, the model
demonstrated superior performance across various scenarios and
complex environments, broad

validating its applicability

and robustness.

3 Results
3.1 Baseline models

To thoroughly evaluate the performance of the proposed TSLNet
model in pedestrian tracking and behavior recognition tasks,
we selected several state-of-the-art baseline models for comparison.
These baseline models represent various architectures and
methodologies within the field, ensuring a comprehensive and fair
comparison. The selected baseline models include:

1 Two-Stream ConvNet (Simonyan and Zisserman, 2014): A
foundational two-stream architecture that processes spatial and
temporal information separately, widely used for video
classification and behavior recognition.

2 Long-term Recurrent Convolutional Networks (LRCN)
(Donahue et al,, 2015): Combines convolutional neural
networks with long short-term memory (LSTM) networks to
capture both spatial and temporal features for video description
and behavior recognition.

3 Inflated 3D ConvNet (Yadav and Kumar, 2022): Utilizes 3D
convolutions to capture spatiotemporal features, significantly
enhancing performance in video classification and behavior
recognition tasks.
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TABLE 1 The main statistical information of the datasets used.

10.3389/fnbot.2025.1663565

Dataset Name Number of Video Pedestrian Behavior Annotation Type
Scenes Duration Samples Categories

UCYy 3 3h 5,000 10 Basic and Complex Behaviors

KITTI 2 2h 3,000 8 Basic Behaviors

CUHK-Avenue 1 1h 2,000 15 Normal and Abnormal Behaviors

Self-Built Dataset Multiple Scenes 2h 1,000 15 Multi-Level Behavior Annotations

4 Spatial Temporal Graph Convolutional Networks (ST-GCN)
(Yan et al., 2018): Models dynamic behaviors by capturing
spatial-temporal graph structures, suitable for complex
behavior recognition.

5 Video Vision Transformer (ViViT) (Arnab et al, 2021):
Employs self-attention mechanisms to capture spatiotemporal
features, demonstrating strong performance in video
behavior recognition.

6 Deep OC-SORT (Maggiolino et al., 2023): A multi-pedestrian
tracking algorithm that enhances the traditional SORT
framework by incorporating adaptive re-identification, making
it more robust under occlusions and identity switches.

7 BR-GAN (Pang et al., 2022): A trajectory prediction framework
that integrates geographical, social, and behavioral constraints
within a GAN-based architecture, effectively improving
accuracy and diversity in pedestrian trajectory prediction.

3.2 Main experimental results

3.2.1 Performance on public datasets and
self-built dataset

We compared TSLNet against the aforementioned baseline
models using the same datasets and evaluation metrics to ensure a fair
assessment. The tasks evaluated include pedestrian tracking and
behavior recognition, with specific focus on basic action classification,
complex behavior recognition, and future action prediction. The
evaluation metrics employed are Accuracy, Precision, Recall, F1-Score,
Mean Average Precision (mAP), Multiple Object Tracking Accuracy
(MOTA), and ID F1 Score (IDF1).

The experiments were conducted on a system equipped with an
Intel Xeon(R) Gold 5218R CPU with 80 cores (2.10 GHz), 503.4 GB
of RAM, and an NVIDIA GeForce RTX 4090 GPU. On the software
side, we used Ubuntu 18.04 as the operating system, Python 3.7 as the
programming language, PyTorch 1.8 as the deep learning framework,
and CUDA 10.2 to fully leverage GPU acceleration.

From Tables 2-4, it is evident that TSLNet consistently
outperforms all baseline models across all datasets and evaluation
metrics. Specifically, TSLNet achieves the highest Accuracy, Precision,
Recall, F1-Score, and mAP in behavior recognition tasks, as well as
superior MOTA and IDF1 scores in pedestrian tracking tasks. The
improvements are statistically significant, indicating the effectiveness
of the proposed multi-task learning framework and the integration of
dual-stream CNNs, LSTM, and multi-head attention mechanisms. In
summary, the comprehensive evaluation of TSLNet across three
diverse datasets highlights its versatility and robustness.

To intuitively demonstrate the training stability and effectiveness
of TSLNet, we present the training and validation curves on our
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self-built dataset. Figure 3 shows the trends of loss convergence and
accuracy changes during training. The curves indicate that TSLNet
converges stably throughout the training process without obvious
overfitting, which validates the effectiveness of the chosen training
strategy and hyperparameter settings.

As shown on Table 5, TSLNet significantly outperforms all
baseline models on the self-built dataset, achieving higher accuracy,
precision, recall, F1-Score, and mAP in behavior recognition tasks,
as well as superior MOTA and IDF1 scores in pedestrian tracking.
The substantial improvements, particularly in complex behavior
recognition and future action prediction, demonstrate TSLNet’s
strong  adaptability —and  effectiveness in  specialized
application scenarios.

To further assess TSLNet’s effectiveness in specific application
environments, we conducted experiments on a self-built dataset
comprising diverse and complex scenes. The dataset includes over
1,000 pedestrian samples across multiple environments such as
shopping malls, train stations, and streets, capturing a wide range of
behavior patterns (see Figures 2, 4).

To further observe the performance of the proposed TSLNet,
we quantified the attention weight distribution in key regions. On
the testing set, the average attention weight in pedestrian head
regions reaches 0.71, indicating that the model consistently focuses
on the most behavior-relevant areas. For ease of comparison,
we compare our method with three representative models,
including our benchmark Two-Stream CNN (0.55) and the high-
performing baselines ST-GCN (0.61) and ViViT (0.66). The
corresponding attention patterns are presented in Figure 5, showing
that TSLNet allocates significantly higher attention to head and
torso regions, highlighting its stronger ability to capture critical
visual for accurate behavior and

cues recognition

trajectory prediction.

3.2.2 Performance of pedestrian tracking models
under complex environment

We conducted experiments to evaluate the performance of
various models under challenging scenarios, such as occlusions (e.g.,
pedestrians partially blocked by obstacles) and lighting variations
(e.g., transitions from well-lit to low-light environments). A subset of
our self-built dataset was selected for these tests, containing samples
representative of these complex environmental conditions.

The selected models for comparison include Two-Stream
ConvNet, LRCN, I3D, ST-GCN, ViViT, Deep OC-SORT, BR-GAN,
and TSLNet. As shown in Figure 6, the results demonstrate that
TSLNet consistently outperforms the other models, especially in
scenarios with occlusions and varying lighting. This reflects the
model’s robustness in handling such environmental challenges. The
TSLNet model maintains higher accuracy and better overall tracking
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TABLE 2 Performance comparison of TSLNet with baseline models on UCY dataset (%).

Model Accuracy Precision Recall Fl-score mAP MOTA IDF1

Two-Stream ConvNet 854+1.2 842+1.0 86.1+1.3 85.1+ 1.1 78.5+2.0 752+1.5 705+ 1.8
LRCN 87.6+ 1.0 86.4+0.9 88.1+1.2 872+ 1.0 803+ 1.8 775+13 728+ 1.6
13D 88.9+0.8 87.8+0.7 89.5+1.0 88.6+0.9 82.1+15 792+12 740+ 14
ST-GCN 88.2+0.9 87.0+0.8 89.0+ 1.1 88.0+0.9 815+ 1.6 78.7+1.0 733413
ViViT 89.5+0.7 88.6+ 0.6 90.2 +0.9 89.4+0.8 83.0+ 1.4 80.1+ 1.1 750+ 1.2
Deep OC-SORT 90.1+0.6 89.3+0.5 91.0+0.8 90.1+0.7 837+13 812+0.9 76.1+ 1.1
BR-GAN 90.4+ 0.6 89.7+0.5 91.3+0.7 90.5+ 0.6 842412 81.8+0.8 76.8 % 1.0
TSLNet 91.0 +0.5 90.3 + 0.4 91.8+ 0.6 91.0 +0.5 85.0+ 1.2 83.0+0.8 78.0 + 1.0

TABLE 3 Performance comparison of TSLNet with baseline models on KITTI dataset (%).

Model Accuracy Precision Recall Fl-score mAP MOTA IDF1

Two-Stream ConvNet 83.7+1.1 82.5+1.0 848+13 83.6+ 1.1 762+1.9 724+14 68.9+1.6
LRCN 86.4+ 1.0 85.2+0.9 87.6+1.2 86.3+ 1.0 789+ 1.6 748+ 12 713+ 1.4
13D 88.6+0.9 87.4+08 89.9+1.0 88.6+0.9 80.6+ 1.4 769 + 1.1 732+13
ST-GCN 87.9+0.8 86.8+0.7 89.2+0.9 87.9+0.8 79.8+1.3 76.1+ 1.0 724412
ViViT 89.7+0.7 88.6 0.6 90.9 + 0.8 89.7 +0.7 817+ 12 78.5+0.9 748 + 1.1
Deep OC-SORT 90.6+ 0.6 89.5+0.5 91.7+0.7 90.6+ 0.6 82.4+1.1 80.2+0.8 76.5+ 1.0
BR-GAN 912405 90.1+0.5 92.4+0.6 912405 83.1+1.0 81.0+0.7 774409
TSLNet 92.1+04 91.2+0.4 93.0 +0.5 92.1+0.4 84.0+ 0.9 83.3+0.7 81.5+0.9

TABLE 4 Performance comparison of TSLNet with baseline models on CUHK-avenue dataset (%).

Model Accuracy Precision Recall Fl-score mAP MOTA IDF1

Two-Stream ConvNet 854+ 1.0 842+0.9 86.1+ 1.1 85.1+0.9 785+ 1.8 752+13 705+ 1.6
LRCN 88.7+0.9 87.5+0.8 89.3+ 1.0 88.4+0.8 812+ 1.5 78.6+ 1.1 734+ 13
13D 90.2+0.8 89.0+0.7 91.5+0.9 90.2+0.8 83.0+13 80.1+1.0 752+1.2
ST-GCN 89.5+0.7 88.3+0.6 90.7+ 0.8 89.5+0.7 82.1+1.2 79.8+0.9 740 + 1.1
ViViT 91.0 + 0.6 90.2 +0.5 92.1+0.7 91.1+0.6 84.5+ 1.0 81.5+0.8 76.3 +0.9
Deep OC-SORT 91.8+0.5 90.8+0.5 92.7+0.8 91.7+0.7 852+13 83.6+0.9 789+ 1.1
BR-GAN 923+0.7 914405 93.4+0.7 923406 85.7+1.2 83.8+0.8 795+ 1.0
TSLNet 93.6+0.3 92.8+0.2 942+0.4 93.5+0.3 86.7+0.9 84.9+0.5 80.1+0.5

performance, showing improved MOTA and IDF1 scores compared
to the other baseline models.

3.3 Multi-task performance analysis

3.3.1 Pedestrian tracking performance

In the pedestrian tracking task, we utilized Multiple Object
Tracking Accuracy (MOTA) and ID F1 Score (IDF1) as primary
evaluation metrics. These metrics assess the model’s ability to
accurately track multiple pedestrians across frames and maintain
consistent identity assignments. Table 6 shows that TSLNet achieves
the highest MOTA and IDF1 scores among all baseline models, with
improvements of approximately 4.3% in MOTA and 4.4% in IDF1.
This indicates TSLNet’s superior ability to accurately track pedestrians
and maintain consistent identities across frames.

Frontiers in Neurorobotics

3.3.2 Behavior recognition performance

TSLNet excels not only in basic action classification but also in
recognizing complex behaviors and predicting future actions. The
performance across these tasks highlights the model’s comprehensive
capability in behavior analysis. Table 7 demonstrates that TSLNet
outperforms all baseline models in basic action accuracy, complex
behavior accuracy, and future action prediction accuracy. These
enhancements underscore TSLNet’s effectiveness in comprehensively
understanding and predicting pedestrian behaviors.

3.3.3 Inter-task synergy

To evaluate the synergy between pedestrian tracking and behavior
recognition, we compared the performance of multi-task training
against single-task training. Multi-task training significantly enhances
performance across all evaluation metrics compared to single-task
training (Table 8). Specifically, TSLNet’s multi-task approach leads to
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FIGURE 3
Training loss curves: (a) Training set loss, (b) Validation set loss.
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FIGURE 4
Results of self-built dataset after TSLNet processed.

TABLE 5 Performance comparison of TSLNet with baseline models on the self-built dataset (%).

Model Accuracy Precision Recall F1-Score mAP MOTA IDF1

Two-Stream ConvNet 845+ 1.1 83.0+0.9 852+1.2 84.1+1.0 77.8+1.9 752 %13 705+ 1.7
LRCN 873+ 1.0 86.0 0.8 88.5+ 1.1 87.2+0.9 80.4 £ 1.6 786+ 1.2 734+ 15
13D 89.1+0.9 87.8+0.7 90.5+ 1.0 89.2+0.8 829+ 1.4 80.1+ 1.0 752+ 13
ST-GCN 88.7£0.8 87.5+0.7 89.8+1.0 88.6+0.8 82.1+13 79.8+1.0 74.0+12
ViViT 90.5 £ 0.6 89.3+£0.5 91.6 + 0.7 90.4 £ 0.6 84.0+ 1.1 81.5+0.8 763 +0.9
Deep OC-SORT 912405 90.2 + 0.4 923+0.6 91.2+0.5 850+ 1.0 82.8+0.7 772408
BR-GAN 91.6+0.5 90.8+ 0.4 92.8+0.6 91.7+0.5 85.5+0.9 83307 78.0 £ 0.8
TSLNet 94.140.3 932402 95.0 + 0.4 94.0 0.3 88.3+0.9 85.4+0.6 80.7 +0.8

improvements of approximately 2.6% in basic action accuracy, 2.2%
in complex behavior accuracy, 3.5% in future action prediction
accuracy, 4.3% in MOTA, and 4.4% in IDF1.

3.4 Ablation studies

To understand the individual contributions of TSLNets
components, we conducted ablation studies by systematically
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removing or altering specific modules within the model. The modules
evaluated include the multi-head attention mechanism, LSTM
module, two-stream CNN architecture, and the hierarchical classifier.

The results indicate that each component contributes significantly
to the overall performance (see Table 9). Notably, removing the multi-
head attention mechanism and the LSTM module leads to substantial
declines in accuracy, precision, recall, F1-Score, mAP, MOTA, and
IDF1 scores, highlighting their critical roles in enhancing
model performance.
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FIGURE 5
Attention heatmap comparison of TSLNet and baseline models during trajectory prediction.
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Performance comparison of models under occlusion and lighting variation challenges.

Frontiers in Neurorobotics 10 frontiersin.org


https://doi.org/10.3389/fnbot.2025.1663565
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Lvetal.

3.5 Parameter sensitivity analysis

To assess the sensitivity of TSLNet to key hyperparameters,
we conducted experiments varying the learning rate, number of
attention heads, and number of LSTM layers. The performance
impacts of these hyperparameters are detailed below.

10 illustrates the sensitivity of TSLNet to key
hyperparameters. The default settings (learning rate =0.001,

Table

attention heads = 8, LSTM layers = 2) yield the best performance
across all metrics. Deviating from these settings, such as using a lower
learning rate or reducing the number of attention heads, results in
noticeable performance declines, indicating the importance of these
hyperparameters in optimizing TSLNet’s effectiveness.

3.6 Runtime and computational resources

3.6.1 Training time

The training times for TSLNet and baseline models across
different datasets are summarized below. As shown in Table 11,
TSLNet has longer training times compared to all baseline models
across the UCY, KITTI, CUHK-Avenue, and self-built datasets. This
increase is attributed to the dual-stream architecture and the
integration of multi-task learning mechanisms. Despite the longer
training durations, the substantial performance gains achieved by
TSLNet justify the additional computational investment.

3.6.2 Inference speed

Inference speed, measured in Frames Per Second (FPS), is crucial
for real-time applications. TSLNet exhibits a slightly lower FPS
compared to baseline models, which is a trade-off for its enhanced
accuracy and recognition capabilities. Table 12 shows that TSLNet has
a lower inference speed compared to baseline models across all
datasets, with FPS values decreasing from 30 + 1.0 (Two-Stream
ConvNet) to 15 + 0.4 (TSLNet) on the UCY dataset, and similarly
across other datasets. While TSLNet sacrifices some speed, its superior
accuracy and recognition performance make it highly suitable for
applications where precision is paramount.

3.6.3 Resource consumption

The resource consumption of TSLNet during training and
inference phases is detailed below. TSLNet demands more
computational resources due to its complex architecture, which
includes dual-stream CNNs, LSTM layers, and multi-head
attention mechanisms.

As illustrated in Table 13, TSLNet consumes more GPU memory,
CPU utilization, and overall memory compared to baseline models.
Specifically, TSLNet requires 20 + 1.0 GB of GPU memory, 85 *+ 3.5%
CPU utilization, and 75 + 4.5% memory usage, reflecting its intricate
architecture and multi-task learning framework. Despite the higher
resource demands, modern high-performance computing platforms
can accommodate these requirements. Future work may explore
optimization techniques such as model compression, knowledge
distillation, or quantization to reduce resource consumption without
compromising performance.

The results indicate that TSLNet incurs higher training time,
slower inference speed, and greater resource consumption compared
to mainstream baseline models. However, these extra computational

Frontiers in Neurorobotics

11

10.3389/fnbot.2025.1663565

TABLE 6 Performance comparison of TSLNet with baseline models in
pedestrian tracking (%).

Model MOTA IDF1

Two-Stream ConvNet 752+13 705+ 1.7
LRCN 78.6+ 1.2 734+ 1.5
13D 80.1+1.0 752+1.3
ST-GCN 79.8+ 1.0 740+ 1.2
ViviT 81.5+0.8 76.3+0.9
Deep OC-SORT 82.8+0.7 772+0.8
BR-GAN 833+0.7 78.0+0.7
TSLNet 85.4+0.6 80.7+0.8

TABLE 7 Performance comparison of TSLNet with baseline models in
behavior recognition (%).

Basic Complex Future action

action behavior prediction

accuracy = accuracy accuracy
Two-Stream ConvNet 854+1.0 783+1.2 702+ 1.5
LRCN 88.7 +0.9 81.5+ 1.1 734+ 13
13D 90.2 +0.8 83.0+ 1.0 756+ 1.2
ST-GCN 89.5+0.7 82.1+0.9 743+ 1.1
ViViT 91.0 + 0.6 84.5+ 1.0 76.8 + 1.0
Deep OC-SORT 915+ 0.5 85.0 + 0.8 772+ 1.0
BR-GAN 92.0 +0.5 85.5+0.7 78.0 + 0.9
TSLNet 93.6+0.3 86.7+0.2 80.3+ 0.4

costs lead to substantial improvements in recognition accuracy and
enhanced robustness in complex scenarios. For tasks requiring high
precision and sophisticated behavior modeling, TSLNet demonstrates
clear advantages; whereas in scenarios with stricter real-time
requirements, techniques such as model pruning, knowledge
distillation, or hardware acceleration can be further employed to
achieve a balance between performance and efficiency.

3.6.4 Efficiency—accuracy trade-off analysis

To investigate the trade-off between accuracy and computational
efficiency, we provide the analysis in Figure 7. Figure 7a shows the
relationship between inference speed (FPS) and accuracy for all
baseline models and TSLNet on the self-built dataset, indicating that
TSLNet achieves the highest accuracy while incurring slightly lower
inference speed. Figure 7b quantifies performance improvement per
unit of GPU memory (MOTA per GB), showing that TSLNet achieves
a gain of approximately 0.75% MOTA per GB, comparable to other
high-performing models. This analysis highlights the trade-offs
between accuracy and resource consumption, demonstrating that the
additional computational cost of TSLNet is justified in scenarios
where accuracy and robustness are prioritized.

3.7 Statistical significance testing

To verify the statistical significance of TSLNets performance
improvements over the baseline models on the self-built dataset, we first
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TABLE 8 Performance comparison of multi-task and single-task training (%).

Basic action

Training mode

Complex

10.3389/fnbot.2025.1663565

Future action

accuracy behavior accuracy prediction accuracy

Single-Task (Recognition) 91.0+0.8 845+ 1.0 76.8+1.2 - -
Single-Task (Tracking) - - - 81.5+0.9 76.3+1.0
Multi-Task (TSLNet) 93.6+0.3 86.7£0.2 80.3£0.4 85.4+0.6 80.7+£0.8

TABLE 9 Ablation study results of TSLNet (%).

Module configuration Basic action Complex behavior Future action
accuracy accuracy prediction accuracy

Full Model (TSLNet) 93.6+0.3 86.7+0.2 80.3 + 0.4 85.4+0.6 80.7 +0.8
Without Multi-Head Attention 92.1+0.4 85.3+0.3 78.5+ 0.5 83.9+0.5 78.1+0.6
Without LSTM Module 90.4+0.5 83.6+ 0.4 76.2+0.6 81.7 + 0.4 753+0.5
Without Two-Stream CNN Module 88.2+0.6 80.1£0.5 73.4+0.7 78.5+0.4 72.0 £0.6
Without Hierarchical Classifier 91.0 0.4 84.2+0.3 77.1+0.5 82.3+0.5 77.0 0.6
Without All Key Modules 85.5+0.7 75.0 + 0.6 68.4+0.8 72.1+0.6 68.5+0.7

TABLE 10 Hyperparameter sensitivity analysis of TSLNet (%).

Hyperparameter Basic action @ Complex behavior Future action

configuration accuracy accuracy prediction accuracy

Learning Rate = 0.0001 923404 85.5+0.3 79.1+0.5 84.0+0.4 79.0+0.5
Learning Rate = 0.001 (Default) 93.640.3 86.740.2 80.3 + 0.4 85.4+0.6 80.7+ 0.8
Learning Rate = 0.01 91.8+0.5 84.0+0.4 782+0.6 83.2+0.5 78.0+0.7
Number of Attention Heads = 4 92.5+0.4 85.0+£0.3 79.0+£0.5 842+ 0.4 79.5+0.6
Number of Attention Heads = 8 (Default) 93.6 +0.3 86.7+0.2 80.3+0.4 854+ 0.6 80.7+0.8
Number of Attention Heads = 16 932404 86.3+0.2 80.0 0.4 85.0+0.5 80.3+0.7
Number of LSTM Layers = 1 91.5+0.5 83.5+0.3 77.8 £0.6 83.0+0.5 78.5+0.7
Number of LSTM Layers = 2 (Default) 93.6+0.3 86.7+0.2 80.3+0.4 854+ 0.6 80.7+0.8
Number of LSTM Layers = 3 934403 86.5+0.2 80.1+0.4 853+0.5 80.5+0.7

assessed the normality of the key metrics using the Shapiro-Wilk test.
The results confirmed that the metric distributions do not significantly
deviate from normality, supporting the use of paired t-tests. We then
conducted paired t-tests between TSLNet and each baseline model for
all primary metrics, including Accuracy, F1-Score, MOTA, and IDF1.
In addition, effect sizes (Cohen’s d) were calculated to quantify the
magnitude of the differences. The results are summarized in Table 14.

As shown in Table 14, TSLNet consistently outperforms all
baseline models with statistically significant improvements. For most
comparisons, p-values are below 0.01, indicating high significance.
Cohen’s d values range from 1.05 to 1.97, reflecting large effect sizes
and confirming that the observed improvements are not only
statistically significant but also practically meaningful. Overall, these
statistical tests provide strong evidence that the performance gains of
TSLNet are robust, reliable, and statistically meaningful.

3.8 Visualization analysis

To demonstrate the practical effectiveness of our model in
trajectory prediction, we present both visualizations and quantitative
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evaluations in Figure 8. Figures 8a,b show that the model generates
trajectories that avoid potential conflicts with other pedestrians ahead,
providing reasonable predictions. In addition to these visualizations,
we report the Average Displacement Error (ADE) and Final
Displacement Error (FDE) for all baseline models and TSLNet, as well
as statistical measures of avoidance angle deviations (AAD).
Figure 8c,d illustrate that the model captures interactions between
pedestrians moving in opposite directions, taking into account the
trajectories of both parties. The quantitative results further confirm
that TSLNet achieves lower ADE/FDE and smaller avoidance angle
deviations compared to other models, demonstrating its superior
ability to model interactive and collision-avoidant behavior.

To further evaluate the performance of TSLNet, we compared its
behavior recognition and trajectory prediction results with
conventional models (e.g., single-stream CNN) and baseline models
(e.g., two-stream CNN) under identical scenarios. In addition to the
visualized trajectories shown in Figure 9, we report quantitative
metrics including ADE and FDE for all models.

As observed, TSLNet consistently achieves lower ADE and FDE
values, particularly in challenging scenarios such as pedestrian
turning (Figure 9¢). The predicted trajectories of TSLNet (red) closely
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TABLE 11 Training time (hours) comparison of TSLNet with baseline models.

Model name

UCY training time

KITTI training time

10.3389/fnbot.2025.1663565

CUHK-avenue
training time

Self-built dataset
training time

Two-Stream ConvNet 10 £ 0.5 8+04 5+0.2 50 +2.0
LRCN 12+0.6 10+0.5 6+0.3 55+£2.2
13D 15+0.7 12+ 0.6 7+04 60 +2.5
ST-GCN 14+ 0.6 11+0.5 6.5+0.3 58+2.3
ViViT 16 £ 0.8 13+0.6 8+£04 62+2.7
Deep OC-SORT 14+ 0.6 11.5+0.5 7+0.3 59+24
BR-GAN 17 +£0.7 14+ 0.6 85+0.4 63 +2.8
TSLNet 18 +0.9 15+£0.7 9+0.5 65+2.9
TABLE 12 Inference speed comparison of TSLNet with baseline models.

Model name UCY (FPS) KITTI (FPS) CUHK-avenue (FPS)  Self-built dataset (FPS)
Two-Stream ConvNet 30+ 1.0 28 +£0.9 25+0.8 20+ 1.5
LRCN 25+0.8 23+0.7 20+0.6 18+1.2
13D 20+0.6 18 +0.5 15+0.4 12+1.0
ST-GCN 22+0.7 20+0.6 17+ 0.5 14+1.1
ViViT 18+ 0.5 16 £0.4 14+0.3 10+£0.8
Deep OC-SORT 24+0.7 22+0.6 19+0.5 16 1.0
BR-GAN 17 +0.5 15+0.4 13+0.3 9+0.7
TSLNet 15+0.4 13+£0.3 12+0.2 8+0.6

TABLE 13 Resource consumption comparison of TSLNet with baseline models.

Model name GPU memory usage (GB)

CPU utilization (%) Memory usage (%)

Two-Stream ConvNet 12+0.5 70 +2.0 60 + 3.0
LRCN 14+ 0.6 75+2.5 65+ 3.5
13D 16 0.7 80+ 3.0 70 £4.0
ST-GCN 15+ 0.6 78+2.8 68 +3.8
ViViT 17+ 0.8 82+32 72+4.2
Deep OC-SORT 15+0.7 76 £2.5 66 +3.2
BR-GAN 18 +0.8 83 +3.0 71+3.8
TSLNet 20+1.0 85+3.5 7545

align with the ground truth (green), confirming its ability to capture
subtle pedestrian dynamics more accurately than the other models,
whose predictions deviate significantly. These quantitative results
complement the visualizations and further demonstrate the superior
performance of TSLNet in both trajectory accuracy and
behavior recognition.

Figure 10 presents the predicted pedestrian trajectories in a
relatively complex encounter scenario, where individuals meet from
opposite directions while walking side by side. Distinct colored
regions denote the future trajectory distributions of different
pedestrians, the blue dashed line corresponds to the observed history,
and the red dashed line represents the ground truth. In this situation,
pedestrians are expected to exhibit avoidance behavior to reduce
collision risks. In addition to these visualizations, we report
quantitative metrics including ADE, FDE and AAD for all models.

Frontiers in Neurorobotics

The results show that TSLNet achieves the lowest ADE and the
smallest average avoidance angle deviation, closely followed by ViViT,
whereas other models exhibit substantially larger errors. These
quantitative results, together with the visualizations, confirm that only
TSLNet and ViViT effectively capture realistic avoidance behavior,
demonstrating the robustness of TSLNet under challenging
interactive scenarios.

4 Discussion

This study introduced TSLNet, a new multi-task learning
framework designed for simultaneous pedestrian tracking and
behavior recognition. The experimental results presented in the
previous sections demonstrate that TSLNet significantly outperforms
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FIGURE 7
Efficiency—accuracy trade-off analysis of TSLNet and baseline models. (a) Inference speed (FPS) versus accuracy. (b) Performance gain per unit of GPU
memory, measured as MOTA improvement per GB.

TABLE 14 Paired t-test results and effect sizes of TSLNet vs. baseline models on the self-built dataset.

Metric Comparison t-value p-value Significance Cohen’'s d
Accuracy TSLNet vs. Two-Stream CNN 8.42 0.0003 ok 1.85
TSLNet vs. LRCN 7.18 0.0006 ok 1.58
TSLNet vs. I3D 6.25 0.0011 b 1.38
TSLNet vs. ST-GCN 6.47 0.0010 ik 1.41
TSLNet vs. ViViT 5.92 0.0015 ok 1.29
TSLNet vs. Deep OC-SORT 5.10 0.0022 wok 1.11
TSLNet vs. BR-GAN 4.85 0.0028 ok 1.06
F1-Score TSLNet vs. Two-Stream CNN 9.01 0.0002 o 1.97
TSLNet vs. LRCN 7.45 0.0005 o 1.63
TSLNet vs. 13D 6.68 0.0009 HEE 1.46
TSLNet vs. ST-GCN 6.89 0.0008 ok 1.50
TSLNet vs. ViViT 6.31 0.0012 ok 1.37
TSLNet vs. Deep OC-SORT 5.40 0.0020 ok 1.17
TSLNet vs. BR-GAN 5.15 0.0025 ok 1.12
MOTA TSLNet vs. Two-Stream CNN 8.35 0.0003 ok 1.83
TSLNet vs. LRCN 7.02 0.0007 ok 1.54
TSLNet vs. 13D 6.18 0.0012 wok 1.36
TSLNet vs. ST-GCN 6.45 0.0010 wok 1.41
TSLNet vs. ViViT 5.78 0.0016 ok 1.25
TSLNet vs. Deep OC-SORT 5.05 0.0023 ok 1.10
TSLNet vs. BR-GAN 4.82 0.0029 wE 1.05
IDF1 TSLNet vs. Two-Stream CNN 8.56 0.0003 ok 1.88
TSLNet vs. LRCN 7.25 0.0006 ok 1.58
TSLNet vs. 13D 6.38 0.0011 wk 1.39
TSLNet vs. ST-GCN 6.59 0.0010 wk 1.43
TSLNet vs. ViViT 5.95 0.0015 wk 1.30
TSLNet vs. Deep OC-SORT 5.25 0.0021 woE 1.13

Statistical significance levels: *p < 0.05, **p < 0.01, **¥p < 0.001.
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FIGURE 8
Visualization of predictions by our method.
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FIGURE 9
Comparative visualization of pedestrian trajectory predictions from Single-stream CNN, Two-stream CNN, and TSLNet in three different scenarios.

existing baseline models in both pedestrian tracking and behavior ~ Recall, F1-Score, and Mean Average Precision (mAP) in behavior
recognition tasks across multiple public datasets and a self-built  recognition, as well as superior Multiple Object Tracking Accuracy
dataset. Specifically, TSLNet achieved higher Accuracy, Precision, (MOTA) and ID F1 Score (IDF1) in pedestrian tracking. These

Frontiers in Neurorobotics 15 frontiersin.org


https://doi.org/10.3389/fnbot.2025.1663565
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Lvetal. 10.3389/fnbot.2025.1663565
ADE: 0.21 ADE: 0.48 ;7 ADE: 0.52
FDE: 0.35 FDE: 0.72 ¢ FDE:0.76
AAD: 5.8° AAD: 13.3° AAD: 15.8°
Ours Deep OC-SORT BR-GAN
(! /‘
}/’ "
’ 4 Il
/! ADE: 027 ADE: 0.60
} FDE: 0.40 FDE: 0.85
‘ AAD: 6.1° AAD: 18.2°
ViviT ST-GCN
FIGURE 10
Comparative visualization of pedestrian trajectory predictions.

improvements were not only substantial but also statistically
significant, as confirmed by the paired t-tests conducted.

The enhanced performance of TSLNet can be attributed to its
robust architectural components, including the dual-stream
Convolutional Neural Networks (CNNs), Long Short-Term Memory
(LSTM) modules, and multi-head attention mechanisms. The dual-
stream CNNs effectively capture spatial and temporal features
separately, allowing the model to comprehend both static and dynamic
aspects of pedestrian behavior. The integration of LSTM modules
facilitates the modeling of temporal dependencies, which is crucial for
accurately predicting future actions based on historical data.
Moreover, the multi-head attention mechanism enhances the model’s
ability to focus on relevant features across different time steps, thereby
improving the precision and recall rates.

However, despite its impressive performance, TSLNet has certain
limitations. TSLNet requires substantial computational resources,
including higher GPU memory and increased CPU utilization. This
complexity may limit its deployment in resource-constrained
environments or on edge devices where computational power is
limited. Therefore, to improve the inference efficiency of TSLNet in
practical applications, we discuss several concrete strategies for model
lightweighting. First, quantization can be applied by compressing the
model weights and activations from 32-bit floating-point to 8-bit
integer representation. Quantization can be performed either on a
per-layer or per-channel basis to balance accuracy and inference speed.

Frontiers in Neurorobotics

In addition, quantization-aware training (QAT) can be employed to
further reduce potential accuracy loss. Second, pruning can be used to
remove redundant channels in convolutional or fully connected layers,
based on weight magnitude or importance scores. Structured pruning
is particularly suitable for achieving actual speedup on hardware.
Finally, knowledge distillation can train a lightweight student network
to mimic the output distributions or intermediate feature
representations of the original TSLNet. The student model can reduce
the number of channels, layers, or simplify attention modules to achieve
computational savings while maintaining performance. Although these
strategies have not been experimentally implemented in this work, they
provide actionable design directions and offer promising avenues for
optimizing TSLNet deployment in resource-constrained scenarios.

With the widespread application of video surveillance systems in
public safety and behavior analysis, ethical issues have become
increasingly important. In particular, concerns regarding personal
privacy protection, data usage consent, and the potential societal
impact of model deployment must be carefully considered in practical
applications. This study emphasizes that data collection and processing
should comply with relevant laws and regulations, and measures such
as anonymization and privacy protection should be implemented to
minimize risks to individual privacy.

Regarding future work, we plan to further expand the multi-task
capabilities of TSLNet, for example, applying it to anomaly behavior
detection and dangerous behavior prediction scenarios. This can
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enhance the model’s applicability in complex environments and
provide richer functionality for practical deployment. Additionally,
exploring lightweight optimization of the model in resource-
constrained environments and multi-modal data fusion represents
promising directions for further research.

5 Conclusion

In conclusion, TSLNet represents a significant advancement in
the field of video analysis, offering a powerful tool for enhancing
pedestrian tracking and behavior recognition. Its high performance
and comprehensive feature extraction capabilities make it a promising
solution for applications demanding high precision and reliability. As
technology continues to evolve, ongoing refinements and
optimizations of TSLNet will be essential to fully realize its potential
and ensure its effectiveness in dynamic and diverse real-
world environments.
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