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Hough-transform constraints for
accurate farmland road extraction
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Introduction: Traditional methods for farmland road extraction, such as U-Net,
often struggle with complex noise and geometric features, leading to discontinuous
extraction and insufficient sensitivity. To address these limitations, this study proposes
a novel dual-phase generative adversarial network (GAN) named UHGAN, which
integrates Hough-transform constraints.

Methods: We designed a cascaded U-Net generator within a two-stage GAN
framework. The Stage 1 GAN combines a differentiable Hough transform loss
with cross-entropy loss to generate initial road masks. Subsequently, the Stage
2 U-Net refines these masks by repairing breakpoints and suppressing isolated
noise.

Results: When evaluated on the WHU RuR+rural road dataset, the proposed
UHGAN method achieved an accuracy of 0.826, a recall of 0.750, and an F1-
score of 0.789. This represents a significant improvement over the single-stage
U-Net (F1 = 0.756) and ResNet (F1 = 0.762) baselines.

Discussion: The results demonstrate that our approach effectively mitigates the
issues of discontinuous extraction caused by the complex geometric shapes and
partial occlusion characteristic of farmland roads. The integration of Hough-
transform loss, an technique that has received limited attention in prior studies,
proves to be highly beneficial. This method shows considerable promise for
practical applications in rural infrastructure planning and precision agriculture.

KEYWORDS

generative adversarial network, Hough transform, breakpoint repair, farmland road
extraction, semantic segmentation

1 Introduction

High-standard farmland is characterized by its concentration, contiguity, and supporting
infrastructure, including field roads that are essential for agricultural production and
management. The accurate extraction of road networks from such areas is critical for
enhancing construction planning and operational efficiency. However, existing methods,
primarily based on U-Net (Ronneberger et al., 2015) and similar architectures, often struggle
with complex rural scenes where occlusions from buildings, waterways, and vegetation
complicate road connectivity and geometry.

Generally, deep learning models can be categorized into discriminative models and
generative models. Discriminative models have advanced rapidly due to innovations such as
backpropagation (BP) (Rumelhart et al., 1986) and Dropout (Zhang and Xu, 2024), In contrast,
progress in generative models has been slower owing to challenges in model formulation and
loss function definition. The development of this field gained momentum only after the
introduction of a novel generative framework: Generative Adversarial Networks (GANs)
(Goodfellow et al., 2020).
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A GAN is a deep learning methodology comprising at least two
modules—a generator and a discriminator—that enhance their respective
output quality and predictive capability through adversarial training. This
approach represents one of the most promising methods for unsupervised
learning on complex distributions. The primary challenge in GANS lies
in training dynamics. Since GANs require simultaneous optimization of
two modules, identifying compatible parameters and methodologies that
enable joint convergence is critical. Effective training strategies can
significantly reduce training difficulty, accelerate convergence, and
improve final accuracy, whereas suboptimal approaches may result in
mode collapse or complete training failure. Prior research has
demonstrated GAN applications in image generation domains such as
artistic painting (Wang et al., 2023). Road generation fundamentally
constitutes an image generation task. Consequently, GANS also exhibit
strong potential for road generation applications. Notably, Generative
Adversarial Networks (GANs) have shown unique advantages in
capturing intricate data distributions and recovering detailed structures,
making them suitable for road extraction from noisy remote sensing
imagery. Furthermore, incorporating feature detection techniques such
as the Hough transform can enhance the models ability to capture
geometric regularity and linear continuity inherent in road networks.

Hough transform (Romanengo et al., 2022) is an image feature
detection method based on parameter-space voting mechanism. It was
initially developed to detect straight lines in images, and later
expanded to recognize arbitrary shapes such as circles and ellipses. Its
core idea is to map geometric features from image space to parameter
space and determine target parameters through voting.

In remote sensing and street view images, roads typically manifest as
linear or curved structures exhibiting characteristics such as continuity
and directionality. The Hough transform adapts effectively to these shapes
by: extracting directional features, detecting roads with varying widths
and curvatures, and integrating edge points to reconstruct complete road
profiles. Traditional road extraction models, such as U-Net, employ Cross
Entropy Loss (Mao et al., 2023) or Dice Loss (Milletari et al., 2016). These
focus on pixel-level classification accuracy but struggle to constrain
geometric rationality in output results. Integrating Hough transform into
the loss function provides explicit constraints to guide model learning of
global road structural features.

In order to improve the extraction accuracy, generalization, and
robustness of field roads, this paper is inspired by PLGAN (Abdelfattah
etal, 2023) and designs a multi-layer joint learning method UHGAN
based on U-Net. Unlike standard U-Net or existing GAN hybrids,
UHGAN employs a cascaded learning strategy: the Stage 1 generator
produces an initial road mask using a hybrid objective combining cross-
entropy and Hough transform losses, emphasizing global geometric
structure; the Stage 2 generator performs local refinement, repairing
discontinuities and suppressing irrelevant noise, which helps U-Net
network to further explore the geometric and directional features of roads
and carry out fast extraction of high standard field roads.

The main contributions are as follows:

We propose UHGAN, a dual-stage GAN framework based on
U-Net, which improves road extraction accuracy through adversarial
training and multi-stage refinement.

We design a joint learning strategy where the Stage 1 generator
captures coarse road geometry and the Stage 2 generator enhances
connectivity and eliminates artifacts.

We introduce a Hough transform-based loss function to explicitly
enforce geometric constraints, enabling more accurate detection of
linear and curvilinear road features in high-noise environments.
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2 Preparation

2.1 Theoretical framework of generative
adversarial networks (GANs)

Generative Adversarial Networks (GANs) were proposed by
Goodfellow et al. in 2014. Their core idea achieves data distribution
modeling through adversarial competition between generators and
discriminators (Goodfellow et al., 2014). This section systematically
elaborates the fundamental theory and improvement methods
of GANEs.

The goal of generator G is to generate samples G (z) G (z) from
the latent space z ~ pz (z) that are similar to the true data distribution
PDATA (x) PDATA (x), while discriminator DD needs to distinguish
between the true data xx and the generated data G (z) G (z). The
optimization objective of the original GAN is to minimize the
adversarial loss between the generator and discriminator (Equation 1).

mgn mDaxV(D,G) = Ex~pm(X) [log D(x)}
+EZ~PZ(Z)[log(l—D(G(z)))J (6]

However, the original GAN suffers from issues such as vanishing
gradients and mode collapse. Researchers have subsequently proposed
DCGAN
convolutional networks by replacing fully connected layers with

improvement solutions. For example, introduces
strided convolutions, incorporates batch normalization (BatchNorm)
for stable training, and adopts conditional generative adversarial
networks that guide the generation process through conditional
inputs. This expands GAN applications in controllable generation
tasks. The GAN implemented in this study utilizes original remote
sensing images and corresponding labels as conditional inputs for
image generation.

GANSs have demonstrated exceptional performance in domains
including image generation (Liu et al., 2022) and image restoration
(Huang et al., 2023), Nevertheless, their training process exhibits
sensitivity to hyperparameters and may produce artifacts like blurred
details and texture distortions in complex scenes, requiring further
improvement (Guo et al., 2022). Nevertheless, GANS’ ability to model
high-frequency details and contextual relationships makes them
highly suitable for recovering geometrically consistent road networks

under noisy conditions.

2.2 The structural characteristics and
development of U-net network

U-Net was proposed by Ronneberger et al. in 2015 and was
initially applied to medical image segmentation tasks. Its distinctive
encoder-decoder architecture with skip connections has established
it as the mainstream framework for pixel-level prediction tasks. The
classic structure comprises three components: encoders, decoders,
and skip connections. The encoder extracts multi-scale features
through layered convolutions and downsampling, compressing
spatial dimensions. Simultaneously, the decoder restores spatial
resolution via transposed convolution or upsampling, fusing feature
maps from corresponding encoder layers through skip connections
to mitigate gradient vanishing. These connections integrate shallow
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and deep information, significantly enhancing pixel-level
localization accuracy.

U-Net demonstrates strong performance in applications including
medical image segmentation (Isensee et al., 2021) and remote sensing
image processing (Cui et al., 2023). However, its substantial parameter
count may incur high computational costs, and edge localization for
low-contrast targets remains challenging. In particular, U-Net alone
may struggle to maintain road connectivity under heavy occlusion or
complex background noise. Integrating U-Net with adversarial
training and geometric constraints—as proposed in our UHGAN
framework—helps overcome these limitations by enhancing structural

coherence and suppressing false positives.

2.3 The motivation and method of
combining U-net and GAN

The combination of U-net’s pixel-level generation capability and
GAN’s adversarial training mechanism provides a novel approach for
image-to-image generation tasks: U-Net serves as the generator, with
skip connections transmitting local details to the decoder, addressing
the detail loss limitation in traditional CNN generators like
DCGAN. The encoder-decoder structure simultaneously models
global semantics and local textures, making it suitable for image
restoration and super-resolution tasks (Han et al., 2022). Using the
Pix2Pix framework (Tahmid et al, 2023), t the U-Net generator
combines with a PatchGAN discriminator to learn image mapping
relationships through paired data. For scenarios lacking paired data,
introducing cycle consistency loss (Zhu et al., 2017) enables cross-
domain image generation when integrated with U-net.

3 Introduction to UHGAN model

In this section, we will introduce the UHGAN. We will first
provide an overview of our proposed method, and then introduce
joint learning, GAN neural networks, and Hough transform loss in
the following summary.

3.1 Overview

In order to enhance the model’s road extraction capability and
reduce accuracy degradation from discontinuities or isolated points,
we designed a two-stage joint training framework. While individual
components such as GANs, PatchGAN, and cascaded U-Net have been
explored in prior work, the novelty of UHGAN lies not merely in their
combination, but in the structured and goal-oriented integration of a
differentiable Hough transform loss within a dual-phase generative
adversarial framework, explicitly designed to address the geometric and
topological challenges of farmland road extraction. Unlike PLGAN
(Abdelfattah et al., 2023) and Pix2Pix (Tahmid et al., 2023) which use
geometric priors only in post-processing or as non-differentiable
regularizers, UHGAN integrates a differentiable Hough transform loss
directly into the adversarial training process. This allows the model to
directly learn globally consistent road structures during adversarial
training. Furthermore, the proposed two-stage refinement strategy is
functionally specialized: the first stage focuses on recovering
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geometrically plausible road layouts under strong structural constraints,
while the second stage acts as a connectivity-enhancing repair network
that is trained purely under reconstruction loss to eliminate fractures and
noise without compromising semantic consistency. This targeted division
of structural generation and topological refinement—guided by a
purpose-built hybrid loss system—has not been previously established
in rural road extraction tasks, and represents a novel architectural
paradigm that effectively balances pixel accuracy, geometric regularity,
and connectivity integrity. First, we employ the U-Net network as the
base architecture for our Stage 1 generator for preliminary training.
Original remote sensing images and their corresponding labels serve as
inputs to produce an initial prediction. Subsequently, we use the original
labels combined with this Stage 1 prediction as new inputs, feeding them
through a second U-Net generator to output the final prediction. Stages
are trained jointly each iteration, gradients flow only within each stage
(Stage 1 via adversarial + geometric losses; Stage 2 via L1), as Stage 1
outputs are detached.

During Stage 1 GAN training, we implemented a U-net-based
generator and incorporated Hough transform loss alongside pixel
accuracy loss and adversarial loss. This multi-objective optimization
scheme simultaneously addresses multiple aspects of road extraction,
yielding results that better approximate real road visual characteristics.
However, GAN limitations prevent complete detection and
reconstruction of missing or isolated points. Therefore, we introduced
a second U-Net layer to teach the model both road structure
determination and isolated point removal. The model architecture is
shown in Figure 1:

3.2 Multi level loss function combining
Hough transform characteristics

Hough transform is a classical feature detection method, first
proposed by Paul Hough in 1962 and later refined to its modern form
by Duda and Hart (1972). It effectively detects parameterized shapes
in images, particularly lines, circles, and ellipses. In road extraction
tasks, Hough transform proves especially valuable since road networks
typically exhibit structures with distinct linear characteristics. This
technique transforms points from image space to parameter space
through parametric mapping. For line detection, the Hough transform
employs polar coordinate representation (Equation 2):

p:x-cos(9)+y-sin(0) 2)

Among them:

p represents the vertical distance from the coordinate origin to the
straight line.

0 represents the angle between the vertical line and the x-axis.

In this way, each point (x, y) in the image space is mapped to a
sine curve in the Hough parameter space. The curves of collinear
points in the parameter space will intersect at the same point (p, 6),
which corresponds to a straight line in the image.

This study proposes a differentiable Hough transform-based loss
function to enhance deep learning models’ linear feature extraction
capability for roads. Traditional Hough transform, as a classical line
detection algorithm, is widely adopted in computer vision and deep
learning (Song et al., 2024). However, its discrete voting mechanism
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FIGURE 1

prediction accuracy.

Architecture of the proposed UHGAN framework compared with a standard U-Net. UHGAN adopts a dual-stage design: Stage 1 employs a GAN
generator with adversarial, segmentation, Hough-transform, and geometric consistency losses to capture global road structures, while Stage 2 uses a
refinement U-Net to repair discontinuities and suppress noise. This joint training strategy ensures both spatial structural consistency and high

is inherently non-differentiable and incompatible with gradient-based
optimization frameworks, necessitating adaptation.

To integrate the geometric prior of the Hough transform into our
end-to-end deep learning framework, we address the core challenge
of non-differentiability in the classical voting process. Our
implementation details are as follows:

3.2.1 Forward pass: standard Hough transform
Given a predicted probability map P G[O,ITHXW) and a binary
ground truth mask.
GeO, I(HXW), we first obtain a binary prediction mask M for the
forward computation (Equation 3):

M j= I[P;y,>0.5:| (€)

Where I is the indicator function. This binarization step is
non-differentiable.

Each active pixel (l,]) (where M _{i,j} =1) is mapped into the
Hough parameter space. For line detection, we use the normal
representation (Equation 4):

p=i-cos(0)+j-sin(9) (4)

discretize the parameter space: the angle @ is partitioned into Ng
bins (e.g., 180 bins from 0° to 180°), and the radius p is partitioned
into N, bins with a resolution of Ap (e.g., 1 pixel), up to a maximum

value o —\/H?+W? /2.

Frontiers in Neurorobotics

An accumulator matrix Accum e RN*Nr is constructed by casting
votes. For each active pixel (i J ) and for each discrete angle 6,
we compute the corresponding p value, determine its bin index [, and
increment the accumulator (Equation 5):

Accum[k,l]z Accum[k,l]+l (5)

This process is performed for both the predicted mask M and the
ground truth G, yielding Accum g and Accumygrger.

The Hough loss Lp,yen is then computed as the Ll-norm
difference between the two accumulator matrices, averaged over the
batch (Equation 6):

N, Aa:umg;‘)Z J [k,l]

1 B N
Lhough = 52y 2k 2
b=1Lmf=14mi]=
BNyN, 1k=14ml=1| Accumﬁf)get[k,l (6)

Where B is the batch size.

3.2.2 Backward pass: gradient approximation via
STE

The critical step for differentiability lies in the backward pass. The
gradient of the loss Ly, with respect to the predicted probabilities
P must be computed. The non-differentiable operation is the
binarization M = ]| [P>0.5]:

We approximate the gradient using the Straight-Through Estimator
(STE) (Huh et al., 2023). The STE defines a surrogate gradient for the
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thresholding function. Specifically, we treat the thresholding function as
an identity function during backpropagation (Equation 7):

0L oL
Ao )
oP oM

oL
The gradient — can be derived by viewing the Hough transform
as a linear voting operation. The chain rule is applied as (Equation 8):

OL N, N, oL 6Accum[k,l]
oM; B zk:lzl:l 6Accum[k,l] oM

®)

i,j

Where is simply the sign of the difference

6Accum[k,l]
(Accumpred[k»l]_Accummrget[k)l]) from the L1 loss, and
aAccum[k,l] is 1 if the pixel (i,j ) voted for bin (k,l ) and 0 otherwise.
OMji,)
In practice, this gradient is efficiently computed by a reverse Hough
oL
transform: the gradient 7, -~~~ is scattered back onto the image
coordinates (1,]) along the same lines that were used in the
forward vote.

3.2.3 Computational overhead analysis

The introduction of the Hough loss adds non-negligible but
manageable computational overhead. The complexity of the Hough
transform is O(Nmive -Ng), where N, is the number of active
pixels. For a typical 1024 x1024 image and Ny =180, the forward and
backward passes for the Hough loss introduce an approximately 20%
increase in the per-epoch training time compared to a baseline using
only pixel-wise losses. We deem this cost acceptable given the
significant improvement in geometric accuracy and reduction in road
discontinuities, as demonstrated in our results.

3.2.4 Comparative cost vs. pixel-level losses

Unlike pixel-wise losses (e.g., BCE, L1) which operate at the native
image resolution (H X W), the Hough loss operates on a drastically
down-sampled parameter space (N o xN p). For example, with
H =W =1024 and Ny =180, Np ~725, the Hough space is over 8
times smaller than the image space. This makes the memory footprint
of the Hough loss itself negligible. The primary cost is the voting
procedure, which is highly parallelizable. The Hough loss is therefore
computationally cheaper than many perceptual or style losses used in
image generation tasks, while providing a strong, global geometric
constraint that pixel losses inherently lack.

TABLE 1 Characteristics of different losses.

Name of loss

Pixel-level accuracy

preservation

Linear structure

10.3389/fnbot.2025.1691300

Unlike pixel-level losses such as L1 loss (Terven et al., 2025)
and least squares loss (Wang et al., 2024), Hough transform loss
operates in parameter space. This enables focus on linear structures
with particular sensitivity to road-like features, effectively guiding
models to learn geometric patterns. Simultaneously, it provides a
global perspective that considers both local pixel accuracy and
overall linear layout correctness. Through parameter space
comparison, models generate more continuous and complete
linear structures. Table 1 compares Hough transform loss
advantages versus traditional losses for road extraction:

In our model, the Hough transform loss is combined with other
loss functions, utilizing the complementary properties of different
loss functions (Figure 2). Adversarial loss causes the generated road
to appear realistic, serving as an implicit representation of the Hough
transform in the discriminator network. This loss captures the
geometric characteristics of the road through adversarial learning
mechanisms. The discriminator network naturally develops
sensitivity to linear features during the learning process, which is
highly consistent with the line detection principle of the Hough
transform. Specifically, when distinguishing between real roads and
generated roads, the discriminator automatically learns to recognize
typical geometric patterns of roads, such as straight lines, parallel
lines, and regular intersections, which are precisely the features that
the Hough transform focuses on.

3.3Stage 1

Our model enhances learning capability through dual neural
network definition. In the Stage 1, we employ a standard U-Net
generator trained against its discriminator, as shown in Figure 3. The
U-Net architecture improves upon FCN (Fully Convolutional
Network) (Long et al., 2015) and was initially applied to biological and
medical image segmentation. It efficiently utilizes low-level image
features to achieve accurate, rapid target extraction with limited
training data.

The generator adopts the classic U-Net architecture comprising
symmetrical encoder and decoder components:

Encoder section: Comprises 5 encoding blocks, each containing
two 3 x 3 convolutional layers, batch normalization, and ReLU
activation, followed by max pooling downsampling. Processing the
input 3-channel satellite image, the encoder progressively extracts
features while reducing spatial dimensions, with channel depths
sequentially increasing to 64, 128, 256, 512, and 1,024.

Consists of 4 decoding blocks, each performing upsampling (via
transposed convolution or bilinear interpolation) followed by two

Robustness to noise Global consistency

L1/L2loss High Low Low Low
BCE LOSS High Low Middle Low
Dice loss Middle Middle Middle Middle
Hough loss Middle High High High
Adv loss Low Middle High High
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FIGURE 2

Illustration of the differentiable Hough-transform loss. Input features are projected into the Hough parameter space, where vote accumulation
matrices are computed for both the ground truth mask and the predicted mask. The L1-norm difference between these matrices forms the Hough
loss, which enforces linear and curvilinear structural consistency during training.

Update parameters

BCE loss

True

Predict U-Net

Discriminator A

Cross

FIGURE 3

Hough loss |

total

L BCE loss

Workflow of the Stage 1 adversarial training process. The U-Net—based generator produces preliminary road masks from input satellite images, while
the PatchGAN discriminator evaluates their realism against ground-truth masks. In parallel, the predicted outputs are passed through the Hough-
transform module to calculate geometric loss. The total loss function combines adversarial, segmentation, Hough-transform, and geometric
consistency terms, guiding the generator toward both pixel-level accuracy and global structural fidelity.

Generator A

Update parameters

adv loss
(5]

loss -
el

3 x3 convolutional layers. During decoding, skip connections
concatenate same-level encoder features to preserve high-resolution
spatial information. Channel depths decrease sequentially to 512, 256,
128, and 64.

Output layer: Produces a single-channel binary road mask
through 1 x 1 convolution and Sigmoid activation.

The skip connections in U-Net directly transmit high-resolution
features from the encoder to the decoder, effectively mitigating
information loss in deep networks and preserving road boundary
accuracy. The discriminator employs a PatchGAN architecture (Chen

Frontiers in Neurorobotics

et al., 2023) to perform patch-level authenticity evaluation on the
input image:

The discriminator receives satellite images and corresponding road
masks (either real or generated) as inputs, initially concatenating them
along the channel dimension. The network comprises 5 convolutional
layers with channels of 64, 128, 256, and 512, respectively. It ultimately
outputs a two-dimensional feature map representing the authenticity
score for each patch. Finally, the Sigmoid activation function (Elfwing
et al., 2018) maps these scores to the 0-1 range, indicating the
discriminator’s confidence in the authenticity of each patch.
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PatchGAN’s design concept segments an image into multiple
overlapping patches for discrimination, rather than assigning a single
true/false score to the entire image. This local discrimination
mechanism enables the generator to focus more effectively on local
road details and textures, thereby enhancing road boundary accuracy.

3.4 Stage 2

Inspired by DDU-Net (
on repairing discontinuities and suppressing isolated noise that

), the second stage focuses

remain after Stage 1. Unlike the first-stage GAN generator, this
module is a simplified U-Net that receives the preliminary single-
channel road mask from Stage 1 as input and outputs a refined mask
of the same size. Rather than introducing new image-level features, it
operates as a secondary repairer, concentrating on edge refinement,
gap filling, and improving road connectivity.

To decouple the two stages, the output of Stage 1 is detached from
the computation graph and directly fed into Stage 2, ensuring stable
optimization without gradient interference. Training employs only
supervised L1 loss against the ground-truth mask, deliberately
excluding adversarial objectives to avoid unnecessary artifacts. In this
cascaded design, Stage 1 emphasizes coarse segmentation with

10.3389/fnbot.2025.1691300

geometric constraints, while Stage 2 complements it by refining details
and repairing local structures. Together, they form a dual-level
optimization framework that significantly improves overall road
continuity and integrity.

4.1 Data source and preprocessing

Due to the scarcity of rural roads in most current remote sensing
datasets designed for cities, a specialized dataset, WHU RuR+ (

) is required for model training. WHU RuR + is a large-
scale, high-resolution remote sensing dataset for rural road extraction.
It contains 27,770 pairs of 1,024 x 1,024 satellite images with 0.3 m
resolution and corresponding road annotations, covering 2620.71 km?
of rural areas in central China. A comprehensive analysis was
conducted on the performance of state-of-the-art deep learning-based
road extraction methods using the WHU RuR + dataset. Experimental
results demonstrate that WHU RuR + presents significant challenges
for large-scale rural road extraction. Furthermore, the dataset meets
application requirements for rural road construction and exhibits
substantial application potential. Sample data is shown in
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To address the specific requirements and computational constraints
of extracting roads in high-standard farmland, a targeted data selection
strategy was applied to the WHU RuR + dataset. Although the dataset
is large-scale (containing 27,770 images in total), a significant portion
of the images include irrelevant objects such as houses, building
complexes, and urban roads, as shown in Figure 5, which are not
characteristic of farmland environments. Some images also suffer from
severe occlusions or non-road interference, making them unsuitable
for representing the road morphology and background features in
“high-standard farmland” scenarios. Therefore, instead of using the
entire dataset, we manually selected 120 images with typical farmland
road characteristics, minimal occlusion, and high label quality for
training, along with another 80 images for testing.

10.3389/fnbot.2025.1691300

This strategy, while limiting the scale of the training data, was
adopted based on the following considerations:

Task Specificity: Roads in high-standard farmland exhibit distinct
geometric structures and background features. The selected subset is
more representative of this application scenario.

Computational Efficiency: The dual-phase GAN combined with
Hough transform loss involves high computational complexity. Large-
scale training is impractical under limited computational resources
(e.g., a single RTX 4090 GPU).

Noise Control: By excluding samples with significant
non-farmland noise, the model can focus more effectively on the
thereby
farmland environments.

target features, improving generalization in real

Y “.Q

FIGURE 5
Data containing house noise.
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To mitigate overfitting caused by insufficient data during
network training (Xiao et al., 2022), we applied a series of
augmentation methods: RandomResizedCrop was used with a
probability of 100% at each iteration, with a crop scale ranging
from 0.8 to 1.0 to simulate multi-scale training; both
RandomHorizontalFlip and RandomVerticalFlip were applied
with the default PyTorch probability of 50% to improve directional
performed with 100%
probability within a range of —30 to +30 degrees; and Color]Jitter

invariance; RandomRotation was
was applied with 100% probability, adjusting brightness, contrast,
and saturation by £20%, and hue by an offset of 0.1 radians, using
bilinear interpolation to preserve color consistency. Finally,
normalization was carried out using precomputed channel-wise
means and standard deviations. Although the selected subset is
relatively small, we mitigated the risk of overfitting through
comprehensive data augmentation techniques—including random
cropping, rotation, and color enhancement—which effectively
increased the diversity of the training samples. Experimental
results show that the model still achieves competitive performance
on the test set, indicating that the quality and representativeness
of the selected data compensate to some extent for the limited
quantity. Nonetheless, we acknowledge that the generalization
capability of the method under large-scale and highly complex
environments requires further improvement. Future work will
involve incorporating cross-regional data and introducing domain
adaptation methods to enhance model robustness. We have open-
source the specific code and dataset: https://github.com/
badao162/UHGAN.

Although we excluded images with severe non-farmland
structures (e.g., building complexes) to establish a baseline for typical
farmland road extraction, we acknowledge that this limits the
evaluation of model robustness in more general rural scenes. Our
preliminary analysis indicates that performance degrades in such
scenarios primarily because dense buildings often introduce severe
occlusions, shadows, and complex intersections that break the
continuity of road structures, challenging the model’s ability to infer
global connectivity. Future work will explicitly test UHGAN’s
robustness on diverse rural scenes containing non-farmland elements
and explore architectural enhancements to better handle
these complexities.

4.2 Parameter setting and training

The experiments were implemented in Python 3.8 with PyTorch
on a NVIDIA GeForce RTX 4090 GPU. All input satellite images were
resized to 1,024 x 1,024 pixels with three channels. A batch size of 1
was used to accommodate the high resolution of the data.

For the Stage 1 GAN, the generator was trained with the Adam
optimizer (learning rate = 0.0013, betas = (0.5, 0.999)), while the
discriminator used a smaller learning rate of 0.0003. For the Stage
2 refinement U-Net, the generator was optimized with Adam at a
learning rate of 0.00013. To stabilize training, a cosine annealing
learning rate scheduler (T;,,4120 epochs, etan,;,0) was applied to all
optimizers. The loss functions consisted of: Adversarial loss based
on binary cross-entropy (BCE); segmentation loss; Hough
transform loss; Geometric consistency loss. The training process
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lasted for 120 epochs, with early stopping when losses plateaued.
Data loading was handled with the PyTorch DataLoader, using
shuffled mini-batches.

To maintain road linearity and directional consistency, the
Hough transform integrated with adversarial and segmentation
losses constitutes part of the loss function in the model’s first
stage. Predicted and ground truth masks are transformed into
Hough parameter space, where their L1 distance is computed.
This approach enhances preservation of road straight-line
characteristics and directional coherence, focusing the model on
road geometry rather than texture details. Additionally, geometric
consistency loss improves invariance to geometric transformations,
boosting road extraction robustness. The model applies 90°
rotation to input images, processes them through the same
generator, then inversely transforms the output. Minimizing the
difference between original and inverse-transformed results
ensures consistent road extraction across orientations. The Hough
transform loss formula follows (Equation 9):

1 B (€] R b
Lhough = m2b=129=1 zr:l | Accumgn)zd (H,r)

—Accumgjr)get (6.r) )]

Among them, B is the Accumgﬁz d (H,r) - Accumgfr)get (6.r)
accumulator of the predicted mask and the true mask in the Hough
space, while B is the batch, the ® number R of angle intervals, and the
maximum radial distance.

The geometric consistency loss is as follows (Equation 10):
1 C «H W 1
Lo = i L S S 16(x) i) -1 76 (9esp)) (10)

Among them, G is the generator network, T is the geometric
transformation, and T is the inverse transformation.
The total loss is as follows (Equation 11):

1mn

—_— ——
adv loss geoloss

Liotal =4 Lagy +4 Lseg +23 Lhough +4 Lgeo
—

5
set loss Hough loss

Among them, there are weighting coefficients 4, (n = 1, 2, 3,4).
Due to the limitation of training time, we adopted a small-scale grid
search to determine the optimal hyperparameter configuration.
Experimental results revealed that an excessively large weight for the
geometric consistency loss actually led to a decline in model
performance. Upon closer analysis, we attribute this to the
fundamental differences between the optimization objectives guided
by different loss functions.

The geometric consistency loss is designed to enhance the model’s
robustness to geometric transformations (e.g., rotation and scaling),
with its core constraint being that local pixels should remain consistent
before and after transformation. However, the primary objective of the
road generation task is to produce structurally coherent and well-
connected road networks, which places greater emphasis on global
topological correctness rather than strict pixel-level alignment. An
overly large geometric consistency loss forces the generator to
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over-optimize local pixel alignment—for instance, enforcing
unreliable correspondences in occluded or shadowed regions. This
optimization direction diverges from high-level semantic goals,
leading the model to generate overly conservative results that lack the
ability to infer reasonable global road structures, thereby impairing
connectivity and practical utility.

In contrast, the Hough loss explicitly incorporates prior
knowledge of road geometry. By encouraging the model to
generate responses aligned with line and curve features, it directly
constrains the structural form of the output to better match the
orientation and connectivity patterns of real roads. The adversarial
loss guides the generator toward visually plausible global
structures, while the segmentation loss provides pixel-level
supervision. Within this framework, the geometric consistency
loss should serve as an auxiliary component, with its weight kept
relatively small to avoid constraining the model’s high-level
semantic generation capability.

Therefore, we set A4 to a small value (0.001), which preserves a
certain degree of geometric smoothness without undermining the
model’s ability to capture global topological structures. The remaining
loss weights—including the adversarial loss 4;, segmentation loss 4,,
and Hough loss A3—were tuned via grid search within the range {0.1,
0.5, 1}. This process yielded 27 experimental configurations in total,
as illustrated in the Table 2. Finally, we selected 4;, 4, and /3 as {0.1,
0.1, 1}.

The second part of the model focuses on detail repair, employing
pixel-level reconstruction loss to guide defect correction in the first-
stage outputs. This stage directly compares pixel-level differences
between the refined output and the ground truth mask. Using the L1
norm instead of the L2 norm reduces outlier influence, better
preserves edge features, and prioritizes repairing broken road
segments—optimizing connectivity and smoothness. Adversarial loss
is deliberately excluded from this stage to prevent introduction of
unnecessary high-frequency artifacts.

4.3 Evaluation metrics

To quantitatively evaluate the performance of the model, this
paper employs Precision, Recall, and F1-Score as the core evaluation
metrics. They are defined as follows Precision, Recall and F1-Score.
These complementary metrics comprehensively assess the accuracy,
completeness, and overall performance of the model in the farmland
road extraction task. Detailed experimental results and analysis are
presented in Section 5.

TABLE 2 Grid parameter search results.

10.3389/fnbot.2025.1691300

5 Conclusion
5.1 Result analysis

Using the constructed network to perform road extraction
operations on the detection area, the results are shown in Figure 6.

The first part of the joint learning model extracts accurate road
geometries that align well with actual road contours. However, these
extraction results contain numerous isolated points and discontinuities.
The second model component specifically addresses these discontinuities
and isolated points, achieving strong integrity without requiring
additional repair algorithms. Both models maintain road trajectories
consistent with actual roads, yielding smooth edges and reduced noise.
Nevertheless, performance degrades noticeably in loose cultivated land
areas. In these regions, road features lack sufficient visual clarity, are
frequently occluded by vegetation, and often blend with surrounding
field textures. Such conditions lead to weak feature representation in
both the spectral and structural domains, which in turn reduces the
model’s ability to distinguish roads from non-road areas. UHGAN is
particularly sensitive to this problem because its adversarial component
emphasizes the generation of visually plausible structures. When feature
cues are ambiguous or suppressed, the generator tends to produce locally
consistent textures at the expense of global structural correctness,
resulting in missing or fragmented road segments. In other words, the
model overfits to the dominant background patterns and fails to
reconstruct the underlying road topology. After processing through the
second model component, these discontinuities and edge noise exhibit
effective restoration, as demonstrated in Figure 7.

The comparative experimental results clearly demonstrate the
performance differences among various methods in the task of road
extraction. As shown in Figure 8, Our model demonstrates improved
performance compared with baseline methods. In the Stage 1, by
incorporating adversarial learning together with a Hough transform-
based geometric constraint, the model learns to better capture the
linear structural characteristics of roads. Compared with conventional
segmentation networks (such as U-Net, UNet++, and Segformer), the
Stage 1 results effectively reduce road omissions and successfully
capture most of the main road segments. However, in some complex
regions, a considerable number of isolated points and broken
segments remain, leading to insufficient overall connectivity.

In the Stage 2, we adopt a joint training strategy that further
refines the results while preserving the structural constraints
introduced in the Stage 1. This strategy significantly alleviates the
shortcomings of the Stage 1: isolated points and discontinuities are
greatly reduced, road connectivity and integrity are enhanced, and the

23 =0.1 0.756 0.751 0.747 0.749 0.754 0.743 0.752 0.748 0.732
73=05 0.764 0.750 0.738 0.756 0.752 0.758 0.761 0.753 0.761
ig=1 0.747 0.754 0.775 0.745 0.747 0.772 0.749 0.752 0.767

The first row corresponds to the parameter selection for the adversarial loss, the second row represents the parameter selection for the segmentation loss, and the first column indicates the

parameter selection for the Hough loss.
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FIGURE 8
Comparison of road extraction results obtained by different methods. From left to right: input images, ground-truth labels, and the results of our

proposed model (first 1 and Stage 1) as well as several baseline networks. In the Stage 1, the incorporation of adversarial learning and Hough transform
loss enables the model to preserve the linear road structure and reduce omissions, although isolated points and discontinuities are still observed. In the
second stage, the joint training strategy further alleviates these issues, leading to smoother boundaries, improved connectivity, and overall results that
are more consistent with the ground truth compared to other competing approaches
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extracted boundaries appear smoother. Overall, the results are more
consistent with the ground truth. Compared with other competing
methods, our model exhibits stronger robustness and reliability in
capturing fine road segments, maintaining structural continuity, and
improving boundary accuracy, thereby providing a more realistic
representation of road networks in remote sensing imagery.

5.2 Comparative experiment

To effectively evaluate extraction results, we employed precision,
recall, and F1 score metrics on the preprocessed WHU RuR + dataset.
Precision, Recall, and F1 Score constitute core classification model
evaluation metrics, collectively quantifying identification accuracy
and completeness for positive-class samples. Precision measures
prediction exactness by calculating the proportion of true positives

TP
among predicted positives [TP + FP] , preventing false alarms.
Recall evaluates identification completeness through the proportion
TP
of actual positives correctly identified [TTFN] , minimizing
missed detections. The F1 score—harmonic mean of precision and

Precisionx Recall

Precision + Recall- Ranging from 0 to 1, this

balanced metric provides a comprehensive performance indicator

recall—is calculated as

particularly valuable for imbalanced data distributions.

These metrics exhibit complementary characteristics: excessively
high precision may reduce recall (over-conservatism), while high
recall may compromise precision (over-aggression). The F1 score
optimizes the balance between them, achieving high values only when
both precision and recall are strong. To benchmark our model’s
superiority, we conducted systematic comparisons against established
models including U-Net, ResNet (Takahashi et al., 2022), UNet++
(Zhou et al., 2018), SegFormer (Xie et al., 2021), LinkNet (Chaurasia
and Culurciello, 2017), and HRNet (Sun et al., 2019). Experiments
strictly followed identical train/validation/test splits, preprocessing
procedures, and evaluation metrics (Precision, Recall, F1 Score).
Results are presented in Table 3:

UHGAN achieves the highest average performance among the
compared methods, with the highest F1-score (0.789 + 0.009), strong
precision (0.826 + 0.016), and the best recall (0.757 +0.013),
demonstrating that the dual-stage refinement strategy combined with
Hough-transform-based global geometric constraints effectively
enhances both road continuity and integrity. However, the analysis of

TABLE 3 Comparison experiment with other experiments.

UHGAN 0.826 £ 0.016 0.757 £0.013 0.789 £ 0.009
U-Net 0.759 +£0.010 0.753 £0.012 0.756 + 0.006
Resnet 0.798 + 0.020 0.731 £0.031 0.762 £ 0.011
Unet++ 0.771 £0.013 0.724 +£0.019 0.747 £ 0.018
SegFormer 0.776 +0.023 0.744 +0.034 0.760 +0.010
LinkNet 0.804 £ 0.011 0.709 £ 0.011 0.754 £ 0.005
HRNet 0.813 £0.015 0.700 + 0.021 0.752 £ 0.007
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confidence intervals reveals that UHGAN is not always the most stable
model. For example, although its mean recall is the highest, the interval
(£0.013) overlaps with that of U-Net (0.753 + 0.012), and models such
as LinkNet and HRNet exhibit narrower precision intervals, reflecting
more consistent but less accurate predictions. This phenomenon arises
because UHGAN emphasizes global geometric consistency rather than
purely local pixel fitting; while this improves average structural
accuracy, it also makes training more sensitive to dataset limitations
and loss-weight tuning, resulting in slightly higher variance. In
summary, UHGAN provides the strongest overall balance between
precision and recall, but its superior mean performance comes at the
cost of reduced stability in certain cases—a limitation that can
be mitigated in future work through larger-scale training (Shen et al.,
2024) and refined optimization strategies (Zheng et al., 2025).

To verify the effectiveness of each component in the two-stage joint
training framework (UHGAN) proposed in this paper, we designed a
systematic ablation experiment (the results are shown in Table 4).

Our full model, UHGAN, which combines a Stage 1 GAN with
loss

loss

Hough-transform  Assembling (Assembling =
A1 Lagy + A2 Leet + 43 Lpough + A4 Lgeo ) and a Stage 2 refinement
U-Net, achieves the best overall balance, with a precision of 0.826,
recall of 0.757, and F1-score of 0.789. Removing the Stage 2 refinement
(Union-GAN without Stage 2 refinement) leads to a drop in recall to
0.732 and a slight decrease in Fl-score to 0.777, highlighting the
importance of the second-stage module in maintaining road continuity
and eliminating isolated fragments. When the Hough-transform
Assembling loss is removed while retaining the Stage 2 refinement
[GAN  without Assembling (Assembling
A1 Lagy + A2 Leet + 43 Lpough + A4 Lgeo )], the model achieves a
precision of 0.801 + 0.016 and a recall of 0.757 + 0.015, resulting in an
F1-score of 0.778 + 0.010. Compared with UHGAN, the slightly lower

F1-score indicates that the Assembling loss plays a critical role in

loss loss

capturing global structural information and maintaining balanced
performance, preventing the model from overfitting to local features.
The simplest baseline, which omits both the refinement stage and the
Assembling loss (GAN (no refinement, no Assembling loss)), shows
the most severe precision-recall imbalance, with recall dropping to
0.680 and F1-score sharply decreasing to 0.743, confirming that neither
component alone is sufficient for robust performance. Overall, these
ablation results demonstrate the complementary effects of the two
design choices: the Stage 1 GAN with Assembling loss enforces global
geometric consistency, while the Stage 2 refinement U-Net repairs
discontinuities and suppresses noise, together enabling coherent and
continuous road extraction with superior structural integrity
(Equation 12).

Assembling loss =4 Lygy + A Lset + 43 Liough

+24 Lgeo (A1542,23:24 =0.111,0.001)  (12)

5.3 Future work

Although the UHGAN model shows competitive results in high-
standard farmland road extraction—particularly in maintaining road
geometric continuity and suppressing noise—several limitations
remain, leaving room for future exploration. First, constrained by
computational resources and data availability, this study was
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TABLE 4 Ablation experimental results.

10.3389/fnbot.2025.1691300

Remaining modules Precision Recall F1
UHGAN 0.826 £ 0.016 0.757 £0.013 0.789 £ 0.009
Union-GAN without Stage 2 refinement 0.828 +0.023 0.732+0.017 0.777 £ 0.012
GAN without Assembling loss (Assembling loss =

0.801 £0.016 0.757 £ 0.015 0.778 £ 0.010
MLady + 22 Lset + 43 Lhough + 44 Lgeo)
GAN (no refinement, no Assembling loss) 0.821 + 0.026 0.680 + 0.021 0.743 + 0.020

The Assembling loss is composed of adversarial loss, segmentation loss, Hough transform loss, and geometric consistency loss.

conducted on a relatively small manually curated subset of 200 images.
While data augmentation was employed to mitigate overfitting risks,
the model’s generalization ability in larger-scale and more complex
farmland scenarios still requires further validation. Second, the model
continues to struggle with road segments subject to severe occlusion
or those exhibiting strong similarity to background textures. In
particular, in areas with loose soil or dense vegetation coverage, the
model’s perceptual and reasoning capabilities remain inadequate.

Future research will focus on the following directions: 1.
constructing larger-scale, multi-regional, and multi-temporal
farmland road datasets (Shen et al., 2025), combined with domain
adaptation techniques (Zhang et al., 2022) to enhance robustness
under varying geographic environments and imaging conditions; 2.
exploring Transformer-based architectures (Wang et al., 2024) to
replace or augment the current U-Net backbone, thereby improving
the modeling of long-range dependencies and global contextual
information (Chen et al., 2023); 3. further refining the differentiable
implementation of the Hough loss to better accommodate curved
roads and complex topological structures; 4. advancing toward real-
time applications, such as integration into agricultural drones
(Askarzadeh et al., 2025) or mobile terminal systems (Yu et al., 2023),
to provide instant and high-precision road information in support of
precision agriculture and rural planning.
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