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A commentary on

What is intrinsic motivation. A typology 
of computational approaches.
by Pierre-Yves Oudeyer and Frederic 
Kaplan.

What is the energy function guiding behav-
ior and learningµ Representationbased 
approaches like maximum entropy, gen-
erative models, sparse coding, or slowness 
principles can account for unsupervised 
learning of biologically observed structure 
in sensory systems from raw sensory data. 
However, they do not relate to behavior. 
Behavior-based approaches like reinforce-
ment learning explain animal behavior in 
well-described situations. However, they 
rely on high-level representations which 
they cannot extract from raw sensory data. 
Combinations of multiple goal functions 
seems the methodology of choice to under-
stand the complexity of the brain. But what 
is the set of possible goals.

Focusing on the reinforcement learning 
framework, this question is addressed in 
the article “What is intrinsic motivationµ A 
typology of computational approaches” by 

Pierre-Yves Oudeyer and Frederic Kaplan. 
It lists and classifies equations which extend 
the traditional concept of a “reward func-
tion”. Our behavior is not only driven by 
external rewards such as food, but there is 
a variety of intrinsic motivations. Some are 
aimed at exploration and so ensure delivery 
of rich sensory data, aiding unsupervised 
learning by active data acquisition, where 
the learning progress of the sensory system 
becomes the goal.

A novice reader may first want to famil-
iarize himself with an example of a motiva-
tion function implemented in a model and 
applied in some scenario. A fun example 
is Schmidhuber (2006), which would be 
classified as “Learning Progress Motivation” 
(LPM) in the article of Oudeyer and Kaplan. 
The model consists of a predictor and a con-
troller, aka critic and actor, respectively. The 
critic is a sensory system that gives rewards 
to the actor whenever its learning progresses. 
The actor hence learns to act in such a way 
that the critic is presented data which leads 
to the critic”s learning progress. This can 
explain the learning of the actor”s param-
eters by a reinforcement learning algorithm. 
The structure, parameters and the learning 

paradigm of the critic are not specified, but 
unsupervised learning as to learning to pre-
dict would be suitable.

The broad overview of intrinsic moti-
vation functions offered by Oudeyer and 
Kaplan leads to novel ways of conceptual-
izing and gaining new insights into the vari-
ety of computational mechanisms driving 
behavior and learning. A possible extension 
of the typology could include goal functions 
of unsupervised learning. Then an assess-
ment of the relations between all relevant 
goal functions may provide a well-founded 
systems view of the brain.
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