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TSLNet: a hierarchical multi-head 
attention-enabled two-stream 
LSTM network for accurate 
pedestrian tracking and behavior 
recognition
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Accurate pedestrian tracking and behavior recognition are essential for intelligent 
surveillance, smart transportation, and human-computer interaction systems. 
This paper introduces TSLNet, a Hierarchical Multi-Head Attention-Enabled Two-
Stream LSTM Network, designed to overcome challenges such as environmental 
variability, high-density crowds, and diverse pedestrian movements in real-world 
video data. TSLNet combines a Two-Stream Convolutional Neural Network (Two-
Stream CNN) with Long Short-Term Memory (LSTM) networks to effectively 
capture spatial and temporal features. The addition of a Multi-Head Attention 
mechanism allows the model to focus on relevant features in complex environments, 
while Hierarchical Classifiers within a Multi-Task Learning framework enable the 
simultaneous recognition of basic and complex behaviors. Experimental results 
on multiple public and proprietary datasets demonstrate that TSLNet significantly 
outperforms existing baseline models, achieving higher Accuracy, Precision, Recall, 
F1-Score, and Mean Average Precision (mAP) in behavior recognition, as well 
as superior Multiple Object Tracking Accuracy (MOTA) and ID F1 Score (IDF1) 
in pedestrian tracking. These improvements highlight TSLNet’s effectiveness in 
enhancing tracking and recognition performance.
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1 Introduction

With the rapid advancement of intelligent surveillance, smart transportation, and human-
computer interaction systems, pedestrian tracking and behavior recognition in video have 
emerged as critical research topics in the field of computer vision (Zhan et al., 2019). This 
technology demonstrates extensive application prospects across various practical scenarios (Yi 
et al., 2016). However, real-world video data often encounters numerous challenges that 
significantly hinder the further development of pedestrian tracking and behavior recognition 
technologies (Pang et al., 2022). Traditional methods based on handcrafted feature extraction 
often exhibit low accuracy when adapting to diverse behavior patterns and dynamic scene 
changes (Lian et al., 2025). For example, methods based on Histogram of Oriented Gradients 
(HOG) and Histogram of Optical Flow (HOF) features are susceptible to noise and occlusions 
in complex backgrounds and high-density crowds, leading to degraded detection and 
recognition performance (Perš et al., 2010; Surasak et al., 2018; Déniz et al., 2011).
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1.1 Spatiotemporal feature modeling with 
two-stream networks

The advent of deep learning has fundamentally transformed 
video-based recognition tasks, offering models capable of 
automatically learning hierarchical spatiotemporal representations 
from raw data. Early works applying convolutional neural networks 
(CNNs) to video frames focused primarily on spatial feature 
extraction, enabling improved recognition of static appearance (Rai 
et al., 2018; Ibrahim, 2016; Zhao et al., 2023). To incorporate motion 
information, researchers extended CNNs with temporal modeling 
techniques such as 3D convolutions and recurrent neural networks. 
Long Short-Term Memory networks (LSTMs), in particular, were 
introduced to capture temporal dependencies, significantly improving 
recognition of sequential patterns in pedestrian behaviors (Jobanputra 
et al., 2019; Vrigkas et al., 2015). These models demonstrated superior 
adaptability compared to handcrafted methods, yet their performance 
was often constrained by computational costs and difficulties in 
balancing spatial and temporal feature integration. More recently, 
DETR-style trackers have been proposed (Carion et  al., 2020), 
leveraging transformer architectures to model long-range 
dependencies and global context in video sequences.

A milestone in this evolution was the introduction of the 
Two-Stream Convolutional Neural Network (Two-Stream CNN) 
(Tran and Cheong, 2017), proposed by Simonyan and Zisserman. This 
architecture introduced the innovative idea of processing spatial and 
temporal information in parallel: one stream operated on RGB images 
to capture appearance cues, while the other operated on optical flow 
to extract motion features (Liu et  al., 2019; Liao et  al., 2020). By 
integrating the outputs of these two streams, the model achieved 
substantial improvements in video-based action recognition tasks, 
marking a turning point in the field (Simonyan and Zisserman, 2014). 
The success of the Two-Stream CNN lies in its ability to explicitly 
decouple static spatial features from dynamic temporal features, 
thereby leveraging complementary information to achieve higher 
recognition accuracy.

Nevertheless, the Two-Stream CNN also presents certain 
limitations. While effective in capturing short-term spatiotemporal 
cues, its ability to model long-term temporal dependencies is limited. 
This becomes particularly problematic in scenarios involving extended 
sequences of pedestrian behavior, where high-level semantic 
understanding requires the integration of information across longer 
time spans. Furthermore, the basic fusion strategy of the original 
Two-Stream architecture, typically involving simple averaging or late 
fusion of the two streams, restricts the model’s capacity to exploit 
deeper cross-modal interactions. These shortcomings have motivated 
subsequent research to extend the Two-Stream paradigm with 
recurrent modules, attention mechanisms, and multi-task 
learning frameworks.

Building upon these foundations, the integration of Two-Stream 
CNNs with temporal modeling techniques such as LSTMs has 
demonstrated significant promise for pedestrian behavior 
recognition (Mao et al., 2024; Yu et al., 2019). By combining the 
spatial-motion decoupling capability of Two-Stream CNNs with the 
sequence modeling strength of LSTMs, such hybrid frameworks are 
better equipped to capture both fine-grained visual details and long-
term behavioral dynamics. Moreover, recent advances such as 
multi-head attention mechanisms further enhance the ability of 

models to selectively focus on salient features under complex 
conditions, while hierarchical classification under a multi-task 
learning framework enables simultaneous recognition of basic and 
complex behaviors.

1.2 Multi-task learning with hybrid models

In recent years, with the increasing complexity of real-world 
scenarios, single-task pedestrian behavior recognition models have 
gradually revealed their limitations (Zhang and Yang, 2022; Zhang 
and Yang, 2018). In practical applications, pedestrian behaviors often 
consist of multiple layers and semantic patterns rather than isolated 
actions. For instance, basic actions such as walking, running, or 
waving may evolve into more complex social behaviors like 
conversing, chasing, or avoiding collisions. If a model focuses only on 
one level of recognition, it fails to comprehensively capture the 
behavioral spectrum, often leading to reduced accuracy in complex 
environments. As a result, Multi-Task Learning (MTL) has become an 
important direction in pedestrian behavior recognition research.

The core idea of MTL is to simultaneously learn multiple related 
tasks within a single framework, leveraging shared information among 
tasks to enhance overall performance. In pedestrian behavior 
recognition, MTL enables both basic action classification and higher-
level social behavior inference within the same model, thereby 
improving generalization and robustness (Haque and Rao, 2025; 
Albornoz et al., 2011; Sokolova and Lapalme, 2009). For example, 
hierarchical classifiers have been introduced, where low-level 
networks recognize individual actions, while higher-level layers infer 
group or social behaviors. This hierarchical design not only improves 
recognition accuracy but also strengthens adaptability across 
diverse scenarios.

At the same time, with advances in deep learning and attention 
mechanisms, hybrid models have gained traction in behavior 
recognition. Single-architecture models (e.g., CNN-only or 
RNN-only) often struggle to capture high-dimensional spatiotemporal 
features comprehensively, as CNNs excel at spatial representation but 
are limited in long-term temporal modeling, while RNNs handle 
sequential dependencies but lack spatial expressiveness (Sun et al., 
2021; Wong et al., 2021; Candamo et al., 2010). Hybrid models address 
this by integrating complementary structures. A common approach is 
to use Convolutional Neural Networks (CNNs) for spatial feature 
extraction, followed by Long Short-Term Memory (LSTM) networks 
for temporal sequence modeling, effectively capturing long-range 
motion patterns. The incorporation of Multi-Head Attention further 
enhances the model by adaptively focusing on critical frames and 
regions, which is particularly valuable in complex or 
crowded scenarios.

Moreover, hybrid models provide a flexible backbone for multi-
task learning (Wang et al., 2023; Tao et al., 2018). Different tasks may 
require different feature emphases: basic action recognition benefits 
from localized spatiotemporal cues, while complex behavior analysis 
relies more on long-range dependencies and contextual semantics. By 
embedding MTL into hybrid models, shared low-level representations 
can be complemented with task-specific output branches. This allows 
the model to balance generalization with specialization, achieving 
higher recognition accuracy while maintaining computational 
efficiency and scalability in real-world applications.
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1.3 Challenges and contributions

Despite the rapid advancements in pedestrian tracking and 
behavior recognition, several significant challenges remain. First, real-
world video scenarios are highly complex, featuring crowded 
environments, frequent occlusions, diverse pedestrian appearances, 
varying lighting conditions, and dynamic backgrounds. These factors 
severely limit the performance of conventional methods relying on 
handcrafted features or single-stream networks. Although Two-Stream 
CNNs have demonstrated effectiveness in capturing spatial and 
motion information separately, they still struggle to model long-term 
temporal dependencies and complex high-level behaviors. Moreover, 
traditional single-task models often fail to address multiple objectives 
simultaneously, such as recognizing both basic actions and complex 
social behaviors, or anticipating future actions based on historical 
context (Figure 1).

To address these challenges, this study proposes TSLNet, a hybrid 
framework integrating Two-Stream Convolutional Neural Networks 
(Two-Stream CNNs) with Long Short-Term Memory networks 
(LSTM), Multi-Head Attention mechanisms, and Hierarchical 
Classifiers. The main contributions of this work are summarized 
as follows:

	•	 We design a dual-stream architecture that separately processes 
spatial and motion information, efficiently capturing both static 
appearance and dynamic movement features of pedestrians. This 
architecture enhances spatiotemporal feature representation, 
providing a solid foundation for robust behavior recognition.

	•	 We introduce multi-task learning within a hybrid model 
framework, allowing simultaneous recognition of basic actions, 
complex behaviors, and future action prediction. This approach 
not only improves recognition accuracy but also provides a 
predictive capability essential for early warning and decision 

support in real-world surveillance and intelligent 
transportation systems.

	•	 The integration of LSTM and multi-head attention mechanisms 
allows TSLNet to model long-term temporal dependencies while 
selectively focusing on critical features in complex environments. 
This combination improves both the precision and robustness of 
pedestrian tracking and behavior recognition, even in crowded 
and occluded scenes.

	•	 Extensive experiments on multiple public datasets (UCY, KITTI, 
CUHK-Avenue) and a self-built dataset demonstrate that TSLNet 
consistently outperforms state-of-the-art baselines in accuracy, 
F1-score, mean average precision (mAP), multiple object 
tracking accuracy (MOTA), and ID F1 score (IDF1).

In summary, this work addresses key limitations of existing 
methods by combining dual-stream spatiotemporal feature modeling 
with multi-task learning and hybrid architectures, thereby improving 
both the predictive capability and practical applicability of pedestrian 
behavior recognition systems.

2 Methods

2.1 Dual-stream feature extraction module

The overall architecture of TSLNet consists of four main 
components: the dual-stream feature extraction module, the feature 
fusion and fully connected layer, the temporal modeling module 
(LSTM), and the multi-head attention and hierarchical classification 
output module, as shown in Figure  2. The dual-stream feature 
extraction module aims to separately process the spatial and motion 
information in the video to fully capture the appearance and dynamic 
behavior of pedestrians. This module consists of two parallel 

FIGURE 1

Schematic diagram of the proposed method.
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convolutional neural networks, namely the Spatial Stream CNN and the 
Temporal Stream CNN, which together form the core architecture of 
the classic Two-Stream ConvNet model (Simonyan and 
Zisserman, 2014).

2.1.1 Spatial stream (spatial stream CNN)
The spatial stream primarily processes the RGB frames of the 

input video to extract the appearance features of the pedestrians. 
Specifically, the spatial stream receives a sequence of continuous RGB 
frames, which are processed through a series of convolutional layers, 
pooling layers, and non-linear activation functions to progressively 
extract spatial features from the images. Finally, a Global Average 
Pooling (GAP) layer converts the high-dimensional feature maps into 
a fixed-dimensional feature vector, denoted as SF . This feature vector 
effectively represents the appearance information of the pedestrian, 
such as color, texture, and shape.

The feature extraction process in the spatial stream can 
be represented as:

	 ( )( )=GAP CNNS S RGBF I

Where RGBI  denotes the input sequence of RGB frames, CNNS  
represents the spatial stream convolutional neural network, and GAP  
denotes the global average pooling operation.

2.1.2 Temporal stream (temporal stream CNN)
The temporal stream is responsible for capturing the motion 

information in the video, specifically by processing optical flow 
images. Optical flow images reflect pixel-level motion information 
between consecutive frames, thereby effectively capturing the dynamic 
behavior of pedestrians. The temporal stream also consists of a series 
of convolutional layers, pooling layers, and non-linear activation 
functions, similar to the spatial stream. After passing through the 
GAP layer, a temporal feature vector TF is generated. This feature 
vector primarily contains the motion patterns and dynamic behavior 
information of the pedestrian.

The feature extraction process in the temporal stream can 
be represented as:

	 ( )( )=GAP CNNT T OFF I

Where OFI  denotes the input sequence of optical flow images, 
CNNT  represents the temporal stream convolutional neural network, 
and GAP  denotes the global average pooling operation.

2.1.3 Feature fusion and fully connected layer
The feature vectors SF  and TF  obtained from the dual-stream 

feature extraction module represent the spatial and temporal features, 
respectively. To utilize both types of information, TSLNet concatenates 
these two feature vectors to form a fused feature vector concatF . This 
fused feature is then processed through a fully connected (FC) layer 
to generate a fused feature sequence fusedF  over time. This process not 
only fuses the spatial and temporal information but also provides 
high-dimensional input for subsequent temporal modeling.

The feature fusion and fully connected layer process can 
be represented as:

	
=  ;concat S TF F F

	 ( )= FCfused concatF F

Where   ·;·  denotes the concatenation operation, and FC  
represents the fully connected layer.

2.1.4 Temporal modeling module (LSTM)
To effectively model the temporal features of pedestrian behavior, 

TSLNet introduces a Long Short-Term Memory (LSTM) module. 
LSTM has the capability to remember information over long time 
spans, enabling it to capture the motion patterns and behavioral 
changes of pedestrians over extended periods. Specifically, fusedF  
serves as the input to the LSTM, which processes it through multiple 

FIGURE 2

The architecture of TSLNet, an integrated framework combining Two-Stream Convolutional Neural Networks (Two-Stream CNN) with Long Short-
Term Memory networks (LSTM).
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LSTM units to generate a high-dimensional feature representation H 
with strong temporal dependencies. This representation retains both 
short-term dynamic changes and long-term behavioral trends, 
facilitating the recognition and prediction of complex behaviors.

The computation process of the LSTM can be represented as:

	
( )−= σ + +1

t
t i i t ifusedi W F U h b

	
( )−= σ + +1

t
t f f t ffusedf W F U h b

	
( )−= σ + +1

t
t o o t ofusedo W F U h b

	 ( )− −= + + + 1 1tanh t
t t t t c c t cfusedc f c i W F U h b

	 ( )=  tanht t th o c

Where σ  is the sigmoid activation function,  denotes element-
wise multiplication, iW , fW , oW , cW  are the weight matrices for the 
input gate, forget gate, output gate, and candidate memory cell, 
respectively, iU , fU , oU , cU  are the weight matrices for the hidden 
state, and ib , fb , ob , cb  are the bias vectors. −1th  and −t 1c  are the hidden 
state and cell state from the previous time step, respectively.

2.1.5 Multi-head attention mechanism
After the LSTM module, TSLNet introduces a multi-head 

attention mechanism to further enhance the model’s ability to focus 
on important temporal information. The multi-head attention 
mechanism, through parallel attention heads, can attend to different 
subspaces of the features, thereby capturing richer temporal 
dependencies. Specifically, the feature H  output by the LSTM is 
processed through the multi-head attention layer to obtain a weighted 
feature representation attH ,which highlights important temporal 
information while suppressing noise and redundant information.

The computation process of the multi-head attention mechanism 
can be represented as:

	 ( )= …1 2Concat head ,head , ,head O
att hH W

	 ( )=head Attention , ,Q K V
i i iiHW HW HW

	
( )

 
=   

 
Attention , , softmax

k

QKQ K V V
d



Where h is the number of attention heads, Q
iW , K

iW , V
iW  are the 

weight matrices for the query, key, and value of the i-th attention head, 
and OW  is the output weight matrix. kd  is the dimension of the key vector.

2.1.6 Hierarchical classifier
The output part of TSLNet adopts a hierarchical classifier to 

achieve multi-task learning and precise recognition of complex 
behaviors. The hierarchical classifier is divided into three levels:

The basic action classifier is responsible for recognizing the 
fundamental actions of pedestrians, such as walking, running, and 

stopping. The classification results at this level provide foundational 
information for the subsequent recognition of complex behaviors. The 
output probability vector pbasic of the basic action classifier can 
be represented as:

	 ( )= +softmaxbasic basic att basicp W H b

Where basicW  and basicb  are the weight matrix and bias vector of 
the basic action classifier, respectively.

Based on the results of the basic action classification, the complex 
behavior classifier further identifies more intricate behavior patterns, 
such as making a phone call, carrying an object, or engaging in 
conversation. This level combines the information from the basic 
actions and the temporal features to make more detailed distinctions. 
The output probability vector complexp  of the complex behavior 
classifier can be represented as:

	 ( )= +softmaxcomplex complex att complexp W H b

Where complexW  and complexb  are the weight matrix and bias vector 
of the complex behavior classifier, respectively.

The future action predictor aims to predict the action trends of the 
pedestrian in the future time period, such as the next movement 
direction or the upcoming action. This level leverages the long-term 
temporal information captured by the LSTM and multi-head attention 
mechanism to achieve accurate predictions, providing support for real-
time decision-making and interaction. The output probability vector

	 ( )= +softmaxfuture future att futurep W H b

Where futureW  and futureb  are the weight matrix and bias vector 
of the future action predictor, respectively.

The hierarchical classifier shares the feature representations from 
the preceding modules (dual-stream feature extraction, feature fusion, 
LSTM, and attention mechanism) to achieve joint learning across 
multiple tasks, enhancing the overall model’s generalization ability 
and recognition accuracy.

2.1.7 Multi-scale features and regularization
To further enhance the model’s adaptability to different scales, 

TSLNet introduces a multi-scale feature extraction strategy in the dual-
stream feature extraction module. Specifically, multi-scale features are 
extracted at different depths of the convolutional layers and integrated 
during the feature fusion stage. This strategy enhances the model’s 
ability to recognize pedestrians at various distances and sizes.

Additionally, to prevent overfitting, TSLNet employs several 
regularization techniques during training, including Batch 
Normalization, Dropout, and Data Augmentation. These techniques 
effectively improve the robustness and generalization ability of the 
model, ensuring stable performance in complex environments.

2.2 Loss function and training strategy

TSLNet adopts a multi-task joint loss function to comprehensively 
optimize the performance of different hierarchical classifiers. 
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Specifically, cross-entropy loss functions are used for basic action 
classification, complex behavior classification, and future action 
prediction, and these losses are combined through a weighted sum to 
form the overall loss function. The overall loss function L can 
be represented as:

	
= α +β + γbasic complex future   

Where basic , complex , and future  are the cross-entropy losses 
for basic action classification, complex behavior classification, and 
future action prediction, respectively. α , β , and γ  are weight 
coefficients used to balance the contributions of each task’s loss. To 
determine appropriate values for these weights, we  conducted 
systematic ablation studies. Various combinations of α , β , and γ  were 
tested on the validation set, evaluating the model’s performance on all 
three tasks. The final configuration was selected to provide the best 
trade-off, achieving balanced improvements across basic action 
accuracy, complex behavior recognition accuracy, and future action 
prediction accuracy.

During training, the Adam optimizer is used for parameter 
updates, and a learning rate decay strategy is employed to gradually 
reduce the learning rate, ensuring stable convergence in the later 
stages of training. The parameter update rule can be represented as:

	
+

∂
θ = θ −η

∂1 ·
èt t

t



Where θt  is the parameter at the t-th iteration, and η  is the 
learning rate. The initial learning rate is typically set to 0.001 to limit 
the step size of gradient updates in the early stages.

2.3 Dataset construction

To comprehensively evaluate the performance of the proposed 
TSLNet model, we conducted experiments on multiple public datasets 
as well as a self-built dataset. Initially, we selected several widely-used 
public datasets for pedestrian behavior recognition, including the 
UCY Dataset, KITTI Dataset, and CUHK-Avenue Dataset.

The UCY Dataset (LDM, 2025) comprises pedestrian trajectory 
data collected in various scenarios such as university campuses and 
pedestrian streets, making it suitable for testing the model’s 
performance in crowded environments.

The KITTI Dataset (Geiger et al., 2013), primarily used in the 
autonomous driving domain, contains data captured in real urban 
environments under diverse weather and lighting conditions, which 
aids in evaluating the model’s robustness in complex traffic scenarios.

The CUHK-Avenue Dataset (Lu et al., 2013) focuses on anomaly 
detection in pedestrian behaviors, encompassing a variety of normal 
and abnormal behaviors across different scenes, thereby facilitating 
the assessment of the model’s capability in recognizing anomalous 
behaviors. These public datasets provide diverse training and testing 
environments, ensuring the comprehensiveness and comparability of 
the evaluation results.

In addition to public datasets, we  constructed a self-built 
dataset to further validate the effectiveness of TSLNet in specific 

application scenarios. The construction process of the self-built 
dataset involves three main steps: data collection, annotation, and 
preprocessing. During the data collection phase, high-definition 
cameras were deployed in various public locations such as 
shopping malls, train stations, and streets to capture video data, 
ensuring diversity and coverage of different behavior patterns and 
scene variations. Approximately 50 h of video data were collected, 
encompassing over 1,000 pedestrian samples. In the annotation 
phase, the VGG Image Annotator (VIA) tool was utilized for 
manual frame-by-frame annotation, defining a multi-level 
behavior categorization scheme that includes basic actions (e.g., 
walking, running, stopping, biking) complex behaviors (e.g., 
making phone calls, carrying objects, conversing), and future 
action prediction categories (e.g., movement direction prediction, 
imminent actions).

In our dataset annotation process, two annotators independently 
labeled the samples, and we obtained a Kappa score of 0.82, indicating 
strong inter-annotator agreement. Moreover, since the data collection 
was conducted in a random manner, the dataset covers diverse 
genders, age groups, and scenarios, which supports the robustness of 
our model. Finally, in the preprocessing stage, videos were extracted 
into individual frames with standardized resolutions and frame rates 
to meet the model’s input requirements. Optical flow images between 
consecutive frames were computed using the Farneback method to 
serve as input data for the temporal stream. Additionally, data 
augmentation techniques such as random cropping, rotation, and 
flipping were applied to increase data diversity and enhance the 
model’s generalization capabilities (Table 1).

By training and evaluating TSLNet on diverse datasets, the model 
demonstrated superior performance across various scenarios and 
complex environments, validating its broad applicability 
and robustness.

3 Results

3.1 Baseline models

To thoroughly evaluate the performance of the proposed TSLNet 
model in pedestrian tracking and behavior recognition tasks, 
we selected several state-of-the-art baseline models for comparison. 
These baseline models represent various architectures and 
methodologies within the field, ensuring a comprehensive and fair 
comparison. The selected baseline models include:

	 1	 Two-Stream ConvNet (Simonyan and Zisserman, 2014): A 
foundational two-stream architecture that processes spatial and 
temporal information separately, widely used for video 
classification and behavior recognition.

	 2	 Long-term Recurrent Convolutional Networks (LRCN) 
(Donahue et  al., 2015): Combines convolutional neural 
networks with long short-term memory (LSTM) networks to 
capture both spatial and temporal features for video description 
and behavior recognition.

	 3	 Inflated 3D ConvNet (Yadav and Kumar, 2022): Utilizes 3D 
convolutions to capture spatiotemporal features, significantly 
enhancing performance in video classification and behavior 
recognition tasks.
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	 4	 Spatial Temporal Graph Convolutional Networks (ST-GCN) 
(Yan et  al., 2018): Models dynamic behaviors by capturing 
spatial–temporal graph structures, suitable for complex 
behavior recognition.

	 5	 Video Vision Transformer (ViViT) (Arnab et  al., 2021): 
Employs self-attention mechanisms to capture spatiotemporal 
features, demonstrating strong performance in video 
behavior recognition.

	 6	 Deep OC-SORT (Maggiolino et al., 2023): A multi-pedestrian 
tracking algorithm that enhances the traditional SORT 
framework by incorporating adaptive re-identification, making 
it more robust under occlusions and identity switches.

	 7	 BR-GAN (Pang et al., 2022): A trajectory prediction framework 
that integrates geographical, social, and behavioral constraints 
within a GAN-based architecture, effectively improving 
accuracy and diversity in pedestrian trajectory prediction.

3.2 Main experimental results

3.2.1 Performance on public datasets and 
self-built dataset

We compared TSLNet against the aforementioned baseline 
models using the same datasets and evaluation metrics to ensure a fair 
assessment. The tasks evaluated include pedestrian tracking and 
behavior recognition, with specific focus on basic action classification, 
complex behavior recognition, and future action prediction. The 
evaluation metrics employed are Accuracy, Precision, Recall, F1-Score, 
Mean Average Precision (mAP), Multiple Object Tracking Accuracy 
(MOTA), and ID F1 Score (IDF1).

The experiments were conducted on a system equipped with an 
Intel Xeon(R) Gold 5218R CPU with 80 cores (2.10 GHz), 503.4 GB 
of RAM, and an NVIDIA GeForce RTX 4090 GPU. On the software 
side, we used Ubuntu 18.04 as the operating system, Python 3.7 as the 
programming language, PyTorch 1.8 as the deep learning framework, 
and CUDA 10.2 to fully leverage GPU acceleration.

From Tables 2–4, it is evident that TSLNet consistently 
outperforms all baseline models across all datasets and evaluation 
metrics. Specifically, TSLNet achieves the highest Accuracy, Precision, 
Recall, F1-Score, and mAP in behavior recognition tasks, as well as 
superior MOTA and IDF1 scores in pedestrian tracking tasks. The 
improvements are statistically significant, indicating the effectiveness 
of the proposed multi-task learning framework and the integration of 
dual-stream CNNs, LSTM, and multi-head attention mechanisms. In 
summary, the comprehensive evaluation of TSLNet across three 
diverse datasets highlights its versatility and robustness.

To intuitively demonstrate the training stability and effectiveness 
of TSLNet, we present the training and validation curves on our 

self-built dataset. Figure 3 shows the trends of loss convergence and 
accuracy changes during training. The curves indicate that TSLNet 
converges stably throughout the training process without obvious 
overfitting, which validates the effectiveness of the chosen training 
strategy and hyperparameter settings.

As shown on Table  5, TSLNet significantly outperforms all 
baseline models on the self-built dataset, achieving higher accuracy, 
precision, recall, F1-Score, and mAP in behavior recognition tasks, 
as well as superior MOTA and IDF1 scores in pedestrian tracking. 
The substantial improvements, particularly in complex behavior 
recognition and future action prediction, demonstrate TSLNet’s 
strong adaptability and effectiveness in specialized 
application scenarios.

To further assess TSLNet’s effectiveness in specific application 
environments, we  conducted experiments on a self-built dataset 
comprising diverse and complex scenes. The dataset includes over 
1,000 pedestrian samples across multiple environments such as 
shopping malls, train stations, and streets, capturing a wide range of 
behavior patterns (see Figures 2, 4).

To further observe the performance of the proposed TSLNet, 
we quantified the attention weight distribution in key regions. On 
the testing set, the average attention weight in pedestrian head 
regions reaches 0.71, indicating that the model consistently focuses 
on the most behavior-relevant areas. For ease of comparison, 
we  compare our method with three representative models, 
including our benchmark Two-Stream CNN (0.55) and the high-
performing baselines ST-GCN (0.61) and ViViT (0.66). The 
corresponding attention patterns are presented in Figure 5, showing 
that TSLNet allocates significantly higher attention to head and 
torso regions, highlighting its stronger ability to capture critical 
visual cues for accurate behavior recognition and 
trajectory prediction.

3.2.2 Performance of pedestrian tracking models 
under complex environment

We conducted experiments to evaluate the performance of 
various models under challenging scenarios, such as occlusions (e.g., 
pedestrians partially blocked by obstacles) and lighting variations 
(e.g., transitions from well-lit to low-light environments). A subset of 
our self-built dataset was selected for these tests, containing samples 
representative of these complex environmental conditions.

The selected models for comparison include Two-Stream 
ConvNet, LRCN, I3D, ST-GCN, ViViT, Deep OC-SORT, BR-GAN, 
and TSLNet. As shown in Figure  6, the results demonstrate that 
TSLNet consistently outperforms the other models, especially in 
scenarios with occlusions and varying lighting. This reflects the 
model’s robustness in handling such environmental challenges. The 
TSLNet model maintains higher accuracy and better overall tracking 

TABLE 1  The main statistical information of the datasets used.

Dataset Name Number of 
Scenes

Video 
Duration

Pedestrian 
Samples

Behavior 
Categories

Annotation Type

UCY 3 3 h 5,000 10 Basic and Complex Behaviors

KITTI 2 2 h 3,000 8 Basic Behaviors

CUHK-Avenue 1 1 h 2,000 15 Normal and Abnormal Behaviors

Self-Built Dataset Multiple Scenes 2 h 1,000 15 Multi-Level Behavior Annotations
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performance, showing improved MOTA and IDF1 scores compared 
to the other baseline models.

3.3 Multi-task performance analysis

3.3.1 Pedestrian tracking performance
In the pedestrian tracking task, we  utilized Multiple Object 

Tracking Accuracy (MOTA) and ID F1 Score (IDF1) as primary 
evaluation metrics. These metrics assess the model’s ability to 
accurately track multiple pedestrians across frames and maintain 
consistent identity assignments. Table 6 shows that TSLNet achieves 
the highest MOTA and IDF1 scores among all baseline models, with 
improvements of approximately 4.3% in MOTA and 4.4% in IDF1. 
This indicates TSLNet’s superior ability to accurately track pedestrians 
and maintain consistent identities across frames.

3.3.2 Behavior recognition performance
TSLNet excels not only in basic action classification but also in 

recognizing complex behaviors and predicting future actions. The 
performance across these tasks highlights the model’s comprehensive 
capability in behavior analysis. Table 7 demonstrates that TSLNet 
outperforms all baseline models in basic action accuracy, complex 
behavior accuracy, and future action prediction accuracy. These 
enhancements underscore TSLNet’s effectiveness in comprehensively 
understanding and predicting pedestrian behaviors.

3.3.3 Inter-task synergy
To evaluate the synergy between pedestrian tracking and behavior 

recognition, we compared the performance of multi-task training 
against single-task training. Multi-task training significantly enhances 
performance across all evaluation metrics compared to single-task 
training (Table 8). Specifically, TSLNet’s multi-task approach leads to 

TABLE 2  Performance comparison of TSLNet with baseline models on UCY dataset (%).

Model Accuracy Precision Recall F1-score mAP MOTA IDF1

Two-Stream ConvNet 85.4 ± 1.2 84.2 ± 1.0 86.1 ± 1.3 85.1 ± 1.1 78.5 ± 2.0 75.2 ± 1.5 70.5 ± 1.8

LRCN 87.6 ± 1.0 86.4 ± 0.9 88.1 ± 1.2 87.2 ± 1.0 80.3 ± 1.8 77.5 ± 1.3 72.8 ± 1.6

I3D 88.9 ± 0.8 87.8 ± 0.7 89.5 ± 1.0 88.6 ± 0.9 82.1 ± 1.5 79.2 ± 1.2 74.0 ± 1.4

ST-GCN 88.2 ± 0.9 87.0 ± 0.8 89.0 ± 1.1 88.0 ± 0.9 81.5 ± 1.6 78.7 ± 1.0 73.3 ± 1.3

ViViT 89.5 ± 0.7 88.6 ± 0.6 90.2 ± 0.9 89.4 ± 0.8 83.0 ± 1.4 80.1 ± 1.1 75.0 ± 1.2

Deep OC-SORT 90.1 ± 0.6 89.3 ± 0.5 91.0 ± 0.8 90.1 ± 0.7 83.7 ± 1.3 81.2 ± 0.9 76.1 ± 1.1

BR-GAN 90.4 ± 0.6 89.7 ± 0.5 91.3 ± 0.7 90.5 ± 0.6 84.2 ± 1.2 81.8 ± 0.8 76.8 ± 1.0

TSLNet 91.0 ± 0.5 90.3 ± 0.4 91.8 ± 0.6 91.0 ± 0.5 85.0 ± 1.2 83.0 ± 0.8 78.0 ± 1.0

TABLE 3  Performance comparison of TSLNet with baseline models on KITTI dataset (%).

Model Accuracy Precision Recall F1-score mAP MOTA IDF1

Two-Stream ConvNet 83.7 ± 1.1 82.5 ± 1.0 84.8 ± 1.3 83.6 ± 1.1 76.2 ± 1.9 72.4 ± 1.4 68.9 ± 1.6

LRCN 86.4 ± 1.0 85.2 ± 0.9 87.6 ± 1.2 86.3 ± 1.0 78.9 ± 1.6 74.8 ± 1.2 71.3 ± 1.4

I3D 88.6 ± 0.9 87.4 ± 0.8 89.9 ± 1.0 88.6 ± 0.9 80.6 ± 1.4 76.9 ± 1.1 73.2 ± 1.3

ST-GCN 87.9 ± 0.8 86.8 ± 0.7 89.2 ± 0.9 87.9 ± 0.8 79.8 ± 1.3 76.1 ± 1.0 72.4 ± 1.2

ViViT 89.7 ± 0.7 88.6 ± 0.6 90.9 ± 0.8 89.7 ± 0.7 81.7 ± 1.2 78.5 ± 0.9 74.8 ± 1.1

Deep OC-SORT 90.6 ± 0.6 89.5 ± 0.5 91.7 ± 0.7 90.6 ± 0.6 82.4 ± 1.1 80.2 ± 0.8 76.5 ± 1.0

BR-GAN 91.2 ± 0.5 90.1 ± 0.5 92.4 ± 0.6 91.2 ± 0.5 83.1 ± 1.0 81.0 ± 0.7 77.4 ± 0.9

TSLNet 92.1 ± 0.4 91.2 ± 0.4 93.0 ± 0.5 92.1 ± 0.4 84.0 ± 0.9 83.3 ± 0.7 81.5 ± 0.9

TABLE 4  Performance comparison of TSLNet with baseline models on CUHK-avenue dataset (%).

Model Accuracy Precision Recall F1-score mAP MOTA IDF1

Two-Stream ConvNet 85.4 ± 1.0 84.2 ± 0.9 86.1 ± 1.1 85.1 ± 0.9 78.5 ± 1.8 75.2 ± 1.3 70.5 ± 1.6

LRCN 88.7 ± 0.9 87.5 ± 0.8 89.3 ± 1.0 88.4 ± 0.8 81.2 ± 1.5 78.6 ± 1.1 73.4 ± 1.3

I3D 90.2 ± 0.8 89.0 ± 0.7 91.5 ± 0.9 90.2 ± 0.8 83.0 ± 1.3 80.1 ± 1.0 75.2 ± 1.2

ST-GCN 89.5 ± 0.7 88.3 ± 0.6 90.7 ± 0.8 89.5 ± 0.7 82.1 ± 1.2 79.8 ± 0.9 74.0 ± 1.1

ViViT 91.0 ± 0.6 90.2 ± 0.5 92.1 ± 0.7 91.1 ± 0.6 84.5 ± 1.0 81.5 ± 0.8 76.3 ± 0.9

Deep OC-SORT 91.8 ± 0.5 90.8 ± 0.5 92.7 ± 0.8 91.7 ± 0.7 85.2 ± 1.3 83.6 ± 0.9 78.9 ± 1.1

BR-GAN 92.3 ± 0.7 91.4 ± 0.5 93.4 ± 0.7 92.3 ± 0.6 85.7 ± 1.2 83.8 ± 0.8 79.5 ± 1.0

TSLNet 93.6 ± 0.3 92.8 ± 0.2 94.2 ± 0.4 93.5 ± 0.3 86.7 ± 0.9 84.9 ± 0.5 80.1 ± 0.5
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improvements of approximately 2.6% in basic action accuracy, 2.2% 
in complex behavior accuracy, 3.5% in future action prediction 
accuracy, 4.3% in MOTA, and 4.4% in IDF1.

3.4 Ablation studies

To understand the individual contributions of TSLNet’s 
components, we  conducted ablation studies by systematically 

removing or altering specific modules within the model. The modules 
evaluated include the multi-head attention mechanism, LSTM 
module, two-stream CNN architecture, and the hierarchical classifier.

The results indicate that each component contributes significantly 
to the overall performance (see Table 9). Notably, removing the multi-
head attention mechanism and the LSTM module leads to substantial 
declines in accuracy, precision, recall, F1-Score, mAP, MOTA, and 
IDF1 scores, highlighting their critical roles in enhancing 
model performance.

FIGURE 3

Training loss curves: (a) Training set loss, (b) Validation set loss.

TABLE 5  Performance comparison of TSLNet with baseline models on the self-built dataset (%).

Model Accuracy Precision Recall F1-Score mAP MOTA IDF1

Two-Stream ConvNet 84.5 ± 1.1 83.0 ± 0.9 85.2 ± 1.2 84.1 ± 1.0 77.8 ± 1.9 75.2 ± 1.3 70.5 ± 1.7

LRCN 87.3 ± 1.0 86.0 ± 0.8 88.5 ± 1.1 87.2 ± 0.9 80.4 ± 1.6 78.6 ± 1.2 73.4 ± 1.5

I3D 89.1 ± 0.9 87.8 ± 0.7 90.5 ± 1.0 89.2 ± 0.8 82.9 ± 1.4 80.1 ± 1.0 75.2 ± 1.3

ST-GCN 88.7 ± 0.8 87.5 ± 0.7 89.8 ± 1.0 88.6 ± 0.8 82.1 ± 1.3 79.8 ± 1.0 74.0 ± 1.2

ViViT 90.5 ± 0.6 89.3 ± 0.5 91.6 ± 0.7 90.4 ± 0.6 84.0 ± 1.1 81.5 ± 0.8 76.3 ± 0.9

Deep OC-SORT 91.2 ± 0.5 90.2 ± 0.4 92.3 ± 0.6 91.2 ± 0.5 85.0 ± 1.0 82.8 ± 0.7 77.2 ± 0.8

BR-GAN 91.6 ± 0.5 90.8 ± 0.4 92.8 ± 0.6 91.7 ± 0.5 85.5 ± 0.9 83.3 ± 0.7 78.0 ± 0.8

TSLNet 94.1 ± 0.3 93.2 ± 0.2 95.0 ± 0.4 94.0 ± 0.3 88.3 ± 0.9 85.4 ± 0.6 80.7 ± 0.8

FIGURE 4

Results of self-built dataset after TSLNet processed.
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FIGURE 5

Attention heatmap comparison of TSLNet and baseline models during trajectory prediction.

FIGURE 6

Performance comparison of models under occlusion and lighting variation challenges.

https://doi.org/10.3389/fnbot.2025.1663565
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lv et al.� 10.3389/fnbot.2025.1663565

Frontiers in Neurorobotics 11 frontiersin.org

3.5 Parameter sensitivity analysis

To assess the sensitivity of TSLNet to key hyperparameters, 
we  conducted experiments varying the learning rate, number of 
attention heads, and number of LSTM layers. The performance 
impacts of these hyperparameters are detailed below.

Table  10 illustrates the sensitivity of TSLNet to key 
hyperparameters. The default settings (learning rate = 0.001, 
attention heads = 8, LSTM layers = 2) yield the best performance 
across all metrics. Deviating from these settings, such as using a lower 
learning rate or reducing the number of attention heads, results in 
noticeable performance declines, indicating the importance of these 
hyperparameters in optimizing TSLNet’s effectiveness.

3.6 Runtime and computational resources

3.6.1 Training time
The training times for TSLNet and baseline models across 

different datasets are summarized below. As shown in Table  11, 
TSLNet has longer training times compared to all baseline models 
across the UCY, KITTI, CUHK-Avenue, and self-built datasets. This 
increase is attributed to the dual-stream architecture and the 
integration of multi-task learning mechanisms. Despite the longer 
training durations, the substantial performance gains achieved by 
TSLNet justify the additional computational investment.

3.6.2 Inference speed
Inference speed, measured in Frames Per Second (FPS), is crucial 

for real-time applications. TSLNet exhibits a slightly lower FPS 
compared to baseline models, which is a trade-off for its enhanced 
accuracy and recognition capabilities. Table 12 shows that TSLNet has 
a lower inference speed compared to baseline models across all 
datasets, with FPS values decreasing from 30 ± 1.0 (Two-Stream 
ConvNet) to 15 ± 0.4 (TSLNet) on the UCY dataset, and similarly 
across other datasets. While TSLNet sacrifices some speed, its superior 
accuracy and recognition performance make it highly suitable for 
applications where precision is paramount.

3.6.3 Resource consumption
The resource consumption of TSLNet during training and 

inference phases is detailed below. TSLNet demands more 
computational resources due to its complex architecture, which 
includes dual-stream CNNs, LSTM layers, and multi-head 
attention mechanisms.

As illustrated in Table 13, TSLNet consumes more GPU memory, 
CPU utilization, and overall memory compared to baseline models. 
Specifically, TSLNet requires 20 ± 1.0 GB of GPU memory, 85 ± 3.5% 
CPU utilization, and 75 ± 4.5% memory usage, reflecting its intricate 
architecture and multi-task learning framework. Despite the higher 
resource demands, modern high-performance computing platforms 
can accommodate these requirements. Future work may explore 
optimization techniques such as model compression, knowledge 
distillation, or quantization to reduce resource consumption without 
compromising performance.

The results indicate that TSLNet incurs higher training time, 
slower inference speed, and greater resource consumption compared 
to mainstream baseline models. However, these extra computational 

costs lead to substantial improvements in recognition accuracy and 
enhanced robustness in complex scenarios. For tasks requiring high 
precision and sophisticated behavior modeling, TSLNet demonstrates 
clear advantages; whereas in scenarios with stricter real-time 
requirements, techniques such as model pruning, knowledge 
distillation, or hardware acceleration can be  further employed to 
achieve a balance between performance and efficiency.

3.6.4 Efficiency–accuracy trade-off analysis
To investigate the trade-off between accuracy and computational 

efficiency, we provide the analysis in Figure 7. Figure 7a shows the 
relationship between inference speed (FPS) and accuracy for all 
baseline models and TSLNet on the self-built dataset, indicating that 
TSLNet achieves the highest accuracy while incurring slightly lower 
inference speed. Figure 7b quantifies performance improvement per 
unit of GPU memory (MOTA per GB), showing that TSLNet achieves 
a gain of approximately 0.75% MOTA per GB, comparable to other 
high-performing models. This analysis highlights the trade-offs 
between accuracy and resource consumption, demonstrating that the 
additional computational cost of TSLNet is justified in scenarios 
where accuracy and robustness are prioritized.

3.7 Statistical significance testing

To verify the statistical significance of TSLNet’s performance 
improvements over the baseline models on the self-built dataset, we first 

TABLE 6  Performance comparison of TSLNet with baseline models in 
pedestrian tracking (%).

Model MOTA IDF1

Two-Stream ConvNet 75.2 ± 1.3 70.5 ± 1.7

LRCN 78.6 ± 1.2 73.4 ± 1.5

I3D 80.1 ± 1.0 75.2 ± 1.3

ST-GCN 79.8 ± 1.0 74.0 ± 1.2

ViViT 81.5 ± 0.8 76.3 ± 0.9

Deep OC-SORT 82.8 ± 0.7 77.2 ± 0.8

BR-GAN 83.3 ± 0.7 78.0 ± 0.7

TSLNet 85.4 ± 0.6 80.7 ± 0.8

TABLE 7  Performance comparison of TSLNet with baseline models in 
behavior recognition (%).

Model Basic 
action 

accuracy

Complex 
behavior 
accuracy

Future action 
prediction 
accuracy

Two-Stream ConvNet 85.4 ± 1.0 78.3 ± 1.2 70.2 ± 1.5

LRCN 88.7 ± 0.9 81.5 ± 1.1 73.4 ± 1.3

I3D 90.2 ± 0.8 83.0 ± 1.0 75.6 ± 1.2

ST-GCN 89.5 ± 0.7 82.1 ± 0.9 74.3 ± 1.1

ViViT 91.0 ± 0.6 84.5 ± 1.0 76.8 ± 1.0

Deep OC-SORT 91.5 ± 0.5 85.0 ± 0.8 77.2 ± 1.0

BR-GAN 92.0 ± 0.5 85.5 ± 0.7 78.0 ± 0.9

TSLNet 93.6 ± 0.3 86.7 ± 0.2 80.3 ± 0.4
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assessed the normality of the key metrics using the Shapiro–Wilk test. 
The results confirmed that the metric distributions do not significantly 
deviate from normality, supporting the use of paired t-tests. We then 
conducted paired t-tests between TSLNet and each baseline model for 
all primary metrics, including Accuracy, F1-Score, MOTA, and IDF1. 
In addition, effect sizes (Cohen’s d) were calculated to quantify the 
magnitude of the differences. The results are summarized in Table 14.

As shown in Table  14, TSLNet consistently outperforms all 
baseline models with statistically significant improvements. For most 
comparisons, p-values are below 0.01, indicating high significance. 
Cohen’s d values range from 1.05 to 1.97, reflecting large effect sizes 
and confirming that the observed improvements are not only 
statistically significant but also practically meaningful. Overall, these 
statistical tests provide strong evidence that the performance gains of 
TSLNet are robust, reliable, and statistically meaningful.

3.8 Visualization analysis

To demonstrate the practical effectiveness of our model in 
trajectory prediction, we present both visualizations and quantitative 

evaluations in Figure 8. Figures 8a,b show that the model generates 
trajectories that avoid potential conflicts with other pedestrians ahead, 
providing reasonable predictions. In addition to these visualizations, 
we  report the Average Displacement Error (ADE) and Final 
Displacement Error (FDE) for all baseline models and TSLNet, as well 
as statistical measures of avoidance angle deviations (AAD). 
Figure 8c,d illustrate that the model captures interactions between 
pedestrians moving in opposite directions, taking into account the 
trajectories of both parties. The quantitative results further confirm 
that TSLNet achieves lower ADE/FDE and smaller avoidance angle 
deviations compared to other models, demonstrating its superior 
ability to model interactive and collision-avoidant behavior.

To further evaluate the performance of TSLNet, we compared its 
behavior recognition and trajectory prediction results with 
conventional models (e.g., single-stream CNN) and baseline models 
(e.g., two-stream CNN) under identical scenarios. In addition to the 
visualized trajectories shown in Figure  9, we  report quantitative 
metrics including ADE and FDE for all models.

As observed, TSLNet consistently achieves lower ADE and FDE 
values, particularly in challenging scenarios such as pedestrian 
turning (Figure 9c). The predicted trajectories of TSLNet (red) closely 

TABLE 8  Performance comparison of multi-task and single-task training (%).

Training mode Basic action 
accuracy

Complex 
behavior accuracy

Future action 
prediction accuracy

MOTA IDF1

Single-Task (Recognition) 91.0 ± 0.8 84.5 ± 1.0 76.8 ± 1.2 - -

Single-Task (Tracking) - - - 81.5 ± 0.9 76.3 ± 1.0

Multi-Task (TSLNet) 93.6 ± 0.3 86.7 ± 0.2 80.3 ± 0.4 85.4 ± 0.6 80.7 ± 0.8

TABLE 9  Ablation study results of TSLNet (%).

Module configuration Basic action 
accuracy

Complex behavior 
accuracy

Future action 
prediction accuracy

MOTA IDF1

Full Model (TSLNet) 93.6 ± 0.3 86.7 ± 0.2 80.3 ± 0.4 85.4 ± 0.6 80.7 ± 0.8

Without Multi-Head Attention 92.1 ± 0.4 85.3 ± 0.3 78.5 ± 0.5 83.9 ± 0.5 78.1 ± 0.6

Without LSTM Module 90.4 ± 0.5 83.6 ± 0.4 76.2 ± 0.6 81.7 ± 0.4 75.3 ± 0.5

Without Two-Stream CNN Module 88.2 ± 0.6 80.1 ± 0.5 73.4 ± 0.7 78.5 ± 0.4 72.0 ± 0.6

Without Hierarchical Classifier 91.0 ± 0.4 84.2 ± 0.3 77.1 ± 0.5 82.3 ± 0.5 77.0 ± 0.6

Without All Key Modules 85.5 ± 0.7 75.0 ± 0.6 68.4 ± 0.8 72.1 ± 0.6 68.5 ± 0.7

TABLE 10  Hyperparameter sensitivity analysis of TSLNet (%).

Hyperparameter 
configuration

Basic action 
accuracy

Complex behavior 
accuracy

Future action 
prediction accuracy

MOTA IDF1

Learning Rate = 0.0001 92.3 ± 0.4 85.5 ± 0.3 79.1 ± 0.5 84.0 ± 0.4 79.0 ± 0.5

Learning Rate = 0.001 (Default) 93.6 ± 0.3 86.7 ± 0.2 80.3 ± 0.4 85.4 ± 0.6 80.7 ± 0.8

Learning Rate = 0.01 91.8 ± 0.5 84.0 ± 0.4 78.2 ± 0.6 83.2 ± 0.5 78.0 ± 0.7

Number of Attention Heads = 4 92.5 ± 0.4 85.0 ± 0.3 79.0 ± 0.5 84.2 ± 0.4 79.5 ± 0.6

Number of Attention Heads = 8 (Default) 93.6 ± 0.3 86.7 ± 0.2 80.3 ± 0.4 85.4 ± 0.6 80.7 ± 0.8

Number of Attention Heads = 16 93.2 ± 0.4 86.3 ± 0.2 80.0 ± 0.4 85.0 ± 0.5 80.3 ± 0.7

Number of LSTM Layers = 1 91.5 ± 0.5 83.5 ± 0.3 77.8 ± 0.6 83.0 ± 0.5 78.5 ± 0.7

Number of LSTM Layers = 2 (Default) 93.6 ± 0.3 86.7 ± 0.2 80.3 ± 0.4 85.4 ± 0.6 80.7 ± 0.8

Number of LSTM Layers = 3 93.4 ± 0.3 86.5 ± 0.2 80.1 ± 0.4 85.3 ± 0.5 80.5 ± 0.7
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align with the ground truth (green), confirming its ability to capture 
subtle pedestrian dynamics more accurately than the other models, 
whose predictions deviate significantly. These quantitative results 
complement the visualizations and further demonstrate the superior 
performance of TSLNet in both trajectory accuracy and 
behavior recognition.

Figure  10 presents the predicted pedestrian trajectories in a 
relatively complex encounter scenario, where individuals meet from 
opposite directions while walking side by side. Distinct colored 
regions denote the future trajectory distributions of different 
pedestrians, the blue dashed line corresponds to the observed history, 
and the red dashed line represents the ground truth. In this situation, 
pedestrians are expected to exhibit avoidance behavior to reduce 
collision risks. In addition to these visualizations, we  report 
quantitative metrics including ADE, FDE and AAD for all models. 

The results show that TSLNet achieves the lowest ADE and the 
smallest average avoidance angle deviation, closely followed by ViViT, 
whereas other models exhibit substantially larger errors. These 
quantitative results, together with the visualizations, confirm that only 
TSLNet and ViViT effectively capture realistic avoidance behavior, 
demonstrating the robustness of TSLNet under challenging 
interactive scenarios.

4 Discussion

This study introduced TSLNet, a new multi-task learning 
framework designed for simultaneous pedestrian tracking and 
behavior recognition. The experimental results presented in the 
previous sections demonstrate that TSLNet significantly outperforms 

TABLE 11  Training time (hours) comparison of TSLNet with baseline models.

Model name UCY training time KITTI training time CUHK-avenue 
training time

Self-built dataset 
training time

Two-Stream ConvNet 10 ± 0.5 8 ± 0.4 5 ± 0.2 50 ± 2.0

LRCN 12 ± 0.6 10 ± 0.5 6 ± 0.3 55 ± 2.2

I3D 15 ± 0.7 12 ± 0.6 7 ± 0.4 60 ± 2.5

ST-GCN 14 ± 0.6 11 ± 0.5 6.5 ± 0.3 58 ± 2.3

ViViT 16 ± 0.8 13 ± 0.6 8 ± 0.4 62 ± 2.7

Deep OC-SORT 14 ± 0.6 11.5 ± 0.5 7 ± 0.3 59 ± 2.4

BR-GAN 17 ± 0.7 14 ± 0.6 8.5 ± 0.4 63 ± 2.8

TSLNet 18 ± 0.9 15 ± 0.7 9 ± 0.5 65 ± 2.9

TABLE 12  Inference speed comparison of TSLNet with baseline models.

Model name UCY (FPS) KITTI (FPS) CUHK-avenue (FPS) Self-built dataset (FPS)

Two-Stream ConvNet 30 ± 1.0 28 ± 0.9 25 ± 0.8 20 ± 1.5

LRCN 25 ± 0.8 23 ± 0.7 20 ± 0.6 18 ± 1.2

I3D 20 ± 0.6 18 ± 0.5 15 ± 0.4 12 ± 1.0

ST-GCN 22 ± 0.7 20 ± 0.6 17 ± 0.5 14 ± 1.1

ViViT 18 ± 0.5 16 ± 0.4 14 ± 0.3 10 ± 0.8

Deep OC-SORT 24 ± 0.7 22 ± 0.6 19 ± 0.5 16 ± 1.0

BR-GAN 17 ± 0.5 15 ± 0.4 13 ± 0.3 9 ± 0.7

TSLNet 15 ± 0.4 13 ± 0.3 12 ± 0.2 8 ± 0.6

TABLE 13  Resource consumption comparison of TSLNet with baseline models.

Model name GPU memory usage (GB) CPU utilization (%) Memory usage (%)

Two-Stream ConvNet 12 ± 0.5 70 ± 2.0 60 ± 3.0

LRCN 14 ± 0.6 75 ± 2.5 65 ± 3.5

I3D 16 ± 0.7 80 ± 3.0 70 ± 4.0

ST-GCN 15 ± 0.6 78 ± 2.8 68 ± 3.8

ViViT 17 ± 0.8 82 ± 3.2 72 ± 4.2

Deep OC-SORT 15 ± 0.7 76 ± 2.5 66 ± 3.2

BR-GAN 18 ± 0.8 83 ± 3.0 71 ± 3.8

TSLNet 20 ± 1.0 85 ± 3.5 75 ± 4.5
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FIGURE 7

Efficiency–accuracy trade-off analysis of TSLNet and baseline models. (a) Inference speed (FPS) versus accuracy. (b) Performance gain per unit of GPU 
memory, measured as MOTA improvement per GB.

TABLE 14  Paired t-test results and effect sizes of TSLNet vs. baseline models on the self-built dataset.

Metric Comparison t-value p-value Significance Cohen’s d

Accuracy TSLNet vs. Two-Stream CNN 8.42 0.0003 *** 1.85

TSLNet vs. LRCN 7.18 0.0006 *** 1.58

TSLNet vs. I3D 6.25 0.0011 ** 1.38

TSLNet vs. ST-GCN 6.47 0.0010 ** 1.41

TSLNet vs. ViViT 5.92 0.0015 ** 1.29

TSLNet vs. Deep OC-SORT 5.10 0.0022 ** 1.11

TSLNet vs. BR-GAN 4.85 0.0028 ** 1.06

F1-Score TSLNet vs. Two-Stream CNN 9.01 0.0002 *** 1.97

TSLNet vs. LRCN 7.45 0.0005 *** 1.63

TSLNet vs. I3D 6.68 0.0009 *** 1.46

TSLNet vs. ST-GCN 6.89 0.0008 *** 1.50

TSLNet vs. ViViT 6.31 0.0012 ** 1.37

TSLNet vs. Deep OC-SORT 5.40 0.0020 ** 1.17

TSLNet vs. BR-GAN 5.15 0.0025 ** 1.12

MOTA TSLNet vs. Two-Stream CNN 8.35 0.0003 *** 1.83

TSLNet vs. LRCN 7.02 0.0007 *** 1.54

TSLNet vs. I3D 6.18 0.0012 ** 1.36

TSLNet vs. ST-GCN 6.45 0.0010 ** 1.41

TSLNet vs. ViViT 5.78 0.0016 ** 1.25

TSLNet vs. Deep OC-SORT 5.05 0.0023 ** 1.10

TSLNet vs. BR-GAN 4.82 0.0029 ** 1.05

IDF1 TSLNet vs. Two-Stream CNN 8.56 0.0003 *** 1.88

TSLNet vs. LRCN 7.25 0.0006 *** 1.58

TSLNet vs. I3D 6.38 0.0011 ** 1.39

TSLNet vs. ST-GCN 6.59 0.0010 ** 1.43

TSLNet vs. ViViT 5.95 0.0015 ** 1.30

TSLNet vs. Deep OC-SORT 5.25 0.0021 ** 1.13

Statistical significance levels: *p < 0.05, **p < 0.01, ***p < 0.001.
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existing baseline models in both pedestrian tracking and behavior 
recognition tasks across multiple public datasets and a self-built 
dataset. Specifically, TSLNet achieved higher Accuracy, Precision, 

Recall, F1-Score, and Mean Average Precision (mAP) in behavior 
recognition, as well as superior Multiple Object Tracking Accuracy 
(MOTA) and ID F1 Score (IDF1) in pedestrian tracking. These 

FIGURE 8

Visualization of predictions by our method.

FIGURE 9

Comparative visualization of pedestrian trajectory predictions from Single-stream CNN, Two-stream CNN, and TSLNet in three different scenarios.
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improvements were not only substantial but also statistically 
significant, as confirmed by the paired t-tests conducted.

The enhanced performance of TSLNet can be attributed to its 
robust architectural components, including the dual-stream 
Convolutional Neural Networks (CNNs), Long Short-Term Memory 
(LSTM) modules, and multi-head attention mechanisms. The dual-
stream CNNs effectively capture spatial and temporal features 
separately, allowing the model to comprehend both static and dynamic 
aspects of pedestrian behavior. The integration of LSTM modules 
facilitates the modeling of temporal dependencies, which is crucial for 
accurately predicting future actions based on historical data. 
Moreover, the multi-head attention mechanism enhances the model’s 
ability to focus on relevant features across different time steps, thereby 
improving the precision and recall rates.

However, despite its impressive performance, TSLNet has certain 
limitations. TSLNet requires substantial computational resources, 
including higher GPU memory and increased CPU utilization. This 
complexity may limit its deployment in resource-constrained 
environments or on edge devices where computational power is 
limited. Therefore, to improve the inference efficiency of TSLNet in 
practical applications, we discuss several concrete strategies for model 
lightweighting. First, quantization can be applied by compressing the 
model weights and activations from 32-bit floating-point to 8-bit 
integer representation. Quantization can be performed either on a 
per-layer or per-channel basis to balance accuracy and inference speed. 

In addition, quantization-aware training (QAT) can be employed to 
further reduce potential accuracy loss. Second, pruning can be used to 
remove redundant channels in convolutional or fully connected layers, 
based on weight magnitude or importance scores. Structured pruning 
is particularly suitable for achieving actual speedup on hardware. 
Finally, knowledge distillation can train a lightweight student network 
to mimic the output distributions or intermediate feature 
representations of the original TSLNet. The student model can reduce 
the number of channels, layers, or simplify attention modules to achieve 
computational savings while maintaining performance. Although these 
strategies have not been experimentally implemented in this work, they 
provide actionable design directions and offer promising avenues for 
optimizing TSLNet deployment in resource-constrained scenarios.

With the widespread application of video surveillance systems in 
public safety and behavior analysis, ethical issues have become 
increasingly important. In particular, concerns regarding personal 
privacy protection, data usage consent, and the potential societal 
impact of model deployment must be carefully considered in practical 
applications. This study emphasizes that data collection and processing 
should comply with relevant laws and regulations, and measures such 
as anonymization and privacy protection should be implemented to 
minimize risks to individual privacy.

Regarding future work, we plan to further expand the multi-task 
capabilities of TSLNet, for example, applying it to anomaly behavior 
detection and dangerous behavior prediction scenarios. This can 

FIGURE 10

Comparative visualization of pedestrian trajectory predictions.
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enhance the model’s applicability in complex environments and 
provide richer functionality for practical deployment. Additionally, 
exploring lightweight optimization of the model in resource-
constrained environments and multi-modal data fusion represents 
promising directions for further research.

5 Conclusion

In conclusion, TSLNet represents a significant advancement in 
the field of video analysis, offering a powerful tool for enhancing 
pedestrian tracking and behavior recognition. Its high performance 
and comprehensive feature extraction capabilities make it a promising 
solution for applications demanding high precision and reliability. As 
technology continues to evolve, ongoing refinements and 
optimizations of TSLNet will be essential to fully realize its potential 
and ensure its effectiveness in dynamic and diverse real-
world environments.
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