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Intrinsic motivation, centrally involved in spontaneous exploration and curiosity, is a crucial concept in developmental psychology. It 
has been argued to be a crucial mechanism for open-ended cognitive development in humans, and as such has gathered a growing 
interest from developmental roboticists in the recent years. The goal of this paper is threefold. First, it provides a synthesis of the 
different approaches of intrinsic motivation in psychology. Second, by interpreting these approaches in a computational reinforcement 
learning framework, we argue that they are not operational and even sometimes inconsistent. Third, we set the ground for a systematic 
operational study of intrinsic motivation by presenting a formal typology of possible computational approaches. This typology is partly 
based on existing computational models, but also presents new ways of conceptualizing intrinsic motivation. We argue that this kind of 
computational typology might be useful for opening new avenues for research both in psychology and developmental robotics.
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INTRODUCTION
There exists a wide diversity of motivation systems in living organisms, 
and humans in particular. For example, there are systems that push 
the organism to maintain certain levels of chemical energy, involving 
the ingestion of food, or systems that push the organism to maintain 
its temperature or its physical integrity in a zone of viability. Inspired by 
these kinds of motivation and their understanding by (neuro-) ethologists, 
roboticists have built machines endowed with similar systems with the 
aim of providing them with autonomy and properties of life-like intel-
ligence (Arkin, 2005). For example sowbug-inspired robots (Endo and 
Arkin, 2001), praying mantis robots (Arkin et al., 1998) dog-like robots 
(Fujita et al., 2001) have been constructed.

Some animals, and this is most prominent in humans, also have more 
general motivations that push them to explore, manipulate or probe their 
environment, fostering curiosity and engagement in playful and new 
activities. This kind of motivation, which is called intrinsic motivation 
by psychologists (Ryan and Deci, 2000), is paramount for sensorimotor 
and cognitive development throughout lifespan. There is a vast literature 
in psychology that explains why it is essential for cognitive growth and 
organization, and investigates the actual potential cognitive processes 
underlying intrinsic motivation (Berlyne, 1960; Csikszentmihalyi, 1991; 
Deci and Ryan, 1985; Ryan and Deci, 2000; White, 1959). This has gath-

ered the interest of a growing number of researchers in developmental 
robotics in the recent years, and several computational models have been 
developed (see Barto et al., 2004; Oudeyer et al., 2007 for reviews).

However, the very concept of intrinsic motivation has never really been 
consistently and critically discussed from a computational point of view. It 
has been used intuitively by many authors without asking for what it really 
means. Thus, the fi rst objective and contribution of this paper is to present 
an overview of this concept in psychology followed by a critical reinterpre-
tation in computational terms. We show that the defi nitions provided in psy-
chology are actually unsatisfying. As a consequence, we will set the ground 
for a systematic operational study of intrinsic motivation by presenting a 
typology of possible computational approaches, and discuss whether it is 
possible or useful to give a single general computational defi nition of intrin-
sic motivation. The typology that we will present is partly based on exist-
ing computational models, but also presents new ways of conceptualizing 
intrinsic motivation. We will try to focus on how these models relate to each 
other and propose a classifi cation into broad but distinct categories.

INTRINSIC MOTIVATION FROM THE 
PSYCHOLOGIST’S POINT OF VIEW
Intrinsic motivation and instrumentalization
According to Ryan and Deci (2000) (pp. 56),

Intrinsic motivation is defi ned as the doing of an activity for its inherent 
satisfaction rather than for some separable consequence. When intrinsi-
cally motivated, a person is moved to act for the fun or challenge entailed 
rather than because of external products, pressures, or rewards.

Intrinsic motivation is clearly visible in young infants, that consistently try 
to grasp, throw, bite, squash or shout at new objects they encounter. Even 
if less important as they grow, human adults are still often intrinsically 
motivated while they play crosswords, make paintings, do gardening or 
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just read novels or watch movies. Yet, to get a clearer picture of intrinsic 
motivation, one needs to understand that it has been defi ned by contrast 
to extrinsic motivation:

Extrinsic motivation is a construct that pertains whenever an activity is 
done in order to attain some separable outcome. Extrinsic motivation thus 
contrasts with intrinsic motivation, which refers to doing an activity simply 
for the enjoyment of the activity itself, rather than its instrumental value. 
(Ryan and Deci, 2000)

We see that a central feature that differentiates intrinsic and extrinsic 
motivation is instrumentalization. We also see that the concepts of intrinsic 
and extrinsic motivations form a different distinction than the one between 
internal and external motivations. In the computational literature, “intrinsic” 
is sometimes used as a synonym to “internal”, and “extrinsic” as a syno-
nym to “external”. Yet, it is in fact a confusion. Indeed, there are extrinsic 
motivations that can be internal and vice versa. In fact, there are different 
kinds of instrumentalizations that can be classifi ed as more or less self-
determined (Ryan and Deci, 2000). Let us give examples to be more clear.

For example, a child that does thoroughly his homework might be 
motivated by avoiding the sanctions of his parents if he would not do it. 
The cause for action is here clearly external, and the homework is not 
done for its own sake but for the separate outcome of not getting sanc-
tions. Here the child is extrinsically and externally motivated.

On the other hand, it is possible that a child could do thoroughly his 
homework because he is persuaded that it will help him get the job he 
dreams of, later when he will be an adult. In this case, the cause for 
action is internally generated, and the homework is again not achieved 
for its own sake but because the child thinks it will lead to the separate 
outcome of getting a good job.

Finally, it is also possible that a child does thoroughly its homework 
for the fun of it, and because he experiences pleasure in the discovery 
of new knowledge or considers for example its math problem just as fun 
as playing a video game. In this case, its behavior is intrinsically (and 
internally) motivated.

These different kinds of motivations can also sometimes be super-
posed or interleaved in the same global activity. For example, it is quite 
possible that a child doing his homework is partly extrinsically motivated 
by getting a high grade at the exam and partly intrinsically motivated by 
learning new interesting things. Also, for example, imagine a child that is 
intrinsically motivated by playing tennis but has to ride its bicycle to get 
to the tennis court (and does not like particularly riding bicycles). In this 
case, the riding of the bicycle is an internal and extrinsically motivated 
behavior that spins out of the intrinsically motivated behavior of playing 
tennis.

What makes an activity intrinsically motivating?
Given this broad distinction between intrinsic and extrinsic motivation, 
psychologists have tried to build theories about which features of activi-
ties make them intrinsically motivating for some people (and not all) at 
some times (the same activity might be intrinsically motivating for a per-
son at a given time, but no more later on). They have studied how these 
motivations could be functionally implemented in an organism, humans 
in particular, and several theoretical directions have been presented.

Drives to manipulate, drives to explore. In the 1950s, psychologists 
started by trying to give an account of intrinsic motivation and exploratory 
activities on the basis of the theory of drives (Hull, 1943), which are spe-
cifi c tissue defi cits like hunger or pain that the organisms try to reduce. 
For example, (Montgomery, 1954) proposed a drive for exploration and 
(Harlow, 1950) a drive to manipulate. This drive naming approach had 
many short-comings which were criticized in detail by White (1959): 
intrinsically motivated exploratory activities have a fundamentally differ-
ent dynamics. Indeed, they are not homeostatic: the general tendency to 
explore is not a consummatory response to a stressful perturbation of the 
organism’s body.

Reduction of cognitive dissonance. Some researchers then proposed 
another conceptualization. Festinger’s theory of cognitive dissonance 
(Festinger, 1957) asserted that organisms are motivated to reduce disso-
nance, which is the incompatibility between internal cognitive structures 
and the situations currently perceived. Fifteen years later a related view 
was articulated by Kagan stating that a primary motivation for humans is 
the reduction of uncertainty in the sense of the “incompatibility between 
(two or more) cognitive structures, between cognitive structure and expe-
rience, or between structures and behavior” (Kagan, 1972). However, 
these theories were criticized on the basis that much human behavior is 
also intended to increase uncertainty, and not only to reduce it. Human 
seem to look for some forms of optimality between completely uncertain 
and completely certain situations.

Optimal incongruity. In 1965, Hunt developed the idea that children 
and adult look for optimal incongruity (Hunt, 1965). He regarded children 
as information-processing systems and stated that interesting stimuli 
were those where there was a discrepancy between the perceived and 
standard levels of the stimuli. For, Dember and Earl, the incongruity or 
discrepancy in intrinsically-motivated behaviors was between a person’s 
expectations and the properties of the stimulus (Dember and Earl, 1957). 
Berlyne developed similar notions as he observed that the most reward-
ing situations were those with an intermediate level of novelty, between 
already familiar and completely new situations (Berlyne, 1960).

Motivation for effectance, personal causation, competence and 
self-determination. Eventually, a last group of researchers preferred the 
concept of challenge to the notion of optimal incongruity. These research-
ers stated that what was driving human behavior was a motivation for 
effectance (White, 1959), personal causation (De Charms, 1968), com-
petence and self-determination (Deci and Ryan, 1985). Basically, these 
approaches argue that what motivates people is the degree of control 
they can have on other people, external objects and themselves, or in 
other words, the amount of effective interaction. In an analogous man-
ner, the concept of optimal challenge has been put forward, such as for 
example in the theory of “Flow” (Csikszentmihalyi, 1991).

MOTIVATION IN COMPUTATIONAL 
SYSTEMS: EXTRINSIC vs. INTRINSIC 
AND EXTERNAL vs. INTERNAL
After having made a broad review of intrinsic motivation in psychology, 
we will here start to take a computational viewpoint. To begin with, we 
will describe how motivations in general are conceived and used in com-
puter and robotic architectures. We will then present a set of important 
distinctive dimensions, among which the intrinsic-extrinsic distinction, 
that are useful to organize the space of possible motivation systems.

Motivational variables and drives. While motivation is sometimes 
implemented in an implicit manner in simple robot architectures, such 
as phototaxis in Braitenberg vehicles (Braitenberg, 1984), it is now rather 
common to implement it directly and explicitly in the form of a module 
that tracks the value of a number of internal “motivational” variables and 
sends signals to the rest of the architecture (Arkin, 2005; Breazeal, 2002; 
Huang and Weng, 2004; Konidaris and Barto, 2006). For example, one 
often encounters an energy level variable, associated with a zone of com-
fort (i.e., a range of values), and when this variable gets out of this zone, 
the system sends signals to the rest of the architecture, and to the action 
selection module in particular, so that the robot fi nds a charging station 
as soon as possible. This homeostatic system can also be implemented 
as a Hullian drive (Hull, 1943; Konidaris and Barto, 2006), energy level 
being a variable ranging from 0 (totally unsatisfi ed) to 1 (satiated), and 
constantly sending its value to the action selection system in order to 
maintain it as close to 1 as possible.
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Computational Reinforcement Learning and rewards. It is often the 
case in robotic systems that the action strategy that allows to keep moti-
vational variables as satiated as possible is neither fi xed nor initially hand-
coded, but rather should be learnt. The standard framework in which this 
happens is “computational reinforcement learning (CRL)” (Sutton and 
Barto, 1998). This framework has introduced many algorithms targeted 
at fi nding strategies to maximize “rewards”, which is the pivotal concept 
of CRL. Very importantly, the meaning of the term “reward” is used in a 
specifi c technical manner in CRL and is different from the meaning of the 
term “reward” in psychology, and in particular in the theory of operant 
conditioning (Skinner, 1953). Nevertheless, these two meanings overlap 
and this has produced a number of confusions in the literature. In CRL, a 
“reward” is technically only a numerical quantity that is measured con-
tinuously and used to drive the action selection mechanism so that the 
cumulated value of this quantity in the future is maximized. CRL theory 
is completely agnostic about what/how/where this value is generated. 
Coming back to robots implementing ethologically inspired motivation 
system, this value could be for example the value of the robot’s internal 
level of energy. But, and this is how CRL is often used in the computa-
tional literature, this value could also be set directly by a human engineer 
or by an external program built by a human engineer. For example, a 
number of experiments in which engineers try to build robots that can 
walk forward have used CRL algorithms with a reward being a value 
coming from an external system (e.g., camera on the ceiling) observing 
how fast (or not) the robot moves (the value being the speed). It is in these 
experiments that the term “reward” overlaps with the term “reward” used 
in the operant conditioning literature, and where it denotes the getting of 
an external object/event/property such as money, food or a high grade at 
school. But one has to keep in mind that in a robot using CRL, a reward 
can be completely internally defi ned and be analogous to the very release 
of a neurotransmitter.

Rewards as a common currency for multiple motivations. One of 
the nice features of the reward concept in CRL is that, being a numeri-
cal quantity, it can act as a “common currency” among several coexist-
ing motivations in a single architecture (McFarland and Bosser, 1994). 
Indeed, in a typical organism, natural or artifi cial, different and possibly 
confl icting motives can try to push actions in certain directions: for exam-
ple, one may have a drive for energy level maintenance co-existing with 
a drive for physical integrity maintenance, a drive for sleeping, and a 
drive pushing towards the search for social partners. In order to arbitrate 
between the possibly confl icting actions entailed by all these motivations, 
one uses the possibility to numerically compare the expected rewards 
associated with each of them. Moreover, one often sees architectures 
in which a (possibly adaptive) numerical weight is associated to each of 
these rewards (Konidaris and Barto, 2006).

Internal vs. external motivations. Given this architectural framework 
for implementing motivations in a robot, one can investigate a fi rst kind 
of distinction between internal and external motivations. This difference 
relates to autonomy and lies in the functional location of the mechanism 
that computes/generates the reward. If the reward, i.e., the numerical 
quantity that the system has to maximize, comes from the outside of the 
autonomous system, then it is called external. This is the above men-
tioned example of the walking robot driven by a reward coming from a 
human or a system with a camera mounted on the ceiling. If the reward is 
computed and generated internally by the autonomous system, then it is 
called internal. This is the above mentioned example of the reward asso-
ciated to the satiation of an energy maintenance drive. This difference is 
summarized on Figure 1. Yet, this difference can be sometimes subtle 
in the case of robots. Computers allow us to do manipulations that are 
impossible with humans. For example, an engineer could very well build 
an autonomous machine that is capable of monitoring by itself whether 
it is walking forward or not and at what speed, and could incorporate 
in the robot’s internal architecture a motivation to go forward as fast as 

possible. In practice, this will produce more or less the same behavior 
that with the walking detection system mounted on the ceiling, but tech-
nically we have here an internal reward (which is nevertheless extrinsic 
as we will see). Of course, this kind of manipulation is not possible with 
humans, and it is much more diffi cult to fi nd this kind of “limit” example 
in humans.

Intrinsic vs. extrinsic motivations. Now we come to how we can con-
ceptualize the difference between intrinsic and extrinsic motivation in 
this computational framework. We saw earlier that intrinsic motivation 
was defi ned in psychology as characterizing activities that were “fun” 
or “challenging” for their own sake, whereas extrinsic motivation char-
acterized activities achieved in order to reach a specifi c goal defi ned 
separately. To a computer scientist, these defi nitions are actually rather 
vague and could be computationally interpreted in a variety of incom-
patible manners. First, it seems that the properties that make an activ-
ity intrinsically motivating (the “fun”, the “challenge”, the “novelty”, the 
“cognitive dissonance” or the “optimal incongruity”) are crucial to the 
very defi nition of intrinsic motivation, but there is no unifi ed approach 
or consensus on what they actually are in the psychology literature. 
Second, the concept of goal or instrumentalization that differentiates 
intrinsic from extrinsic is in fact ambiguous. Indeed, one could for exam-
ple imagine the existence of a motivation such that a positive reward is 
generated each time a novel situation is encountered. In a CRL frame-
work, the system tries to maximize rewards, and so  getting rewards is a 
goal! Thus, the search for novel situations, which is typically  presented 

Figure 1. The difference between external and internal motivations 
in the CRL framework: in externally motivated behavior, rewards are 
computed outside the agent and imposed to it, whereas in internally 
motivated behavior, rewards are computed inside the agent and self-
determined. This fi gure is inspired from Barto et al. (2004).
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as intrinsically motivated behavior in the  psychology literature, is 
directed by the goal of getting internal rewards, and so is technically 
extrinsically motivated. We thus see that the concept of “separate goal” 
used to defi ne extrinsic motivation is too vague and should probably be 
amended with a number of specifi c properties. But what properties shall 
characterize a goal involved in extrinsic, and not intrinsic, motivation? 
The problem of defi ning precisely a distinction is made even harder by 
the fact that, as we have seen above, intrinsic and extrinsic motivations 
are not exclusive concepts: a given activity can be at the same time 
intrinsically and extrinsically motivated. Nevertheless, this discussion 
shows again that the distinction between intrinsic and extrinsic is differ-
ent than the distinction between internal and external (which, as we saw, 
is much simpler). It can be said safely that all external motivations, as 
defi ned in the previous paragraph, are not intrinsic, whatever the inter-
pretation of “activities that are fun or challenging for their own sake” 
is. It can also be said safely that internal motivations can be intrinsic or 
extrinsic or both.

Given this confusion due to science’s low level of understanding 
of motivations in humans, the most pragmatic approach to intrinsic 
motivation from a computational point of view is maybe to avoid trying 
to establish a single general defi nition and rather try to make a map 
based on a series of existing or possible operational approaches. This 
is what we will do in the next section, as well as identify examples 
of computationally defi ned motivations that shall not be considered as 
intrinsic. Nevertheless, as we will see, this enumeration of examples 
will lead us to a proposal for such a general computational defi nition of 
intrinsic motivation. This defi nition will be described in the discussion, 
and we will argue that in spite of being non-intuitive from a psycho-
logical theory point of view, it might be fruitful for the organization of 
research.

Homeostatic vs. heterostatic motivations. To make the landscape of 
motivation features more complete, one has also to present the distinc-
tion between two important classes of motivations: homeostatic and 
heterostatic. The most frequent type of motivation found in robots, which 
is also probably the most frequent in the animal kingdom, are homeo-
static systems that consist in pushing organisms to maintain some of 
their properties in a “viable” or “comfort” zone. This is the example of 
the motivation for maintaining battery energy above a certain thresh-
old (and necessarily below a maximum which cannot be over passed), 
or a motivation for maintaining an intermediate level of social stimula-
tion (Breazeal, 2002). In a Hullian perspective, homeostatic motivations 
correspond to drives that can be satiated (for example, a food drive is 
satiated after eating enough food). On the opposite side, there exists het-
erostatic motivation systems that continuously push an organism away 
from its habitual state. Homeostatic motivations are systems which try 
to compensate the effect of perturbations (external or internal) on the 
organism, while heterostatic motivations are systems that try to (self-) 
perturbate the organism out of its equilibrium. In Hullian terms, hetero-
static motivations are drives that cannot be satiated. For example, as 
will see below, there can be a motivation pushing explicitly an organism 
to search for novel situations: in the CRL framework, rewards are pro-
vided every time a novel situation is encountered. In this case, there is 
no equilibrium state that the motivation is trying to maintain, but rather 
the organism would permanently obtain reward if it would experience 
novelty over and over again (but note that it is possible to imagine a 
motivation system that provides rewards only when novelty is experi-
enced at an intermediate level of frequency, in which case this becomes 
a homeostatic motivation).

Fixed vs. adaptive motivations. Finally, a last but equally important 
distinction is the fi xed vs. adaptive property of motivation systems. In 
psychology terms, a fi xed motivation system is one that will always 
value the same sensorimotor situation in the same manner during the 
entire individual’s life time. In a CRL framework, a fi xed  motivation 

system is one that will always provide the same reward for the same 
 sensorimotor situation during the individual’s life time1. On the con-
trary, an adaptive motivation system is one that will value the same 
situation differently as time passes (or, in a CRL framework, it will not 
 necessarily provide the same reward for the same situation as time 
passes). For example, the energy maintenance motivation may be fi xed 
if the zone of energy comfort always remains the same, or may be 
adaptive if for example the individual’s body grows with time and the 
motivation is implemented in such a way that the comfort zone shifts 
its boundaries accordingly. If an individual is able to remember the situ-
ation it has already experienced, then a drive for novelty is adaptive: a 
situation that was novel and thus attractive at some point, will not be 
anymore after having experienced it.

A TYPOLOGY OF COMPUTATIONAL 
APPROACHES OF INTRINSIC MOTIVATION
A signifi cant number of cognitive architectures including particular mod-
els of intrinsic motivation have already been developed in the literature 
(e.g., Barto and Simsek, 2005; Bonarini et al., 2006; Huang and Weng, 
2002; Kaplan and Oudeyer, 2003; Marshall et al., 2004; Merrick and 
Maher, 2008; Oudeyer et al., 2005, 2007; Schmidhuber, 1991; Thrun, 
1995). Yet, they are most often ad hoc and it is not clear to understand 
how they relate to each other and to the general concepts of the psy-
chology literature. As we will show, it also appears that a large set of 
potentially interesting computational approaches have not yet been 
implemented and studied.

The goal of this section is to present a typological and formal frame-
work that may allow researchers to understand better and map the 
space of possible models. This typology is the result of several years of 
theoretical development and actual practice of computational models 
of intrinsic motivation systems (Kaplan and Oudeyer, 2003, 2007a,b; 
Oudeyer and Kaplan, 2006; Oudeyer et al., 2005, 2007). It is grounded 
in the knowledge of the psychology literature and of the existing compu-
tational models, but tries both to go further the vagueness of the former 
and to generalize the particular robotic implementations. An underlying 
assumption in this typology is that we position ourselves in the computa-
tional reinforcement learning framework (CRL). Thus, the typology relies 
on the formal description of the different types of reward computations 
that may be considered as defi ning an intrinsic motivation system. The 
typology is focused on the defi nition of rewards, and voluntarily leaves 
unspecifi ed the particular CRL algorithms (e.g., Q-learning or Sarsa, 
see Sutton and Barto, 1998 for a presentation of possible algorithms) 
in which it can be plugged into because we think it is an orthogonal 
research issue.

Furthermore, while we focus here on the defi nition of rewards related 
to intrinsic motivation, it is implicit that, on a particular robot, these intrin-
sic rewards might be integrated together with other types of reward sys-
tems (e.g., hunger, social presence,…). It should also be noted that when 
we will present fi gures summarizing each of the broad types that we 
present, we only show the cognitive circuits that are directly relevant to 
the intrinsic motivation system, but it is implicit that there might be many 
other modules running concurrently in the complete cognitive architec-
ture of a particular robot.

In this typology, some kinds of models of intrinsic rewards have 
already been implemented and tested in the literature. From these mod-
els, a number of variants are proposed. Some of these variants are neces-
sary improvements of the basic models that came as a result of actual 
experiments with robots. Some other variants come as natural formal 
variants and are thus extremely similar in terms of implementation, but 
interestingly correspond intuitively to some of human motivation that are 
not classically considered as intrinsic in psychology. The consequence 

1Here, and as everywhere is the text, the term “sensorimotor situation” is used in its 
most general sense and for example includes internal physiological variables.
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of this in terms of how intrinsic motivation shall be conceptualized is 
elaborated in the discussion section. Finally, we also propose new formal 
models of intrinsic motivation, that correspond to important approaches 
in psychology but that seem to have never been investigated operation-
ally in a computational framework.

To our knowledge, this is the fi rst time that such a typology is 
 presented, and we hope it will help to structure future research. Yet, it is 
also important to understand what this typology is not meant to be:

1. we do not claim that this list is exhaustive or that there would be no 
other way to organize approaches into types.

2. the list of formal approaches that we present is not intended to include 
methods for programming particular equations in particular robots. 
For the computation of some types of rewards, it has already been 
done elsewhere in the literature, and for some other, it is the subject 
of future research. Yet, where it is relevant, we provide references to 
papers that describe practical methods and architectures that allow 
to implement a particular approach in a particular robot.

3. this typology is not a review of existing computational models of 
intrinsic motivation, which is available in Oudeyer et al. (2007), but 
rather a presentation of a large formal framework in which existing 
and future models may be positioned.

4. this typology does not say anything concerning what kind of behav-
iour might appear when one of the presented formal models is 
implemented in a robot and how far it could be used as a basis for 
open-ended development: in fact, several of the presented models 
are explicitly behaviouraly contradictory, but they are included both 
because they have already been used as such in the literature or 
because of their formal similarity. As a consequence, it should also be 
noted that this typology, and thus the general conceptualization of 
intrinsic motivation that we propose, is based on the mechanisms at 
play rather than on the actual results that they produce.

In the following, we organize the space of computational models of 
intrinsic motivation into three broad classes that all share the same formal 
notion of a sensorimotor fl ow experienced by a robot. We assume that the 
typical robot is characterized by a number of sensory channels, denoted 
s

i 
, and motor channels denoted m

i 
, whose values continuously fl ow with 

time, hence the notations s
i 
(t) and m

i (t) (see Figure 2). The  vector of 
all sensorimotor values at time t is denoted SM (t). Three  features are 
 important for the following computational models:

1. these channels may correspond to any kind of physical or internal 
variable of a robot (for example coming from infra-red sensors, micro-
phone sensors, virtual internal sensors like a face presence detector, 
low-level joint values of an arm, global direction of movement of the 
body,…);

2. what these sensory channels actually are, i.e., their “meaning”, is NOT 
taken into account;

3. the set of sensorimotor channels taken into account in intrinsic 
 motivation measures of a situation may be smaller than the set of all 
sensorimotor channels available to the robot.

Knowledge-based models of intrinsic motivation
A fi rst computational approach to intrinsic motivation is based on meas-
ures of dissonances (or resonances) between the situations experienced 
by a robot and the knowledge and expectations that the robot has about 
these situations. Here the word “situation” might refer as well to a pas-
sive observation activity in which a robot does nothing but focus its atten-
tion on a particular aspect of the environment, as to an active activity in 
which the robot performs actions and compares the actual outcome of its 
actions to its knowledge and expectations about these actions.

Within this approach, there are two sub-approaches related to the 
way knowledge and expectations are represented: information theoretic/
distributional and predictive.

Information theoretic and distributional models. This approach is 
based on the use of representations, built by the robot, that estimate the 
distributions of probabilities of observing certain events e k in particular 
contexts, defi ned as mathematical confi gurations in the sensorimotor 
fl ow. There are several types of such events, but the probabilities that 
are measured are typically either the probability of observing a certain 
state SM k in the sensorimotor fl ow, denoted P (SM k ), or the probability 
of observing particular transitions between states, such as P (SM k (t ), 
SM l (t + 1)), or the probability of observing a particular state after having 
observed a given state P (SM k (t + 1)|SM l (t )). Here, the states SM k can 
be either be direct numerical prototypes or complete regions within the 
sensorimotor space (and it may involve a mechanism for discretizing the 
space). In the following, we will consider all these eventualities possible 
and just use the general notation P (ek). We will assume that the robot 
possesses a mechanism that allows it to build internally, and as it experi-
ences the world, an estimation of the probability distribution of events 
across the whole space E of possible events (but the space of possi-
ble events is not predefi ned and should also be discovered by the robot, 
so typically this is an initially empty space that grows with experience). 
Finally, we use the concept of entropy, which characterizes the shape of 
the distribution function, for discretized spaces:

H E P e P ek

e E

k

k

( ) ln= − ( ) ( )( )
∈

∑
 

(1)

and for continuous spaces:

H E P e P ek k

e Ek

( ) ln= − ( ) ( )( )
∈
∫

 
(2)

Figure 3 summarizes the general architecture of information theoretic 
approaches to intrinsic motivation.

Uncertainty motivation (UM). The tendency to be intrinsically attracted 
by novelty has often been used as an example in the literature on intrin-
sic motivation. A straightforward manner to computationally implement 

Figure 2. A robot is characterized by the continuous fl ow of values of its 
 sensory and motor channels, denoted SM(t).
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it is to build a system that, for every event e k that is actually observed, 
will generate a reward r (e k ) inversely proportional to its probability of 
observation:

r e t C P e tk k, ,( ) = ⋅ − ( )( )1
 (3)

where C is a constant. This reward computation mechanism can 
then be integrated within a CRL architecture, which is going to select 
actions so that the expected cumulated sum of these rewards in the 
future will be maximized. Actually, this will be implicit in all following 
defi nitions, that concentrate on the explicit mechanism for defi ning and 
computing rewards. Various models based on UM-like mechanisms 
were  implemented in the computational literature (e.g., Huang and 
Weng, 2004).

Information gain motivation (IGM). It has also often been proposed in psy-
chology and education that humans have a natural propensity to learn 
and assimilate (Ryan and Deci, 2000). In information theoretic terms, this 
notion of assimilation or of “pleasure of learning” can be modeled by the 
decrease of uncertainty in the knowledge that the robot has of the world 
after an event e k has happened:

r e t C H E t H E tk , ( , ) ( , )( ) = ⋅ − +( )1  (4)

Examples of implementation of this information gain motivation can be 
found for instance in Fedorov (1972) and Roy and McCallum (2001) (but 
note that in these paper the term “motivation system” is not used). It 
should be noted that, in practice, it is not necessarily tractable in continu-
ous spaces. Actually, this is potentially a common problem to all distribu-
tional approaches.

Distributional surprise motivation (DSM). The pleasure of experiencing 
surprise is also sometimes presented. Surprise is typically understood 
as the observation of an event that violates strongly expectations, i.e., an 
event that occurs and was strongly expected not to occur. Mathematically, 
one can model it as:

r e t C
P e t

P e t
k

k

k
,

,

,
( ) = ⋅

− ( )
( )

1

 
(5)

where C is a constant. Note that this is somewhat different from UM in 
that there is a non-linear increase of reward as novelty increases. An 
event can be highly novel and rewarding for UM, but not very surprising 
if one did not expect more another event to take place instead of it (e.g., 
any random event in a fl at uniform distribution is novel and rewarding for 
UM but not surprising and very little rewarding for DSM).

Figure 3. The general architecture of information theoretic/distributional knowledge-based computational approaches to intrinsic motivation.
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Distributional familiarity motivation (DFM). In the psychology literature, 
intrinsic motivations refer generally to mechanisms that push organisms 
to explore their environment. Yet, there are direct variants of previous 
possible systems that are both simple and correspond intuitively to exist-
ing forms of human motivation. For example, modifying the sign of UM 
would model a motivation to search situation which are very frequently 
observed, and thus familiar:

r e C P ek k( ) = ⋅ ( ) (6)

We will discuss below whether we should consider this as an intrinsic 
motivation.

Predictive models. Often, knowledge and expectations in robots are not 
represented by complete probability distributions, but rather based on the 
use of predictors such as neural networks or support vector machines 
that make direct predictions about future events (see Figure 4). In this 
kind of architecture, it is also possible to defi ne computationally various 
forms of intrinsic motivations. These predictors, denoted Π, are typically 
used to predict some properties Pr k or sensorimotor states SMk that will 
happen in the future (close or far) given the current sensorimotor context 
SM(t) and possibly the past sensorimotor context. Similarly to above, we 
will denote all properties and states under the generic notation e k. We 

will also use the notation SM (→ t) to denote a structure which encodes 
the current sensorimotor context and possibly the past contexts. Thus, a 
general prediction of a system will be denoted:

Π SM t e tk( ) ( )→( ) = +� 1  (7)

We then defi ne E
r 
(t) as the error of this prediction, being the distance 

between the predicted event �e tk ( )+ 1  and the event that actually hap-
pens ek(t + 1):

E t e t e tr
k k( ) ( ) ( )= + − +� 1 1  (8)

Figure 4 summarizes the general architecture of predictive knowledge-
based computational approaches to intrinsic motivation.

Predictive novelty motivation (NM). It then comes naturally to propose a 
fi rst manner to model a motivation for novelty in this framework. Interesting 
situations are those for which the prediction errors are highest:

r SM t C E tr( ) ( )→( ) = ⋅  (9)

where C is a constant. Examples of implementation of this kind of moti-
vation system can be found for example in Barto et al. (2004) and Thrun 
(1995).

Figure 4. The general architecture of predictive knowledge-based computational approaches to intrinsic motivation.
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Intermediate level of novelty motivation (ILNM). According to  psychologists 
that proposed that humans are attracted by situations of intermediate/
optimal incongruity, one can update the previous mechanism by introduc-
ing a threshold Er

σ that defi nes this intermediate level of novelty:

r SM t C e
C E t Er r( )

( )→( ) = ⋅ − ⋅ −
1

2

2σ

 (10)

where C1 and C2 are constants. Yet, this defi nition has the drawback of 
leaving the tuning of the threshold to the intuition of the human engineer. 
As a matter of fact, having a single threshold for the whole sensorimo-
tor space might even be quite problematic in practice, since notions of 
novelty and similarities might vary a lot in different parts of that space, 
and developing mechanisms for automatic adaptive thresholding is a dif-
fi cult problem.

Learning progress motivation (LPM). Several researchers have pro-
posed another manner to model optimal incongruity which avoids the 
problem of setting a threshold, and is related to the information gain 
measurement described in the information theoretic section above. It 
consists in modeling intrinsic motivation with a system that generates 
rewards when predictions improve over time. Thus, the system will try 
to maximize prediction progress, i.e., the decrease of prediction errors. 
Prediction progress has also been referred as “learning progress” in 
Oudeyer et al. (2007). To get a formal model, one needs to be precise and 
subtle in how the decrease is computed. Indeed, as argued in Oudeyer 
et al. (2007), the possible naive implementation comparing prediction 
errors between a window around time t and a window around time t – θ 
is in fact nonsense: this may for example attribute a high reward to the 
transition between a situation in which a robot is trying to predict the 
movement of a leaf in the wind (very unpredictable) to a situation in which 
it just stares at a white wall trying to predict whether its color will change 
(very predictable). The system should not try to compare very different 
sensorimotor situations and qualitatively different predictions. This is why 
a possibility is to use a mechanism that will allow the robot to group 
similar situations into regions R

n
 within which comparison is meaning-

ful. The number and boundaries of these regions are typically adaptively 
updated. Then, for each of these regions, the robot monitors the evolution 
of prediction errors, and makes a model of their global derivative in the 
past, which defi nes learning progress, and thus reward, in these regions. 
Mathematically:

r SM t E t E tr r
( ) ( ) ( )→( ) = − −R Rn nθ  (11)

with SM (t ) belonging to region R
n and where 〈 E

r
Rn (t) 〉 is the mean of 

predictions errors made by the predictor in the last τ predictions made 
about sensorimotor situations SM (t) belonging to region R

n
. A detailed 

study about how to implement such a system is provided in Oudeyer 
et al. (2007).

A different manner to compute learning progress has also been pro-
posed in Schmidhuber (1991). It consists in measuring the difference in 
prediction error of the predictor Π, about the same sensorimotor context 
SM (→ t), between the fi rst prediction and a second prediction made just 
after the predictor has been updated with a learning rule:

r SM t E t E tr r→( ) = − ′( ) ( )  (12)

where

′ = ′ →( ) − +E t SM t e tr
k( ) ( ) ( )Π 1  (13)

with Π being the updated predictor after the learning update due to the 
prediction Π(SM(→ t)) and the perception of the actual consequence 
ek(t + 1).

Predictive surprise motivation (SM). In analogy to DSM, it is also pos-
sible to use the predictive knowledge-based framework to model a 

 motivation for surprise. As explained above, surprise can be understood 
as the  occurrence of an event that was strongly not expected or as 
the nonoccurrence of an event that was strongly expected. Here, as 
opposed to the previous paragraphs, and because surprise is related to 
a particular event with a short time span, there is a necessity to have 
a mechanism that models explicitly, at each time step, the strength of 
predictions, i.e., of expectations. Thus, we need to introduce a meta-
predictor MetaΠ that tries to predict at time t what will be the error E

r
(t) 

of Π at time t:

MetaΠ SM t E tr( ) ( )→( ) = �
 (14)

where E tr ( )�  is the predicted absolute error of Π. Technically, MetaΠ is a 
machine of the same kind as Π, and can be a neural network or a sup-
port vector machine for example. It is updated at each time step after the 
actual E

r
(t) has been measured. Alternatively, MetaΠ could be imple-

mented simply as computing the mean of recent errors for the same 
prediction in the recent past. We can then defi ne a system that provides 
high rewards for highly surprising situations, based on the ratio between 
the actual error in prediction and the expected level of error in prediction 
(surprising situations are those for which there is an actually high error in 
prediction but a low level of error was expected):

r SM t C
E t

SM t
r( )
( )

( )
→( ) = ⋅

→( )MetaΠ  
(15)

where C is a constant.

Predictive familiarity motivation (FM). As in information theoretic mod-
els, the structure of above mentioned predictive models can be used to 
implement a motivation to experience familiar situations:

r SM t
C

E tr

( )
( )

→( ) =
 

(16)

where C is a constant. This implementation might nevertheless be prone 
to noise and reveal not so useful in the real world, since it is only based 
on predictions local in time and space. To get a more robust system for 
familiarity, a possibility is to compute a smoothed error of past predic-
tions in the vicinity of the current sensorimotor context. One can use the 
concept of regions introduced in the LPM paragraph:

r SM t
C

E tr
n

( )
( )

→( ) = R
 

(17)

where SM(→ t) falls in the sensorimotor regions R
n
. As in LPM, this 

architecture assumes a mechanism that allows to build incrementally the 
R

n regions. This mechanism can be based on iterative region splitting 
as in Oudeyer et al. (2007), or simply be based on a (possibly adaptive) 
threshold T

f
 on the distance from SM(→ t):

Rn i j j i fSM t SM t SM t SM t T( ) ( ) | ( ), ( )→( ) = → → →( ) <{ }dist
 

(18)

where dist (·,·) is a distance measure.

Competence-based models of intrinsic motivation
A second major computational approach to intrinsic motivation is based 
on measures of competence that an agent has for achieving self-
 determined results or goals. Interestingly, this approach has not yet been 
 studied in the computational literature, but we think that it contains a 
high potential for future research. Indeed, it is directly inspired from 
important psychological theories of effectance (White, 1959), personal 
causation (De Charms, 1968), competence and self-determination (Deci 
and Ryan, 1985), and “Flow” (Csikszentmihalyi, 1991). Central here is the 
concept of “challenge”, with associated measures of diffi culty as well as 
measures of actual performance. A challenge here will be any sensori-
motor  confi guration SMk, or any set {P

k 
} of properties of a  sensorimotor 
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 confi guration, that the individual sets by itself and that it tries to achieve 
through action. Thus, a challenge is here a self-determined goal, denot-
ed gk. It is the properties of the achievement process, rather than the 
“meaning” of the particular goal being achieved, that will  determine the 
level of interestingness of the associated activity. While prediction mecha-
nisms or probability models, as used in previous sections, can be used in 
the goal-reaching architecture, they are not mandatory (for example, one 
can implement systems that try to achieve self-generated goals through 
Q-learning and never explicitly make predictions of future sensorimotor 
contexts). Furthermore, while in some cases, certain competence-based 
and knowledge-based models of intrinsic motivation might be somewhat 
equivalent, they may often produce very different behaviors. Indeed, the 
capacity to predict what happens in a situation is only loosely coupled 
to the capacity to modify a situation in order to achieve a given self-
determined goal.

More technically, we will assume here a cognitive architecture in 
which there is a “know-how” module KH(t

g 
) that is responsible for plan-

ning actions in order to reach self-determined goals gk and that learns 
through experience. There is also a motivation module, which will attribute 
rewards based on the performance of KH(t

g 
). There are two time scales 

in this architecture: the traditional physical time scale  corresponding 

to atomic actions, denoted t, and an abstract time scale related to the 
sequence of goal-reaching episodes, denoted t

g
. A goal-reaching episode 

is defi ned by the setting of a goal gk(t
g 
) at time t

g
, followed by a sequence 

of actions determined by KH(t
g 
) in order to try to reach gk(t

g 
), and with 

a duration bounded by a timeout threshold T
g
. After the goal has been 

reached or the timeout has stopped KH(t
g 
), a new goal-reaching episode 

can begin, at abstract time t
g
 + 1. At the end of each episode, the sensori-

motor confi guration that has been reached, denoted g
k
(t

g 
), is compared to 

the initial goal g
k
(t

g 
), in order to compute the level of (mis-)achievement 

l
a
( g

k
, t

g 
) of g

k
:

l g t g t g ta k g k g k g,( ) = ( ) − ( )�
 

(19)

This level of achievement will then be the basis of the computation of an 
internal reward, and thus be the basis for evaluating the level of interest-
ingness of the associated goal. Finally, there is a module responsible for 
choosing appropriately goals that will provide maximal rewards, and that 
can typically be implemented by algorithms developed in the CRL frame-
work. Figure 5 summarizes the general architecture of  competence-
based approaches to intrinsic motivation.

Figure 5. The general architecture of competence-based computational approaches to intrinsic motivation.
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Episodes are related to temporally extended actions in option theory 
(Sutton et al., 1999). However, to our knowledge, this paper presents the 
fi rst description of competence-based models of intrinsic motivation.

We will now present several example systems differentiated by the 
way rewards are computed.

Maximizing incompetence motivation (IM). A fi rst competence-based 
approach to intrinsic motivation can be a system which pushes the 
robot to set challenges/goals for which its performance is lowest. 
This is a motivation for maximally diffi cult challenges. This can be 
implemented as:

r SM t g t C l g tk g a k g( ), , ,→( ) = ⋅ ( ) (20)

Note that here and everywhere in the competence based approaches, 
rewards are generated only at the end of episodes. The previous equa-
tion measures incompetence, and thus interestingness, in trying to reach 
a given goal only in a single trial/episode. It might be useful to build a 
reward system taking into account the performance of the robot about 
the same goal in previous episodes, especially for goals for which there 
is a high variance in performance. The equation would be:

r SM t g t C l g tk g a k g( ), , ,→( ) = ⋅ ( )  
(21)

where 〈l
a
( g

k
, t

g
)〉 denotes the mean of performances in trying to reach g

k
 

in the last τ episodes in which this goal was set up. This reward system 
could still be updated in order to allow for generalization in the computa-
tion of the interestingness of a goal. In the two previous equations, the 
interestingness of a given goal g

k
 did not depend on the performance 

of the robot in similar goals. Yet, this could be a useful feature: think for 
example of a robot playing with its arm, and discovering that it is inter-
esting to try to grasp an object that is 30 cm away on the table in front 
of it. It would be potentially useful that the robot would infer that trying 
to grasp an object that is 35 cm away is also interesting without having 
to recompute the level of interestingness from scratch. To achieve this, a 
possible solution is to use an equation of the type:

r SM t g t C l g tk g a k
g

g( ), , ,→( ) = ⋅ ( )σ

 
(22)

where 〈l
a
( g

k
Rn, t

g 
)〉 denotes the mean performances in trying to reach 

goals g
k
σg such that dist (g

k
, g

k
σg) < σg, with dist (·,·) being a distance 

function and σ
g
 a numerical threshold. Thus, with this formula, one con-

siders all goals that are closer than a given threshold as equivalent to the 
current goal for the computation of its interestingness.

Maximizing competence progress – aka Flow motivation (CPM). 
Maximizing incompetence does not model very well the psychological 
models of optimal challenge and “fl ow” proposed by (Csikszentmihalyi, 
1991). Flow refers to the state of pleasure related to activities for which 
diffi culty is optimal: neither too easy nor too diffi cult. As diffi culty of a 
goal can be modeled by the (mean) performance in achieving this goal, a 
 possible manner to model fl ow would be to introduce two thresholds defi n-
ing the zone of optimal diffi culty. Yet, the use of thresholds can be rather 
fragile, require hand tuning and possibly complex adaptive mechanism 
to update these thresholds during the robot’s lifetime. Another approach 
can be taken, which avoids the use of thresholds. It consists in defi ning 
the interestingness of a challenge as the competence progress that is 
experienced as the robot repeatedly tries to achieve it. So, a challenge for 
which a robot is bad initially but for which it is rapidly becoming good will 
be highly rewarding. Thus, a fi rst manner to implement CPM would be:

r SM t g t C l g t l g tk g a k g a k g( ), , , ,→( ) = ⋅ −( ) − ( )( )θ
 

(23)

corresponding to the difference between the current performance for 
task g

k
 and the performance corresponding to the last time g

k was tried, 

at a time denoted t
g – θ. Again, because of possible high variance in goal 

achievement, one could use smoothed differences:

r SM t g t C l g t l g t sk g a k g a k g( ), , , ,→( ) = ⋅ −( ) − ( )( )θ
 

(24)

with 〈l
a
( g

k 
), t

g 
)〉 being the mean performance in trying to reach g

k
 in the 

last τ corresponding episodes, and 〈 l
a
( g

k 
), t

g
 – θ) 〉 being the mean per-

formance in trying to reach g
k
 between episodes t

g
 – θ – τ and t

g
 – θ. 

Again, this formula does not include generalization mechanisms, and 
might reveal ineffi cient in continuous sensorimotor spaces. One can 
update it using the same mechanism as in IM:

r SM t g t C l g t l g tk g a k
g

g a k
g

g( ), , , ,→( ) = ⋅ −( ) − ( )( )σ σθ
 

(25)

with the same notations as for IM. The concept of regions (see LPM) could 
as well be used here.

Maximizing competence (CM). It is also possible to implement a moti-
vation that pushes a robot to experience well-mastered activities in 
this formal competence-based framework. One can use the following 
formula:

r SM t g t
C

l g t
k g

a k g

gn k

( ), ,
,

→( ) =
( ) ( )R

 

(26)

where g
k
 falls in the region R

n
 of the goal space. This architecture 

assumes a mechanism that allows to build incrementally the R
n regions. 

This mechanism can be based on iterative region splitting as in Oudeyer 
et al. (2007), or simply be based on a (possibly adaptive) threshold σ

g on 
the distance from g

k :

Rn k l k l gg g g g( ) = ( ) <{ }| ,dist σ  (27)

where dist(·,·) is a distance measure.

Morphological models of intrinsic motivation
The two previous computational approaches to motivation were based 
on measures characterizing the relation of a cognitive learning system 
and the fl ow of sensorimotor values. A third approach that can be taken 
is only based on mathematical/morphological properties of the fl ow of 
sensori-motor values, irrespective of what the internal cognitive system 
might predict or master. Figure 6 summarizes the general architecture 
of morphological computational approaches to intrinsic motivation. We 
will now present two examples of possible morphological computational 
models of intrinsic motivation.

Synchronicity motivation (SyncM). The synchronicity motivation pre-
sented here is based on an information theoretic measure of short-term 
correlation (or reduced information distance) between a number of sen-
sorimotor channels. With such a motivation, situations for which there 
is a high short-term correlation between a maximally large number of 
sensorimotor channels are very interesting. This can be formalized in the 
following manner.

Let us consider that the sensorimotor space SM is a set of n informa-
tion sources {SM

i 
} and that possible values for these information sources 

typically correspond to elements belonging to an arbitrary number of bins. 
At each time t, a element SM i corresponds to the information source SM

i 

and the following notation can be used: SM
i (t) = sm

i

The conditional entropy for two information sources SM
i and SM

j can 
be calculated as

H SM SM p sm sm p sm smj i i j
smsm

i j

ji

| , log ,( ) = − ( ) ( )∑∑ 2

 
(28)

where p(sm
j
|sm

i 
) = p(sm

j
, sm

i 
)/p(sm

i 
).
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H (SM
j
|SM

i 
) is traditionally interpreted as the uncertainty associated 

with SM
j
 if the value of SM

i is known.
We can measure synchronicity s(SM

j
, SM

i 
) between two information 

sources in various manners.
Crutchfi eld’s normalized information distance (which is a metric) 

between two information sources is defi ned as (Crutchfi eld, 1990):

d SM SM
H SM SM H SM SM

H SM SM
j i

i j j i

i j

|
| |

|
( ) =

( ) + ( )
( )  

(29)

Based on this defi nition we can defi ne synchronicity as

s SM SM
C

d SM SM
j i

j i

1 ,
,

( ) = ( )  
(30)

Alternatively we can assimilate synchronicity to mutual information

s SM SM MI SM SM

H SM H SM H SM SM

j i i j

i j i j

2 , ,

,

( ) = ( )
= ( ) + ( ) − ( )  (31)

We can also measure the correlation between the two time series

s SM SM
sm t sm sm t sm

sm t sm sm
j i

i i j jt

i it j

2 2
,

( ) ( )

( )
( ) =

−( )⋅ −( )
−( ) ⋅

∑
∑ (( )t smjt

−( )∑
2

 

(32)

Whatever, the type of measure used we can defi ne the reward associated 
with a given recent time window as

r SM t C s SM SMj i
ii

( ) ,→( ) = ⋅ ( )⎛
⎝⎜

⎞
⎠⎟∑∑

 
(33)

Synchrony detection between two (or more) information sources is thought 
to be a critical mechanism for infant learning and cognitive development 
(e.g., object interaction skills Watson, 1972, self-modeling Rochat and 
Striano, 2000, word-learning Gogate and Bahrick, 1998). Although gen-
erally not as a motivational variable, synchrony measures have been 
used in several recent formal models (e.g., Hershey and Movellan, 2000; 
Prince et al., 2003).

Stability motivation (StabM) and Variance motivation (VarM). The 
stability motivation pushes to act in order to keep the sensorimotor fl ow 
close from its average value.

r SM t
C

SM t SM t
( )

( ) ( )
→( ) =

− τ  
(34)

where 〈SM(t)〉τ is the average of the sensorimotor vector over the last τ 
time steps.

Opposite of the stability motivation, the variance motivation reward 
situations for which values have high variance in sensorimotor channels.

r SM t C SM t SM t( ) ( ) ( )→( ) = ⋅ −( )τ  (35)

where 〈SM (t)〉τ is the average of the sensorimotor vector over the last 
τ time steps.

Figure 6. The general architecture of morphological computational approaches to intrinsic motivation.
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Both could be viewed as rationale strategies in certain contexts. 
Stability permits to act in order to decrease the inherent instability of 
perception and could lead for instance to tracking behavior (Kaplan and 
Oudeyer, 2003). On the contrary, variance motivation could lead to explore 
unknown sensorimotor contingencies far from equilibrium.

EXAMPLES OF COMPUTATIONAL MODELS 
OF NON-INTRINSIC MOTIVATION SYSTEMS
For clarity sake, we will shortly present in this section some computa-
tional models of non-intrinsic motivation systems which are nevertheless 
internal.

Let’s imagine for instance that one wants to build a robot with a social 
presence motivation and that this robot can recognize faces in its envi-
ronment. If the robot does not see enough faces, it should act as if it is 
lonely and look for social interaction. if it sees too many, it should be 
overwhelmed and try to avoid new social interactions. If we defi ne Fτ (t) 
the average number of faces seen during the last τ timeframes and Fτ

σ 
the optimal average number faces, the reward for socially balanced inter-
action (SocM) could be defi ned as (C 1 and C 2 being some constants to 
be defi ned):

r SM t C e
C F t Fr( )

( )→( ) = ⋅ − −
1

2

2

τ
σ

 (36)

If the same manner, we can program a reward for energy maintenance 
that pushes the robot to maintain energy at an intermediary level (EnerM) 
(between starvation and indigestion) by defi ning E(t) the energy at time t 
and Eσ the optimal energy level and the following reward formula:

r SM t C e
C E t E

( )
( )→( ) = ⋅ − −

1
2

2σ

 
(37)

Motivation systems of these kinds have been investigated by many 
researchers (e.g., see Breazeal, 2002 for a series of relevant examples). 
They are very good for simulating natural complex balanced behavior. 

However, they should not be considered as intrinsic motivation systems 
as they are defi ned based on measures related to specifi c sensori chan-
nels (energy level, number of faces seen).

DISCUSSION
In spite of the diversity of the computational approaches of intrinsic moti-
vation that we presented, there is a point of convergence for all of them. 
Each of the described models defi nes a certain interpretation of intrinsic 
motivation in terms of properties of the fl ow of sensorimotor values and 
of its relation to the knowledge and know-how of the system independ-
ently of the meaning of the sensorichannels that are involved. This defi ni-
tion contrasts greatly with defi nitions based on behavioral observation 
(activities with no apparent goal except the activity itself) and may at fi rst 
seem non-intuitive as its behavioral consequences can only be explored 
through computational modeling and robotic experiments. Moreover, 
simple variants of these intrinsic motivation systems will not push a sys-
tem towards exploration (e.g., FM, CM or StabM will push a robot to stand 
still), but we believe it is formally more coherent to conceptualize them 
also as intrinsic motivations, even if some psychologists would not do so. 
In fact, we believe that this kind of systematic computational approach 
to intrinsic motivation can play a crucial role in organizing the debate 
around their very defi nition, as well as their role in behavior, learning and 
development, in particular because it permits to discuss hypothesis on a 
clearly defi ned common ground.

The table on Figure 7 presents all the models discussed in this paper and 
the families to which they belong (Intrinsic vs. Extrinsic, Adaptive vs. Fixed, 
Knowledge-based, Competence-based or Morphological, Information theo-
retic or Predictive, Homeostatic vs. Heterostatic). For each model we give a 
rough estimation of its exploration potential (how likely such a motivation 
can lead to exploratory and investigation behaviours) and of its organization 
potential (how likely such a motivation can lead to a structured and organ-
ized behaviour). We also estimate the computational cost and number of 
computational models existing so far for each of the categories. This table 
permits to clarify the landscape of intrinsic motivation models, show the 

Figure 7. This table presents all the models discussed in this paper and the families to which they belong. For each model we give a rough estimation 
of its exploration potential (how likely such a motivation can lead to exploratory and investigation behaviours) and of its organization potential (how likely such 
a motivation can lead to a structured and organized behaviour). We also estimate the computational cost and number of computational models existing so far 
for each of the categories.

Homeostatic (-)
vs Heterostatic

(+)
Motivation Exploration

potential
Organization

potential
Computational

cost
Existing models

Internal

Intrinsic

Adaptive

Knowledge-
based

Information
theoretic

+

UM *** * *** **

IGM *** *** *** **

DSM ** *** *** *

– DFM * *** *** *

Predictive

+ NM *** * * ***

– ILNM ** ** * **

+ LPM *** *** ** **

SM ** ** ** *

– FM * *** ** **

Competence-based
+

IM *** * ** *

CPM *** *** ** *

– CM * *** ** *

Fixed Morphological
–

SyncM * *** ** **

StabM * *** * **

+ VarM *** * * *

Extrinsic
– SocM / / * ***

– EnerM / / * ***
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potential of certain families and the underinvestigated areas. Indeed, we 
believe that most of the challenges are ahead of us.

First, it is now crucially important to understand how such kind of 
“agnostic” disembodied computer architecture can lead to specifi c 
behavioral organization when associated with specifi c embodiment and 
placed in particular environment. The same intrinsic motivation system 
can lead to very different outcomes depending on the type of physical or 
virtual system it is linked to. What is particularly interesting is that this 
type of architecture permits to consider embodiment as a controllable 
variable clearly separated from the control system.

Second, this typology can act as an invitation to investigate in a 
systematic manner which kinds of intrinsic motivation system among 
the ones we have reviewed can lead to open-ended developmental tra-
jectories in some ways similar to the one observed during children’s 
development. Our past research and experiments provided a number 
of hints showing that models of intrinsic heterostatic adaptive motiva-
tions are the one which hold the greatest promises because they can 
combine both high exploration and organization potentials (e.g., infor-
mation gain motivation - IGM-, maximizing learning progress motiva-
tion -LPM-, maximizing competence progress (Flow) motivation -CPM-). 
Such types of motivation systems push robots to explore their world 
in a progressive and organized manner, avoiding situations or goals 
which are too easy or too diffi cult at a given stage of their develop-
ment. For example, in Oudeyer et al. (2007), we present the Playground 
Experiment, in which an implementation of the LPM model is shown 
to allow the self- organization of a complex developmental trajectory. In 
this experiment, the robot knows very few things about its body and its 
environment: it basically only knows the unlabelled list of its sensors and 
motors (but for example does not know that some of them are related 
to vision and some other are related to touch). We have shown that the 
Learning Progress Motivation, coupled with an adequate region splitting 
mechanism, allows the robot to bootstrap broad sensorimotor catego-
ries and associated behaviours. Typically, the robot begins with a phase 
of random body babbling, which is then followed by a phase in which 
it plays in a focused manner with individual parts of its body, which 
is then followed by a phase in which the robot tries different kind of 
actions towards objects, which is then followed by a phase in which the 
robot discovers particular affordances between actions and objects (for 
example, the robot tries repeatedly to bite a bitable object, or to vocalize 
to a distant “adult” robot).

Such existing implementations were focused only on a particular kind 
of motivation integrated in a particular robot and environment. A great 
challenge is now to understand which kind of behavioral trajectories are 
linked with each system and to progress in our understanding of their 
role for cognitive open-ended development. In addition, there are good 
chances that the other types of intrinsic motivation systems we identify 
in this paper are also interesting in certain contexts, leading to relevant 
behavior or new learning opportunities.

Third, robotic or simulated experiments with intrinsic motivation 
systems should permit to shed new lights on both psychological and 
neurophysiological data. We have already discussed the relevance of 
these models, and in particular of the LPM model, for certain research 
debates in developmental psychology [e.g., language acquisition 
(Oudeyer and Kaplan, 2006), development of imitation (Kaplan and 
Oudeyer, 2007b)] and proposed some hypotheses for putative underly-
ing neural circuits (Kaplan and Oudeyer, 2007a). However, as in these 
domains very few experimental work actually deal with intrinsic moti-
vation, in most of the cases, these new models are an invitation to 
perform new experiments.

Finally, we must investigate the practical applicative aspects of these 
systems. Intrinsically motivated machines are fascinating. However, in 
certain application contexts, their intrinsic openness is a weakness. 
Learning how to design these machines of a new kind so that their huge 
potential can be unveiled in practice is one of the major challenge we still 
have to tackle.

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted in the absence of 
any commercial or fi nancial relationships that could be construed as a 
potential confl ict of interest.

ACKNOWLEDGEMENTS
The authors wish to thank the reviewers for their helpful comments.

REFERENCES
Arkin, R. (2005). Moving up the food chain: motivation and emotion in behavior based 

robots. In Who Needs Emotions: The Brain Meets the Robot, J. Fellous and M. Arbib, 
eds (Oxford University Press), pp. 245–270.

Arkin, R., Cervantes-Perez, F., and Weitzenfeld, A. (1998). Ecological robotics: a schema-
theoretic approach. In Intelligent Robots: Sensing, Modelling and Planning, R. Bolles, 
H. Bunke and H. Noltemeier, eds (Singapore, World Scientifi c), pp. 377–393.

Barto, A., and Simsek, O. (2005). Intrinsic motivation for reinforcement learning systems. 
In Proceedings of the Thirteenth Yale Workshop on Adaptive and Learning Systems, 
New Haven, CT, Yale University.

Barto et al. (2004). Intrinsically motivated learning of hierarchical collections of skills. In 
Proceedings of the 3rd International Conference on Development and Learning (ICDL 
2004). Salk Institute, San Diego.

Berlyne, D. (1960). Confl ict, Arousal and Curiosity. New York, NY, McGraw-Hill.
Bonarini, A., Lazaric, A., and Restelli, M. (2006). Self-development frame work for rein-

forcement learning agents. Proceedings of the Fifth International Conference on 
Development and Learning, Bloomington, IN, USA.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. Cambridge, MA, 
Bradford Books/MIT Press.

Breazeal, C. (2002). Designing Sociable Robots. Cambridge, MA, Bradford Books/MIT 
Press.

Crutchfi eld, J. P. (1990). Information and its metric. In Nonlinear Structures in Physical 
Systems – Pattern Formation, Chaos, and Waves, L. Lam and H. C. Morris, eds 
(New York, NY, Springer Verlag), pp. 119–130.

Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal Experience. New York, NY, 
Harper Perennial.

De Charms, R. (1968). Personal Causation: The Internal Affective Determinants of 
Behavior. New York, NY, Academic Press.

Deci, E., and Ryan, R. (1985). Intrinsic Motivation and Self-Determination in Human 
Behavior. New York, NY, Plenum Press.

Dember, W. N., and Earl, R. W. (1957). Analysis of exploratory, manipulatory and curiosity 
behaviors. Psychol. Rev. 64, 91–96.

Endo, Y., and Arkin, R. (2001). Implementing tolman’s schematic sowbug: behavior-
based robotics in the 1930’s. Proceedings of the IEEE International Conference on 
Robotics and Automation, Seoul, Korea.

Fedorov, V. (1972). Theory of Optimal Experiment. New York, NY, Academic Press.
Festinger, L. (1957). A Theory of Cognitive Dissonance. Evanston, Row, Peterson.
Fujita, M., Costa, G., Takagi, T., Hasegawa, R., Yokono, J., and Shimomura, H. (2001). 

Experimental results of emotionally grounded symbol acquisition by four-legged 
robot. In Proceedings of Autonomous Agents 2001, J. Muller, ed. Montreal, Canada.

Gogate, L. J., and Bahrick, L. (1998). Intersensory redundancy of kinematic primitives 
for visual speech perception facilitates learning of arbitrary relations between vowel 
sounds and objects in seven-month-old infants. J. Exp. Child Psychol. 69, 133–149.

Harlow, H. (1950). Learning and satiation of response in intrinsically motivated complex 
puzzle performances by monkeys. J. Comp. Physiol. Psychol. 43, 289–294.

Hershey, J., and Movellan, J. (2000). Audio-vision: using audio-visual synchrony to 
locate sounds. In Advances in Neural Information Processing Systems 12, T. Solla 
and K.-R. Muller, eds (Cambridge, MA, MIT Press).

Huang, X., and Weng, J. (2002). Novelty and reinforcement learning in the value sys-
tem of developmental robots. In Proceedings of the 2nd International Workshop 
on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Lund 
University Cognitive Studies, Vol. 94, C. Prince, Y. Demiris, Y. Marom, H. Kozima and 
C. Balkenius, eds (Edinburgh, Scotland, Lund University), pp. 47–55.

Huang, X., and Weng, J. (2004). Motivational system for human–robot interaction in 
Proceedings of the ECCV International Workshop on Human-Computer Interaction, 
Prague.

Hull, C. L. (1943). Principles of Behavior: An Introduction to Behavior Theory. New York, 
NY, Appleton-Century-Croft.

Hunt, J. M. (1965). Intrinsic motivation and its role in psychological development. Nebr. 
Symp. Motiv. 13, 189–282.

Kagan, J. (1972). Motives and development. J. Pers. Soc. Psychol. 22, 51–66.
Kaplan, F., and Oudeyer, P.-Y. (2003). Motivational principles for visual know-how devel-

opment. In Proceedings of the 3rd International Workshop on Epigenetic Robotics: 
Modeling Cognitive Development in Robotic Systems, Lund University Cognitive 
Studies, Vol. 101, C. Prince, L. Berthouze, H. Kozima, D. Bullock, G. Stojanov and 
C. Balkenius, eds (Boston, USA, Lund University), pp. 73–80.

Kaplan, F., and Oudeyer, P.-Y. (2007a). In search of the neural circuits of intrinsic motiva-
tion. Front. Neurosci. 1, 225–236.



O u d e y e r  a n d  K a p l a n

Frontiers in Neurorobotics  |  November 2007  |  Volume 1  |  Article 6

14

Kaplan, F., and Oudeyer, P.-Y. (2007b). The progress-drive hypothesis: an interpreta-
tion of early imitation. In Models and Mechanisms of Imitation and Social Learning: 
Behavioural, Social and Communication Dimensions, C. Nehaniv and K. Dautenhahn, 
eds (New York, Cambridge University Press), pp. 361–377.

Konidaris, G., and Barto, A. (2006). An adaptive robot motivational system. In From 
Animals to Animats 9: Proceedings of the 9th International Conference on Simulation 
of Adaptive Behavior (Roma, Italy, SAB-06).

Marshall, J., Blank, D., and Meeden, L. (2004). An emergent framework for self- motivation 
in developmental robotics. In Proceedings of the 3rd International Conference on 
Development and Learning (ICDL 2004). Salk Institute, San Diego.

McFarland, D., and Bosser, T. (1994). Intelligent Behavior in Animals and Robots. 
Cambridge, MA, MIT Press.

Merrick, K., and Maher, M.-L. (2008). Motivated learning from interesting events: adap-
tive, multitask learning agents for complex environments. Adapt. Behav. (in press).

Montgomery, K. (1954). The role of exploratory drive in learning. J. Comp. Physiol. 
Psychol. 47, 60–64.

Oudeyer, P.-Y., and Kaplan, F. (2006). Discovering communication. Connect. Sci. 18, 189–206.
Oudeyer, P.-Y., Kaplan, F., and Hafner, V. (2007). Intrinsic motivation systems for autono-

mous mental development. IEEE Trans. Evol. Comput. 11, 265–286.
Oudeyer, P.-Y., Kaplan, F., Hafner, V. V., and Whyte, A. (2005). The playground experi-

ment: task-independent development of a curious robot. In Proceedings of the AAAI 
Spring Symposium on Developmental Robotics, 2005, D. Bank and L. Meeden, eds 
(Stanford, AAAI), pp. 42–47.

Prince, C., Hollich, G., Helder, N., Mislivec, E., Reddy, A., Salunke, S., and Memon, N. (2003). 
Taking synchrony seriously: a perceptual-level model of infant synchrony  detection. 

In Proceedings of the Fourth International Workshop on Epigenetic Robotics: 
Modeling Cognitive Development in Robotic Systems, Lund University Cognitive 
Studies, Vol. 117, L. Berthouze, H. Kozima, C. Prince, G. Sandini, G. Stojanov, G. Metta 
and C. Balkenius, eds (Edinburgh, Scotland, Lund University).

Rochat, P., and Striano, T. (2000). Perceived self in infancy. Infant Behav. Dev. 23, 
513–530.

Roy, N., and McCallum, A. (2001). Towards optimal active learning through sam-
pling estimation of error reduction. In Proceedings of the 18th International 
Conference on Machine Learning. Williamstown, MA, USA, Morgan Kaufmann 
Publishers Inc.

Ryan, R. M., and Deci, E. L. (2000). Intrinsic and extrinsic motivations: classic defi nitions 
and new directions. Contemp. Educ. Psychol. 25, 54–67.

Schmidhuber, J. (1991). Curious model-building control systems. In Proceedings of 
the International Joint Conference on Neural Networks, Vol. 2. Singapore, IEEE, pp. 
1458–1463.

Skinner, B. (1953). Science and Human Behavior. New York, NY, Macmillan.
Sutton, R., and Barto, A. (1998). Reinforcement Learning: An Introduction. Cambridge, 

MA, MIT Press.
Sutton, R., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: a framework 

for temporal abstraction in reinforcement learning. Artif. Intell. 112, 181–211.
Thrun, S. (1995). Exploration in active learning. In Handbook of Brain Science and Neural 

Networks, M. Arbib, ed (Cambridge, MA, MIT Press).
Watson, J. S. (1972). Smiling, cooing, and the game. Merrill Palmer Q. 18, 323–339.
White, R. (1959). Motivation reconsidered: the concept of competence. Psychol. Rev. 

66, 297–333.


