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UHGAN: a dual-phase GAN with 
Hough-transform constraints for 
accurate farmland road extraction
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1 Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power, Hangzhou, 
China, 2 Huzhou University, HuZhou, China

Introduction: Traditional methods for farmland road extraction, such as U-Net, 
often struggle with complex noise and geometric features, leading to discontinuous 
extraction and insufficient sensitivity. To address these limitations, this study proposes 
a novel dual-phase generative adversarial network (GAN) named UHGAN, which 
integrates Hough-transform constraints.
Methods: We designed a cascaded U-Net generator within a two-stage GAN 
framework. The Stage 1 GAN combines a differentiable Hough transform loss 
with cross-entropy loss to generate initial road masks. Subsequently, the Stage 
2 U-Net refines these masks by repairing breakpoints and suppressing isolated 
noise.
Results: When evaluated on the WHU RuR+rural road dataset, the proposed 
UHGAN method achieved an accuracy of 0.826, a recall of 0.750, and an F1-
score of 0.789. This represents a significant improvement over the single-stage 
U-Net (F1 = 0.756) and ResNet (F1 = 0.762) baselines.
Discussion: The results demonstrate that our approach effectively mitigates the 
issues of discontinuous extraction caused by the complex geometric shapes and 
partial occlusion characteristic of farmland roads. The integration of Hough-
transform loss, an technique that has received limited attention in prior studies, 
proves to be highly beneficial. This method shows considerable promise for 
practical applications in rural infrastructure planning and precision agriculture.
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1 Introduction

High-standard farmland is characterized by its concentration, contiguity, and supporting 
infrastructure, including field roads that are essential for agricultural production and 
management. The accurate extraction of road networks from such areas is critical for 
enhancing construction planning and operational efficiency. However, existing methods, 
primarily based on U-Net (Ronneberger et al., 2015) and similar architectures, often struggle 
with complex rural scenes where occlusions from buildings, waterways, and vegetation 
complicate road connectivity and geometry.

Generally, deep learning models can be  categorized into discriminative models and 
generative models. Discriminative models have advanced rapidly due to innovations such as 
backpropagation (BP) (Rumelhart et al., 1986) and Dropout (Zhang and Xu, 2024), In contrast, 
progress in generative models has been slower owing to challenges in model formulation and 
loss function definition. The development of this field gained momentum only after the 
introduction of a novel generative framework: Generative Adversarial Networks (GANs) 
(Goodfellow et al., 2020).
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A GAN is a deep learning methodology comprising at least two 
modules—a generator and a discriminator—that enhance their respective 
output quality and predictive capability through adversarial training. This 
approach represents one of the most promising methods for unsupervised 
learning on complex distributions. The primary challenge in GANs lies 
in training dynamics. Since GANs require simultaneous optimization of 
two modules, identifying compatible parameters and methodologies that 
enable joint convergence is critical. Effective training strategies can 
significantly reduce training difficulty, accelerate convergence, and 
improve final accuracy, whereas suboptimal approaches may result in 
mode collapse or complete training failure. Prior research has 
demonstrated GAN applications in image generation domains such as 
artistic painting (Wang et al., 2023). Road generation fundamentally 
constitutes an image generation task. Consequently, GANs also exhibit 
strong potential for road generation applications. Notably, Generative 
Adversarial Networks (GANs) have shown unique advantages in 
capturing intricate data distributions and recovering detailed structures, 
making them suitable for road extraction from noisy remote sensing 
imagery. Furthermore, incorporating feature detection techniques such 
as the Hough transform can enhance the model’s ability to capture 
geometric regularity and linear continuity inherent in road networks.

Hough transform (Romanengo et al., 2022) is an image feature 
detection method based on parameter-space voting mechanism. It was 
initially developed to detect straight lines in images, and later 
expanded to recognize arbitrary shapes such as circles and ellipses. Its 
core idea is to map geometric features from image space to parameter 
space and determine target parameters through voting.

In remote sensing and street view images, roads typically manifest as 
linear or curved structures exhibiting characteristics such as continuity 
and directionality. The Hough transform adapts effectively to these shapes 
by: extracting directional features, detecting roads with varying widths 
and curvatures, and integrating edge points to reconstruct complete road 
profiles. Traditional road extraction models, such as U-Net, employ Cross 
Entropy Loss (Mao et al., 2023) or Dice Loss (Milletari et al., 2016). These 
focus on pixel-level classification accuracy but struggle to constrain 
geometric rationality in output results. Integrating Hough transform into 
the loss function provides explicit constraints to guide model learning of 
global road structural features.

In order to improve the extraction accuracy, generalization, and 
robustness of field roads, this paper is inspired by PLGAN (Abdelfattah 
et al., 2023) and designs a multi-layer joint learning method UHGAN 
based on U-Net. Unlike standard U-Net or existing GAN hybrids, 
UHGAN employs a cascaded learning strategy: the Stage 1 generator 
produces an initial road mask using a hybrid objective combining cross-
entropy and Hough transform losses, emphasizing global geometric 
structure; the Stage 2 generator performs local refinement, repairing 
discontinuities and suppressing irrelevant noise, which helps U-Net 
network to further explore the geometric and directional features of roads 
and carry out fast extraction of high standard field roads.

The main contributions are as follows:
We propose UHGAN, a dual-stage GAN framework based on 

U-Net, which improves road extraction accuracy through adversarial 
training and multi-stage refinement.

We design a joint learning strategy where the Stage 1 generator 
captures coarse road geometry and the Stage 2 generator enhances 
connectivity and eliminates artifacts.

We introduce a Hough transform-based loss function to explicitly 
enforce geometric constraints, enabling more accurate detection of 
linear and curvilinear road features in high-noise environments.

2 Preparation

2.1 Theoretical framework of generative 
adversarial networks (GANs)

Generative Adversarial Networks (GANs) were proposed by 
Goodfellow et al. in 2014. Their core idea achieves data distribution 
modeling through adversarial competition between generators and 
discriminators (Goodfellow et al., 2014). This section systematically 
elaborates the fundamental theory and improvement methods 
of GANs.

The goal of generator G is to generate samples G (z) G (z) from 
the latent space z ∼ pz (z) that are similar to the true data distribution 
PDATA (x) PDATA (x), while discriminator DD needs to distinguish 
between the true data xx and the generated data G (z) G (z). The 
optimization objective of the original GAN is to minimize the 
adversarial loss between the generator and discriminator (Equation 1).
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However, the original GAN suffers from issues such as vanishing 
gradients and mode collapse. Researchers have subsequently proposed 
improvement solutions. For example, DCGAN introduces 
convolutional networks by replacing fully connected layers with 
strided convolutions, incorporates batch normalization (BatchNorm) 
for stable training, and adopts conditional generative adversarial 
networks that guide the generation process through conditional 
inputs. This expands GAN applications in controllable generation 
tasks. The GAN implemented in this study utilizes original remote 
sensing images and corresponding labels as conditional inputs for 
image generation.

GANs have demonstrated exceptional performance in domains 
including image generation (Liu et al., 2022) and image restoration 
(Huang et  al., 2023), Nevertheless, their training process exhibits 
sensitivity to hyperparameters and may produce artifacts like blurred 
details and texture distortions in complex scenes, requiring further 
improvement (Guo et al., 2022). Nevertheless, GANs’ ability to model 
high-frequency details and contextual relationships makes them 
highly suitable for recovering geometrically consistent road networks 
under noisy conditions.

2.2 The structural characteristics and 
development of U-net network

U-Net was proposed by Ronneberger et al. in 2015 and was 
initially applied to medical image segmentation tasks. Its distinctive 
encoder-decoder architecture with skip connections has established 
it as the mainstream framework for pixel-level prediction tasks. The 
classic structure comprises three components: encoders, decoders, 
and skip connections. The encoder extracts multi-scale features 
through layered convolutions and downsampling, compressing 
spatial dimensions. Simultaneously, the decoder restores spatial 
resolution via transposed convolution or upsampling, fusing feature 
maps from corresponding encoder layers through skip connections 
to mitigate gradient vanishing. These connections integrate shallow 
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and deep information, significantly enhancing pixel-level 
localization accuracy.

U-Net demonstrates strong performance in applications including 
medical image segmentation (Isensee et al., 2021) and remote sensing 
image processing (Cui et al., 2023). However, its substantial parameter 
count may incur high computational costs, and edge localization for 
low-contrast targets remains challenging. In particular, U-Net alone 
may struggle to maintain road connectivity under heavy occlusion or 
complex background noise. Integrating U-Net with adversarial 
training and geometric constraints—as proposed in our UHGAN 
framework—helps overcome these limitations by enhancing structural 
coherence and suppressing false positives.

2.3 The motivation and method of 
combining U-net and GAN

The combination of U-net’s pixel-level generation capability and 
GAN’s adversarial training mechanism provides a novel approach for 
image-to-image generation tasks: U-Net serves as the generator, with 
skip connections transmitting local details to the decoder, addressing 
the detail loss limitation in traditional CNN generators like 
DCGAN. The encoder-decoder structure simultaneously models 
global semantics and local textures, making it suitable for image 
restoration and super-resolution tasks (Han et al., 2022). Using the 
Pix2Pix framework (Tahmid et  al., 2023), t the U-Net generator 
combines with a PatchGAN discriminator to learn image mapping 
relationships through paired data. For scenarios lacking paired data, 
introducing cycle consistency loss (Zhu et al., 2017) enables cross-
domain image generation when integrated with U-net.

3 Introduction to UHGAN model

In this section, we  will introduce the UHGAN. We  will first 
provide an overview of our proposed method, and then introduce 
joint learning, GAN neural networks, and Hough transform loss in 
the following summary.

3.1 Overview

In order to enhance the model’s road extraction capability and 
reduce accuracy degradation from discontinuities or isolated points, 
we designed a two-stage joint training framework. While individual 
components such as GANs, PatchGAN, and cascaded U-Net have been 
explored in prior work, the novelty of UHGAN lies not merely in their 
combination, but in the structured and goal-oriented integration of a 
differentiable Hough transform loss within a dual-phase generative 
adversarial framework, explicitly designed to address the geometric and 
topological challenges of farmland road extraction. Unlike PLGAN 
(Abdelfattah et al., 2023) and Pix2Pix (Tahmid et al., 2023) which use 
geometric priors only in post-processing or as non-differentiable 
regularizers, UHGAN integrates a differentiable Hough transform loss 
directly into the adversarial training process. This allows the model to 
directly learn globally consistent road structures during adversarial 
training. Furthermore, the proposed two-stage refinement strategy is 
functionally specialized: the first stage focuses on recovering 

geometrically plausible road layouts under strong structural constraints, 
while the second stage acts as a connectivity-enhancing repair network 
that is trained purely under reconstruction loss to eliminate fractures and 
noise without compromising semantic consistency. This targeted division 
of structural generation and topological refinement—guided by a 
purpose-built hybrid loss system—has not been previously established 
in rural road extraction tasks, and represents a novel architectural 
paradigm that effectively balances pixel accuracy, geometric regularity, 
and connectivity integrity. First, we employ the U-Net network as the 
base architecture for our Stage 1 generator for preliminary training. 
Original remote sensing images and their corresponding labels serve as 
inputs to produce an initial prediction. Subsequently, we use the original 
labels combined with this Stage 1 prediction as new inputs, feeding them 
through a second U-Net generator to output the final prediction. Stages 
are trained jointly each iteration, gradients flow only within each stage 
(Stage 1 via adversarial + geometric losses; Stage 2 via L1), as Stage 1 
outputs are detached.

During Stage 1 GAN training, we implemented a U-net-based 
generator and incorporated Hough transform loss alongside pixel 
accuracy loss and adversarial loss. This multi-objective optimization 
scheme simultaneously addresses multiple aspects of road extraction, 
yielding results that better approximate real road visual characteristics. 
However, GAN limitations prevent complete detection and 
reconstruction of missing or isolated points. Therefore, we introduced 
a second U-Net layer to teach the model both road structure 
determination and isolated point removal. The model architecture is 
shown in Figure 1:

3.2 Multi level loss function combining 
Hough transform characteristics

Hough transform is a classical feature detection method, first 
proposed by Paul Hough in 1962 and later refined to its modern form 
by Duda and Hart (1972). It effectively detects parameterized shapes 
in images, particularly lines, circles, and ellipses. In road extraction 
tasks, Hough transform proves especially valuable since road networks 
typically exhibit structures with distinct linear characteristics. This 
technique transforms points from image space to parameter space 
through parametric mapping. For line detection, the Hough transform 
employs polar coordinate representation (Equation 2):

	 ( ) ( )ρ θ θ= +·cos ·sinx y 	 (2)

Among them:
ρ represents the vertical distance from the coordinate origin to the 

straight line.
θ represents the angle between the vertical line and the x-axis.
In this way, each point (x, y) in the image space is mapped to a 

sine curve in the Hough parameter space. The curves of collinear 
points in the parameter space will intersect at the same point (ρ, θ), 
which corresponds to a straight line in the image.

This study proposes a differentiable Hough transform-based loss 
function to enhance deep learning models’ linear feature extraction 
capability for roads. Traditional Hough transform, as a classical line 
detection algorithm, is widely adopted in computer vision and deep 
learning (Song et al., 2024). However, its discrete voting mechanism 
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is inherently non-differentiable and incompatible with gradient-based 
optimization frameworks, necessitating adaptation.

To integrate the geometric prior of the Hough transform into our 
end-to-end deep learning framework, we address the core challenge 
of non-differentiability in the classical voting process. Our 
implementation details are as follows:

3.2.1 Forward pass: standard Hough transform
Given a predicted probability map ( )×∈  0,1 H WP  and a binary 

ground truth mask.
( )×∈0,1 H WG , we first obtain a binary prediction mask M  for the 

forward computation (Equation 3):

	 >  
=

,, 0.5i ji j PM I
	

(3)

Where I  is the indicator function. This binarization step is 
non-differentiable.

Each active pixel ( ),i j  (where { } =_ , 1M i j ) is mapped into the 
Hough parameter space. For line detection, we  use the normal 
representation (Equation 4):

	 ( ) ( )ρ θ θ= +·cos ·sini j 	 (4)

discretize the parameter space: the angle θ  is partitioned into θN  
bins (e.g., 180 bins from 0° to 180°), and the radius ρ is partitioned 
into ρN  bins with a resolution of ρ∆  (e.g., 1 pixel), up to a maximum 
value ρ = +2 2

max / 2H W .

An accumulator matrix θ ρ×∈ N NAccum R  is constructed by casting 
votes. For each active pixel ( ),i j  and for each discrete angle θk , 
we compute the corresponding ρ value, determine its bin index l, and 
increment the accumulator (Equation 5):

	 = +      , , 1Accum k l Accum k l 	 (5)

This process is performed for both the predicted mask M and the 
ground truth G, yielding predAccum  and targetAccum .

The Hough loss houghL  is then computed as the L1-norm 
difference between the two accumulator matrices, averaged over the 
batch (Equation 6):

	

( )

( )
θ ρ

θ ρ = = =

  =
−   

∑ ∑ ∑1 1 1

,1
· · ,

b
B N N pred

hough b k l b
target

Accum k l
L

B N N Accum k l
	

(6)

Where B  is the batch size.

3.2.2 Backward pass: gradient approximation via 
STE

The critical step for differentiability lies in the backward pass. The 
gradient of the loss houghL  with respect to the predicted probabilities 
P  must be  computed. The non-differentiable operation is the 
binarization [ ]>= 0.5PM I .

We approximate the gradient using the Straight-Through Estimator 
(STE) (Huh et al., 2023). The STE defines a surrogate gradient for the 

FIGURE 1

Architecture of the proposed UHGAN framework compared with a standard U-Net. UHGAN adopts a dual-stage design: Stage 1 employs a GAN 
generator with adversarial, segmentation, Hough-transform, and geometric consistency losses to capture global road structures, while Stage 2 uses a 
refinement U-Net to repair discontinuities and suppress noise. This joint training strategy ensures both spatial structural consistency and high 
prediction accuracy.
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thresholding function. Specifically, we treat the thresholding function as 
an identity function during backpropagation (Equation 7):

	
∂ ∂

≈
∂ ∂

L L
P M 	

(7)

The gradient ∂
∂

L
M

 can be derived by viewing the Hough transform 
as a linear voting operation. The chain rule is applied as (Equation 8):

	

θ ρ

= =

∂  ∂ ∂  =
∂ ∂ ∂  

∑ ∑1 1, ,

,
·

,
N N
k li j i j

Accum k lL L
M Accum k l M 	

(8)

Where ∂
∂   ,

L
Accum k l

 is simply the sign of the difference 

( )−      , ,pred targetAccum k l Accum k l  from the L1 loss, and 
∂   

∂ { , ]

,

i j

Accum k l
M

 is 1 if the pixel ( ),i j  voted for bin ( ),k l  and 0 otherwise. 

In practice, this gradient is efficiently computed by a reverse Hough 

transform: the gradient 
∂

∂
L

Accum  is scattered back onto the image 
coordinates ( ),i j  along the same lines that were used in the 
forward vote.

3.2.3 Computational overhead analysis
The introduction of the Hough loss adds non-negligible but 

manageable computational overhead. The complexity of the Hough 
transform is ( )θ·activeO N N , where activeN  is the number of active 
pixels. For a typical ×1024 1024 image and θ =180N , the forward and 
backward passes for the Hough loss introduce an approximately 20% 
increase in the per-epoch training time compared to a baseline using 
only pixel-wise losses. We  deem this cost acceptable given the 
significant improvement in geometric accuracy and reduction in road 
discontinuities, as demonstrated in our results.

3.2.4 Comparative cost vs. pixel-level losses
Unlike pixel-wise losses (e.g., BCE, L1) which operate at the native 

image resolution ( )×H W , the Hough loss operates on a drastically 
down-sampled parameter space ( )θ ρ×N N . For example, with 
= =1024H W  and θ =180N , ρ ≈ 725N , the Hough space is over 8 

times smaller than the image space. This makes the memory footprint 
of the Hough loss itself negligible. The primary cost is the voting 
procedure, which is highly parallelizable. The Hough loss is therefore 
computationally cheaper than many perceptual or style losses used in 
image generation tasks, while providing a strong, global geometric 
constraint that pixel losses inherently lack.

Unlike pixel-level losses such as L1 loss (Terven et al., 2025) 
and least squares loss (Wang et al., 2024), Hough transform loss 
operates in parameter space. This enables focus on linear structures 
with particular sensitivity to road-like features, effectively guiding 
models to learn geometric patterns. Simultaneously, it provides a 
global perspective that considers both local pixel accuracy and 
overall linear layout correctness. Through parameter space 
comparison, models generate more continuous and complete 
linear structures. Table  1 compares Hough transform loss 
advantages versus traditional losses for road extraction:

In our model, the Hough transform loss is combined with other 
loss functions, utilizing the complementary properties of different 
loss functions (Figure 2). Adversarial loss causes the generated road 
to appear realistic, serving as an implicit representation of the Hough 
transform in the discriminator network. This loss captures the 
geometric characteristics of the road through adversarial learning 
mechanisms. The discriminator network naturally develops 
sensitivity to linear features during the learning process, which is 
highly consistent with the line detection principle of the Hough 
transform. Specifically, when distinguishing between real roads and 
generated roads, the discriminator automatically learns to recognize 
typical geometric patterns of roads, such as straight lines, parallel 
lines, and regular intersections, which are precisely the features that 
the Hough transform focuses on.

3.3 Stage 1

Our model enhances learning capability through dual neural 
network definition. In the Stage 1, we  employ a standard U-Net 
generator trained against its discriminator, as shown in Figure 3. The 
U-Net architecture improves upon FCN (Fully Convolutional 
Network) (Long et al., 2015) and was initially applied to biological and 
medical image segmentation. It efficiently utilizes low-level image 
features to achieve accurate, rapid target extraction with limited 
training data.

The generator adopts the classic U-Net architecture comprising 
symmetrical encoder and decoder components:

Encoder section: Comprises 5 encoding blocks, each containing 
two 3 × 3 convolutional layers, batch normalization, and ReLU 
activation, followed by max pooling downsampling. Processing the 
input 3-channel satellite image, the encoder progressively extracts 
features while reducing spatial dimensions, with channel depths 
sequentially increasing to 64, 128, 256, 512, and 1,024.

Consists of 4 decoding blocks, each performing upsampling (via 
transposed convolution or bilinear interpolation) followed by two 

TABLE 1  Characteristics of different losses.

Name of loss Pixel-level accuracy Linear structure 
preservation

Robustness to noise Global consistency

L1/L2 loss High Low Low Low

BCE LOSS High Low Middle Low

Dice loss Middle Middle Middle Middle

Hough loss Middle High High High

Adv loss Low Middle High High
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3 × 3 convolutional layers. During decoding, skip connections 
concatenate same-level encoder features to preserve high-resolution 
spatial information. Channel depths decrease sequentially to 512, 256, 
128, and 64.

Output layer: Produces a single-channel binary road mask 
through 1 × 1 convolution and Sigmoid activation.

The skip connections in U-Net directly transmit high-resolution 
features from the encoder to the decoder, effectively mitigating 
information loss in deep networks and preserving road boundary 
accuracy. The discriminator employs a PatchGAN architecture (Chen 

et al., 2023) to perform patch-level authenticity evaluation on the 
input image:

The discriminator receives satellite images and corresponding road 
masks (either real or generated) as inputs, initially concatenating them 
along the channel dimension. The network comprises 5 convolutional 
layers with channels of 64, 128, 256, and 512, respectively. It ultimately 
outputs a two-dimensional feature map representing the authenticity 
score for each patch. Finally, the Sigmoid activation function (Elfwing 
et  al., 2018) maps these scores to the 0–1 range, indicating the 
discriminator’s confidence in the authenticity of each patch.

FIGURE 2

Illustration of the differentiable Hough-transform loss. Input features are projected into the Hough parameter space, where vote accumulation 
matrices are computed for both the ground truth mask and the predicted mask. The L1-norm difference between these matrices forms the Hough 
loss, which enforces linear and curvilinear structural consistency during training.

FIGURE 3

Workflow of the Stage 1 adversarial training process. The U-Net–based generator produces preliminary road masks from input satellite images, while 
the PatchGAN discriminator evaluates their realism against ground-truth masks. In parallel, the predicted outputs are passed through the Hough-
transform module to calculate geometric loss. The total loss function combines adversarial, segmentation, Hough-transform, and geometric 
consistency terms, guiding the generator toward both pixel-level accuracy and global structural fidelity.
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PatchGAN’s design concept segments an image into multiple 
overlapping patches for discrimination, rather than assigning a single 
true/false score to the entire image. This local discrimination 
mechanism enables the generator to focus more effectively on local 
road details and textures, thereby enhancing road boundary accuracy.

3.4 Stage 2

Inspired by DDU-Net (Wang et al., 2022), the second stage focuses 
on repairing discontinuities and suppressing isolated noise that 
remain after Stage 1. Unlike the first-stage GAN generator, this 
module is a simplified U-Net that receives the preliminary single-
channel road mask from Stage 1 as input and outputs a refined mask 
of the same size. Rather than introducing new image-level features, it 
operates as a secondary repairer, concentrating on edge refinement, 
gap filling, and improving road connectivity.

To decouple the two stages, the output of Stage 1 is detached from 
the computation graph and directly fed into Stage 2, ensuring stable 
optimization without gradient interference. Training employs only 
supervised L1 loss against the ground-truth mask, deliberately 
excluding adversarial objectives to avoid unnecessary artifacts. In this 
cascaded design, Stage 1 emphasizes coarse segmentation with 

geometric constraints, while Stage 2 complements it by refining details 
and repairing local structures. Together, they form a dual-level 
optimization framework that significantly improves overall road 
continuity and integrity.

4 Data and training

4.1 Data source and preprocessing

Due to the scarcity of rural roads in most current remote sensing 
datasets designed for cities, a specialized dataset, WHU RuR+ (Wang 
et al., 2025) is required for model training. WHU RuR + is a large-
scale, high-resolution remote sensing dataset for rural road extraction. 
It contains 27,770 pairs of 1,024 × 1,024 satellite images with 0.3 m 
resolution and corresponding road annotations, covering 2620.71 km2 
of rural areas in central China. A comprehensive analysis was 
conducted on the performance of state-of-the-art deep learning-based 
road extraction methods using the WHU RuR + dataset. Experimental 
results demonstrate that WHU RuR + presents significant challenges 
for large-scale rural road extraction. Furthermore, the dataset meets 
application requirements for rural road construction and exhibits 
substantial application potential. Sample data is shown in Figure 4.

FIGURE 4

Preview of dataset images.
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To address the specific requirements and computational constraints 
of extracting roads in high-standard farmland, a targeted data selection 
strategy was applied to the WHU RuR + dataset. Although the dataset 
is large-scale (containing 27,770 images in total), a significant portion 
of the images include irrelevant objects such as houses, building 
complexes, and urban roads, as shown in Figure  5, which are not 
characteristic of farmland environments. Some images also suffer from 
severe occlusions or non-road interference, making them unsuitable 
for representing the road morphology and background features in 
“high-standard farmland” scenarios. Therefore, instead of using the 
entire dataset, we manually selected 120 images with typical farmland 
road characteristics, minimal occlusion, and high label quality for 
training, along with another 80 images for testing.

This strategy, while limiting the scale of the training data, was 
adopted based on the following considerations:

Task Specificity: Roads in high-standard farmland exhibit distinct 
geometric structures and background features. The selected subset is 
more representative of this application scenario.

Computational Efficiency: The dual-phase GAN combined with 
Hough transform loss involves high computational complexity. Large-
scale training is impractical under limited computational resources 
(e.g., a single RTX 4090 GPU).

Noise Control: By excluding samples with significant 
non-farmland noise, the model can focus more effectively on the 
target features, thereby improving generalization in real 
farmland environments.

FIGURE 5

Data containing house noise.
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To mitigate overfitting caused by insufficient data during 
network training (Xiao et  al., 2022), we  applied a series of 
augmentation methods: RandomResizedCrop was used with a 
probability of 100% at each iteration, with a crop scale ranging 
from 0.8 to 1.0 to simulate multi-scale training; both 
RandomHorizontalFlip and RandomVerticalFlip were applied 
with the default PyTorch probability of 50% to improve directional 
invariance; RandomRotation was performed with 100% 
probability within a range of −30 to +30 degrees; and ColorJitter 
was applied with 100% probability, adjusting brightness, contrast, 
and saturation by ±20%, and hue by an offset of 0.1 radians, using 
bilinear interpolation to preserve color consistency. Finally, 
normalization was carried out using precomputed channel-wise 
means and standard deviations. Although the selected subset is 
relatively small, we  mitigated the risk of overfitting through 
comprehensive data augmentation techniques—including random 
cropping, rotation, and color enhancement—which effectively 
increased the diversity of the training samples. Experimental 
results show that the model still achieves competitive performance 
on the test set, indicating that the quality and representativeness 
of the selected data compensate to some extent for the limited 
quantity. Nonetheless, we  acknowledge that the generalization 
capability of the method under large-scale and highly complex 
environments requires further improvement. Future work will 
involve incorporating cross-regional data and introducing domain 
adaptation methods to enhance model robustness. We have open-
source the specific code and dataset: https://github.com/
badao162/UHGAN.

Although we  excluded images with severe non-farmland 
structures (e.g., building complexes) to establish a baseline for typical 
farmland road extraction, we  acknowledge that this limits the 
evaluation of model robustness in more general rural scenes. Our 
preliminary analysis indicates that performance degrades in such 
scenarios primarily because dense buildings often introduce severe 
occlusions, shadows, and complex intersections that break the 
continuity of road structures, challenging the model’s ability to infer 
global connectivity. Future work will explicitly test UHGAN’s 
robustness on diverse rural scenes containing non-farmland elements 
and explore architectural enhancements to better handle 
these complexities.

4.2 Parameter setting and training

The experiments were implemented in Python 3.8 with PyTorch 
on a NVIDIA GeForce RTX 4090 GPU. All input satellite images were 
resized to 1,024 × 1,024 pixels with three channels. A batch size of 1 
was used to accommodate the high resolution of the data.

For the Stage 1 GAN, the generator was trained with the Adam 
optimizer (learning rate = 0.0013, betas = (0.5, 0.999)), while the 
discriminator used a smaller learning rate of 0.0003. For the Stage 
2 refinement U-Net, the generator was optimized with Adam at a 
learning rate of 0.00013. To stabilize training, a cosine annealing 
learning rate scheduler ( maxT 120 epochs, mineta 0) was applied to all 
optimizers. The loss functions consisted of: Adversarial loss based 
on binary cross-entropy (BCE); segmentation loss; Hough 
transform loss; Geometric consistency loss. The training process 

lasted for 120 epochs, with early stopping when losses plateaued. 
Data loading was handled with the PyTorch DataLoader, using 
shuffled mini-batches.

To maintain road linearity and directional consistency, the 
Hough transform integrated with adversarial and segmentation 
losses constitutes part of the loss function in the model’s first 
stage. Predicted and ground truth masks are transformed into 
Hough parameter space, where their L1 distance is computed. 
This approach enhances preservation of road straight-line 
characteristics and directional coherence, focusing the model on 
road geometry rather than texture details. Additionally, geometric 
consistency loss improves invariance to geometric transformations, 
boosting road extraction robustness. The model applies 90° 
rotation to input images, processes them through the same 
generator, then inversely transforms the output. Minimizing the 
difference between original and inverse-transformed results 
ensures consistent road extraction across orientations. The Hough 
transform loss formula follows (Equation 9):
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Among them, B is the ( ) ( ) ( ) ( )θ θ−, ,b b
targetpredAccum r Accum r  

accumulator of the predicted mask and the true mask in the Hough 
space, while B is the batch, the Θ number R  of angle intervals, and the 
maximum radial distance.

The geometric consistency loss is as follows (Equation 10):
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Among them, G is the generator network, T is the geometric 
transformation, and −1T  is the inverse transformation.

The total loss is as follows (Equation 11):
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Among them, there are weighting coefficients λn (n = 1, 2, 3,4). 
Due to the limitation of training time, we adopted a small-scale grid 
search to determine the optimal hyperparameter configuration. 
Experimental results revealed that an excessively large weight for the 
geometric consistency loss actually led to a decline in model 
performance. Upon closer analysis, we  attribute this to the 
fundamental differences between the optimization objectives guided 
by different loss functions.

The geometric consistency loss is designed to enhance the model’s 
robustness to geometric transformations (e.g., rotation and scaling), 
with its core constraint being that local pixels should remain consistent 
before and after transformation. However, the primary objective of the 
road generation task is to produce structurally coherent and well-
connected road networks, which places greater emphasis on global 
topological correctness rather than strict pixel-level alignment. An 
overly large geometric consistency loss forces the generator to 
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over-optimize local pixel alignment—for instance, enforcing 
unreliable correspondences in occluded or shadowed regions. This 
optimization direction diverges from high-level semantic goals, 
leading the model to generate overly conservative results that lack the 
ability to infer reasonable global road structures, thereby impairing 
connectivity and practical utility.

In contrast, the Hough loss explicitly incorporates prior 
knowledge of road geometry. By encouraging the model to 
generate responses aligned with line and curve features, it directly 
constrains the structural form of the output to better match the 
orientation and connectivity patterns of real roads. The adversarial 
loss guides the generator toward visually plausible global 
structures, while the segmentation loss provides pixel-level 
supervision. Within this framework, the geometric consistency 
loss should serve as an auxiliary component, with its weight kept 
relatively small to avoid constraining the model’s high-level 
semantic generation capability.

Therefore, we set λ4 to a small value (0.001), which preserves a 
certain degree of geometric smoothness without undermining the 
model’s ability to capture global topological structures. The remaining 
loss weights—including the adversarial loss λ1, segmentation loss λ2, 
and Hough loss λ3—were tuned via grid search within the range {0.1, 
0.5, 1}. This process yielded 27 experimental configurations in total, 
as illustrated in the Table 2. Finally, we selected λ1, λ2, and λ3 as {0.1, 
0.1, 1}.

The second part of the model focuses on detail repair, employing 
pixel-level reconstruction loss to guide defect correction in the first-
stage outputs. This stage directly compares pixel-level differences 
between the refined output and the ground truth mask. Using the L1 
norm instead of the L2 norm reduces outlier influence, better 
preserves edge features, and prioritizes repairing broken road 
segments—optimizing connectivity and smoothness. Adversarial loss 
is deliberately excluded from this stage to prevent introduction of 
unnecessary high-frequency artifacts.

4.3 Evaluation metrics

To quantitatively evaluate the performance of the model, this 
paper employs Precision, Recall, and F1-Score as the core evaluation 
metrics. They are defined as follows Precision, Recall and F1-Score. 
These complementary metrics comprehensively assess the accuracy, 
completeness, and overall performance of the model in the farmland 
road extraction task. Detailed experimental results and analysis are 
presented in Section 5.

5 Conclusion

5.1 Result analysis

Using the constructed network to perform road extraction 
operations on the detection area, the results are shown in Figure 6.

The first part of the joint learning model extracts accurate road 
geometries that align well with actual road contours. However, these 
extraction results contain numerous isolated points and discontinuities. 
The second model component specifically addresses these discontinuities 
and isolated points, achieving strong integrity without requiring 
additional repair algorithms. Both models maintain road trajectories 
consistent with actual roads, yielding smooth edges and reduced noise. 
Nevertheless, performance degrades noticeably in loose cultivated land 
areas. In these regions, road features lack sufficient visual clarity, are 
frequently occluded by vegetation, and often blend with surrounding 
field textures. Such conditions lead to weak feature representation in 
both the spectral and structural domains, which in turn reduces the 
model’s ability to distinguish roads from non-road areas. UHGAN is 
particularly sensitive to this problem because its adversarial component 
emphasizes the generation of visually plausible structures. When feature 
cues are ambiguous or suppressed, the generator tends to produce locally 
consistent textures at the expense of global structural correctness, 
resulting in missing or fragmented road segments. In other words, the 
model overfits to the dominant background patterns and fails to 
reconstruct the underlying road topology. After processing through the 
second model component, these discontinuities and edge noise exhibit 
effective restoration, as demonstrated in Figure 7.

The comparative experimental results clearly demonstrate the 
performance differences among various methods in the task of road 
extraction. As shown in Figure 8, Our model demonstrates improved 
performance compared with baseline methods. In the Stage 1, by 
incorporating adversarial learning together with a Hough transform–
based geometric constraint, the model learns to better capture the 
linear structural characteristics of roads. Compared with conventional 
segmentation networks (such as U-Net, UNet++, and Segformer), the 
Stage 1 results effectively reduce road omissions and successfully 
capture most of the main road segments. However, in some complex 
regions, a considerable number of isolated points and broken 
segments remain, leading to insufficient overall connectivity.

In the Stage 2, we  adopt a joint training strategy that further 
refines the results while preserving the structural constraints 
introduced in the Stage 1. This strategy significantly alleviates the 
shortcomings of the Stage 1: isolated points and discontinuities are 
greatly reduced, road connectivity and integrity are enhanced, and the 

TABLE 2  Grid parameter search results.

λ1 λ1 = 0.1 λ1 = 0.5 λ1=1

λ λ, 23 λ2 = 0.1 λ2 = 0.5 λ2 = 1 λ2 = 0.1 λ2 = 0.5 λ2 = 1 λ2 = 0.1 λ2 = 0.5 λ2 = 1

λ3  = 0.1 0.756 0.751 0.747 0.749 0.754 0.743 0.752 0.748 0.732

λ3  = 0.5 0.764 0.750 0.738 0.756 0.752 0.758 0.761 0.753 0.761

λ3  = 1 0.747 0.754 0.775 0.745 0.747 0.772 0.749 0.752 0.767

The first row corresponds to the parameter selection for the adversarial loss, the second row represents the parameter selection for the segmentation loss, and the first column indicates the 
parameter selection for the Hough loss.
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FIGURE 6

Model experiment results.

FIGURE 7

Poor model experimental results.

FIGURE 8

Comparison of road extraction results obtained by different methods. From left to right: input images, ground-truth labels, and the results of our 
proposed model (first 1 and Stage 1) as well as several baseline networks. In the Stage 1, the incorporation of adversarial learning and Hough transform 
loss enables the model to preserve the linear road structure and reduce omissions, although isolated points and discontinuities are still observed. In the 
second stage, the joint training strategy further alleviates these issues, leading to smoother boundaries, improved connectivity, and overall results that 
are more consistent with the ground truth compared to other competing approaches.
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extracted boundaries appear smoother. Overall, the results are more 
consistent with the ground truth. Compared with other competing 
methods, our model exhibits stronger robustness and reliability in 
capturing fine road segments, maintaining structural continuity, and 
improving boundary accuracy, thereby providing a more realistic 
representation of road networks in remote sensing imagery.

5.2 Comparative experiment

To effectively evaluate extraction results, we employed precision, 
recall, and F1 score metrics on the preprocessed WHU RuR + dataset. 
Precision, Recall, and F1 Score constitute core classification model 
evaluation metrics, collectively quantifying identification accuracy 
and completeness for positive-class samples. Precision measures 
prediction exactness by calculating the proportion of true positives 

among predicted positives 
 
  +   

TP
TP FP , preventing false alarms. 

Recall evaluates identification completeness through the proportion 

of actual positives correctly identified
 
  +   

TP
TP FN , minimizing 

missed detections. The F1 score—harmonic mean of precision and 

recall—is calculated as 
×

×
+

2 Precision Recall
Precision Recall. Ranging from 0 to 1, this 

balanced metric provides a comprehensive performance indicator 
particularly valuable for imbalanced data distributions.

These metrics exhibit complementary characteristics: excessively 
high precision may reduce recall (over-conservatism), while high 
recall may compromise precision (over-aggression). The F1 score 
optimizes the balance between them, achieving high values only when 
both precision and recall are strong. To benchmark our model’s 
superiority, we conducted systematic comparisons against established 
models including U-Net, ResNet (Takahashi et al., 2022), UNet++ 
(Zhou et al., 2018), SegFormer (Xie et al., 2021), LinkNet (Chaurasia 
and Culurciello, 2017), and HRNet (Sun et al., 2019). Experiments 
strictly followed identical train/validation/test splits, preprocessing 
procedures, and evaluation metrics (Precision, Recall, F1 Score). 
Results are presented in Table 3:

UHGAN achieves the highest average performance among the 
compared methods, with the highest F1-score (0.789 ± 0.009), strong 
precision (0.826 ± 0.016), and the best recall (0.757 ± 0.013), 
demonstrating that the dual-stage refinement strategy combined with 
Hough-transform–based global geometric constraints effectively 
enhances both road continuity and integrity. However, the analysis of 

confidence intervals reveals that UHGAN is not always the most stable 
model. For example, although its mean recall is the highest, the interval 
(±0.013) overlaps with that of U-Net (0.753 ± 0.012), and models such 
as LinkNet and HRNet exhibit narrower precision intervals, reflecting 
more consistent but less accurate predictions. This phenomenon arises 
because UHGAN emphasizes global geometric consistency rather than 
purely local pixel fitting; while this improves average structural 
accuracy, it also makes training more sensitive to dataset limitations 
and loss-weight tuning, resulting in slightly higher variance. In 
summary, UHGAN provides the strongest overall balance between 
precision and recall, but its superior mean performance comes at the 
cost of reduced stability in certain cases—a limitation that can 
be mitigated in future work through larger-scale training (Shen et al., 
2024) and refined optimization strategies (Zheng et al., 2025).

To verify the effectiveness of each component in the two-stage joint 
training framework (UHGAN) proposed in this paper, we designed a 
systematic ablation experiment (the results are shown in Table 4).

Our full model, UHGAN, which combines a Stage 1 GAN with 
Hough-transform Assembling loss (Assembling loss = 
λ λ λ λ+ + +1 2 3 4adv set hough geoL L L L ) and a Stage 2 refinement 
U-Net, achieves the best overall balance, with a precision of 0.826, 
recall of 0.757, and F1-score of 0.789. Removing the Stage 2 refinement 
(Union-GAN without Stage 2 refinement) leads to a drop in recall to 
0.732 and a slight decrease in F1-score to 0.777, highlighting the 
importance of the second-stage module in maintaining road continuity 
and eliminating isolated fragments. When the Hough-transform 
Assembling loss is removed while retaining the Stage 2 refinement 
[GAN without Assembling loss (Assembling loss = 
λ λ λ λ+ + +1 2 3 4adv set hough geoL L L L )], the model achieves a 
precision of 0.801 ± 0.016 and a recall of 0.757 ± 0.015, resulting in an 
F1-score of 0.778 ± 0.010. Compared with UHGAN, the slightly lower 
F1-score indicates that the Assembling loss plays a critical role in 
capturing global structural information and maintaining balanced 
performance, preventing the model from overfitting to local features. 
The simplest baseline, which omits both the refinement stage and the 
Assembling loss (GAN (no refinement, no Assembling loss)), shows 
the most severe precision–recall imbalance, with recall dropping to 
0.680 and F1-score sharply decreasing to 0.743, confirming that neither 
component alone is sufficient for robust performance. Overall, these 
ablation results demonstrate the complementary effects of the two 
design choices: the Stage 1 GAN with Assembling loss enforces global 
geometric consistency, while the Stage 2 refinement U-Net repairs 
discontinuities and suppresses noise, together enabling coherent and 
continuous road extraction with superior structural integrity 
(Equation 12).
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5.3 Future work

Although the UHGAN model shows competitive results in high-
standard farmland road extraction—particularly in maintaining road 
geometric continuity and suppressing noise—several limitations 
remain, leaving room for future exploration. First, constrained by 
computational resources and data availability, this study was 

TABLE 3  Comparison experiment with other experiments.

Method Precision Recall F1

UHGAN 0.826 ± 0.016 0.757 ± 0.013 0.789 ± 0.009

U-Net 0.759 ± 0.010 0.753 ± 0.012 0.756 ± 0.006

Resnet 0.798 ± 0.020 0.731 ± 0.031 0.762 ± 0.011

Unet++ 0.771 ± 0.013 0.724 ± 0.019 0.747 ± 0.018

SegFormer 0.776 ± 0.023 0.744 ± 0.034 0.760 ± 0.010

LinkNet 0.804 ± 0.011 0.709 ± 0.011 0.754 ± 0.005

HRNet 0.813 ± 0.015 0.700 ± 0.021 0.752 ± 0.007
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conducted on a relatively small manually curated subset of 200 images. 
While data augmentation was employed to mitigate overfitting risks, 
the model’s generalization ability in larger-scale and more complex 
farmland scenarios still requires further validation. Second, the model 
continues to struggle with road segments subject to severe occlusion 
or those exhibiting strong similarity to background textures. In 
particular, in areas with loose soil or dense vegetation coverage, the 
model’s perceptual and reasoning capabilities remain inadequate.

Future research will focus on the following directions: 1. 
constructing larger-scale, multi-regional, and multi-temporal 
farmland road datasets (Shen et al., 2025), combined with domain 
adaptation techniques (Zhang et  al., 2022) to enhance robustness 
under varying geographic environments and imaging conditions; 2. 
exploring Transformer-based architectures (Wang et  al., 2024) to 
replace or augment the current U-Net backbone, thereby improving 
the modeling of long-range dependencies and global contextual 
information (Chen et al., 2023); 3. further refining the differentiable 
implementation of the Hough loss to better accommodate curved 
roads and complex topological structures; 4. advancing toward real-
time applications, such as integration into agricultural drones 
(Askarzadeh et al., 2025) or mobile terminal systems (Yu et al., 2023), 
to provide instant and high-precision road information in support of 
precision agriculture and rural planning.
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