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Rapid chess provides an unparalleled laboratory to understand decision making in a natural 
environment. In a chess game, players choose consecutively around 40 moves in a finite time 
budget. The goodness of each choice can be determined quantitatively since current chess 
algorithms estimate precisely the value of a position. Web-based chess produces vast amounts of 
data, millions of decisions per day, incommensurable with traditional psychological experiments. 
We generated a database of response times (RTs) and position value in rapid chess games. 
We measured robust emergent statistical observables: (1) RT distributions are long-tailed and 
show qualitatively distinct forms at different stages of the game, (2) RT of successive moves 
are highly correlated both for intra- and inter-player moves. These findings have theoretical 
implications since they deny two basic assumptions of sequential decision making algorithms: 
RTs are not stationary and can not be generated by a state-function. Our results also have 
practical implications. First, we characterized the capacity of blunders and score fluctuations to 
predict a player strength, which is yet an open problem in chess softwares. Second, we show 
that the winning likelihood can be reliably estimated from a weighted combination of remaining 
times and position evaluation.
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best players, but also increases the likelihood of errors and blunders, 
which in turn tends to equalize the game. Time constraints and 
playing ability therefore interact in a highly non-trivial manner.

The consideration of time, therefore, introduces a wealth of dimen-
sions to evaluate the complexity of the game. Among these possibilities, 
we concentrate on three broad questions pertaining to the statistical 
structure of chess play under time constraint: What dynamic features 
characterize the evolution of the game, and the strategies of stronger 
(as opposed to weaker) players in particular? What actual form does 
the expected trade-off between time and execution accuracy has? Can 
we assert that the game is a “closed system”, whose dynamics are emer-
gent features of the interaction between the players (as opposed to 
being solely determined by the a priori difference in expertise)?

Given the intricacies of the game, a robust statistical answer to 
these queries requires a solid experimental framework designed 
to provide large datasets. Among the various game formats, rapid 
chess provides an unparalleled laboratory to understand decision 
making in a natural environment. In every game of rapid chess 
players make around 40 movements, each comprising a decision. 
The total time budget is finite (a total of 3 min for the games studied 
here) and hence players need to adopt (implicitly in most cases) 
a specific policy of time usage. A fundamental advantage of this 
setup is that a measure of the outcome of each decision can be 
determined accurately. Moreover, the level of play of both players is 
well defined. The most relevant aspect of this cognitive experiment 
is, however, the amount of data it produces: using web-based con-
duits1, thousands of players play simultaneously, making millions 
of decisions per day that can be easily recorded.

IntroductIon
Chess has long been a model system to study complex thought proc-
esses (Groot, 1965; Charness, 1981; Holding and Reynolds, 1982; 
Gobet and Simon, 1996a; Schultetus and Charness, 1999; Reingold 
et al., 2001a,b). In particular, a consensus has emerged in that chess 
expertise comes in two forms: the ability to calculate variations 
(search) and the ability to recognize and remember meaningful pat-
terns on the board (pattern recognition). The prevalent view is that 
expert players, as opposed to weaker ones, excel specifically at rapid 
object recognition abilities (Gobet and Simon, 1996a,b; Burns, 2004). 
Naively, one would expect that the temporal pressure represented by 
time budgets in different formats of the game should further amplify 
these differences. Indeed, an idea very dear to the folklore of chess is 
that good players do not calculate more, just calculate better. David 
Bronstein, arguably one of the most inventive chess players, was an 
adept of this view: “I have always defended playing under time pressure, 
and I do not think a shortage of time is a bad thing. On the contrary, I 
have always thought that fast playing is a measure of the ability to play 
chess” (Bronstein and Fürstenberg, 1995).

The reduction of chess expertise to speed is, however, overly 
simplistic: firstly, there is substantial evidence that chess experts 
do not search “wider”, they do search “deeper” than weaker play-
ers (Holding and Reynolds, 1982; Saariluoma, 1990); secondly, as 
players are forced to play faster, their ability during regular play 
under normal time controls becomes less predictive of their per-
formance (Van Der Maas and Wagenmakers, 2005). Not surpris-
ingly, even grandmasters make more errors and blunders under 
 conditions in which they have less time than usual to select their 
moves (Chabris and Hearst, 2003). Thus, time pressure provokes 
a selective enhancement of rapid object recognition, favoring the 1http://www.freechess.org/
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downloads stored games. The server stores only the last 10 games of 
each player. We chose to download only the games played by players 
in the 15% ratings percentile of logged-in players. The application 
consists of a Python script that connects to the server using TCP 
sockets and downloads the stored games into a PostgreSQL6 data-
base using the standard ICS-compatible instructions (history and 
smoves). First, the history of logged-in players is queried, checking 
for repeated games. Once a new game has been found, the detail of 
game is queried and server answer is parsed and converted into the 
PGN file format; finally, the PGN is stored in the database. We store 
the nickname of the logged-in players, the game information (total 
time, increment, white and black nicknames, players’ rating, date, 
opening variant and result) and the moves of the game with the 
corresponding time between moves (in milliseconds precision).

Our robot started functioning in May, 2009, downloading only 
lightning and blitz games, which means total times going from 1 
to 15 min. On January 2010 the database consists of more that 
2.8 M games (downloading between 10 K and 20 K games per 
day), resulting in more than 200 M total moves. This is equivalent 
to a person who played 3 min games for 27 years without leaving 
the computer.

The participants registered to play in the website are identi-
fied by their login name, not their full name, and agree to have 
their matches stored in a publicly accessible server. The website is 
designed so that any person, and not just registered participants, 
can look up the matches browsing the it as a guest. That is, the 
data are already anonymized. Moreover, in our acquisition process 
further anonymized the data by stripping all information except 
the player’s ranking. In consequence, individual consent was not 
sought because of this double layer of anonymity, along with the 
public, open nature of the website.

A.2 Score
An ideal evaluation function would assign to each position three 
possible values according to the result following best play from both 
sides: 1, if white is won, 0 is the result is a draw and −1 if black is 
won. An ideal evaluation function exists for other type of games, 
as checkers, which is known to result in a draw with perfect play 
(Schaeffer et al., 2007). However, such ideal evaluation function 
does not exist for chess and most likely will never be computed 
according to many theoretical thinkers such as Shannon (1950).

An evaluation function in chess approximates an ideal one 
considering material value along with other factors affecting the 
strength of each side. When counting up the material for each 
side, typical values for pieces are 1 point for a pawn, 3 points for a 
knight or bishop, 5 points for a rook, and 9 points for a queen. The 
king is sometimes given an arbitrary high value such as 200 points 
(Shannon, 1950), or any other value which adds more than all the 
remaining factors. Evaluation functions also consider factors such 
as pawn structure, the fact that a pair of bishops are usually worth 
more, centralized pieces are worth more, and so on. All these fac-
tors are collapsed on a single scalar, the score, typically measured 
in hundredths of a pawn, which provides an integral measure of 
the goodness of a position. Then, the evaluation is a continuous 
function which assigns a score (often also referred as value) to 

Here we have used rapid chess as a laboratory to explore deci-
sion making in a natural setup. We have studied the structure of 
the time players take to make a move during a game, and analyzed 
millions of instances. This approach allowed us to identify a number 
of statistical fingerprints that uniquely characterize the emergent 
structure of the game.

Our results revealed consistent landmarks of the statistics of 
response times (RTs) distributions and of the fluctuations in score: 
RTs are long-tailed and vary widely throughout the game. RTs are 
also highly correlated, when considering the times of a unique 
player throughout the game and also when considering the cor-
relation across opponent players, indicating that play is not dic-
tated by a state-function. These have theoretical implications, since 
they question assumptions in models of sequential decision mak-
ing (Littman, 1996), hence questioning their validity to describe 
human chained decision making. Our findings also have practical 
implications: (1) We show that while blunders are more typical in 
weak players, this dependency is modest and insufficient to classify 
a player (in rapid chess) based on the number of blunders. (2) The 
capability of determining an empiric probability function of win-
ning likelihood combining time and score. (3) Our findings may 
serve to inspire computer algorithms – and more generically game 
playing algorithms where a sequence of an unpredictable number 
of moves has to be made with a finite time budget – based on a 
measure of the efficiency of different time policies.

MAterIAlS And MethodS
dAtA AcquISItIon
All games were downloaded from FICS (Free Internet Chess 
Server)2, a free ICS-compatible server for playing chess games 
through Internet. This server is on-line since 1995, and has more 
than 300,000 registered users. Each registered user has associated 
a rating that indicates the chess skills strength of the player, repre-
sented by a number typically between 1000 and 3000 points. The 
rating is a dynamic variable which is updated after each game played 
according to the Glicko method3. Also, a rating deviation (RD) is 
used to determine the stability of the rating measure and hence, 
how much a player’s current rating should be trusted. A high RD 
indicates that the player may not be competing frequently or that 
the player has not played many games yet at the current rating level. 
A low RD indicates that the player’s rating is fairly well established. 
For this work, we did not take into account the RD.

Registered players may be humans or computers. These two 
types of players are distinguished in the server. Only 5% of our 
database players are computers: 2067 out of a total of 44069 play-
ers. For this work (except the analysis reported in the supplemental 
figure) we discarded all games played by at least one computer.

Users connect to FICS using graphical interfaces, e.g., 
BabasChess4 or Xboard5, or command line clients, e.g., telnet. Once 
connected, users can create, play, and observe games. We developed 
an application that connects to the FICS server every 30 min and 

2http://www.freechess.org/
3http://www.glicko.net/glicko.html
4http://www.babaschess.net/
5http://www.gnu.org/software/xboard/ 6http://www.postgresql.org/
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(the endgame) and significantly longer during the middle game 
(Figure 1A). Accompanying the variations in the mean, we observed 
different distributions during the distinct stages of the game: rapid 
moves (during the endgame and opening) show power-law tail 
behavior (revealed by a linear dependence in the log-log representa-
tion), while the distribution of RTs for middle game moves showed 
pronouncedly longer tails (Figure 1B).

We investigated whether higher rated players invest their time 
budget in a different manner, reflecting distinct time policies. We 
calculated the mean RT of low rated (<1400) and high rated (>1900) 
players (see Methods for the determination of player rating). High 
rated players amplify the variations of RTs during the game: they play 
faster than lower rated players during the opening games, and slower 
during the middle game (Figure 1C). Interestingly, these effects do not 
compensate (although this of course depends on the precise definition 
of the border between middle game and ending, which here is merely 
approximated) as clearly observed in the cumulative distribution of 
time used (Figure 1D). For instance, at move 40, higher rated players 
have used a significantly larger proportion of their time budget than 
lower rated players (high rated 77.9 ± 0.3% and low rated 74.7 ± 0.4%). 
Since the distributions of time budget left is not Gaussian, we per-
formed a Wilcoxon signed rank test comparing the both distributions, 
which was also highly significant (z = 5.44, p < 10−8).

In a wide range of experiments, RTs have been shown to covary 
with the total number of choices, a phenomenon referred as Hick’s 
law (Hick, 1952). Since the pioneering work of de Groot (1965) 
it was understood that chess was an exception to Hick’s law, since 
players only explore a subset of all possible moves.

To investigate whether we could partly explain RT variability 
from an heuristic notion of complexity, we measured a concrete 
empirical distribution of different moves as a function of move 
number (Figure 2). For each move number we count – instead 
of simply all legal moves – the number of different move-types, 
and their corresponding probabilities, that are actually played in 
concrete games. A move-type is defined by the piece-moved and 
the initial and final square. For instance, Nb1-Nc3 indicates that 
the knight was moved form the square b1 to the square c3.

For the first white move, 20 different moves are possible; advanc-
ing each pawn one or two squares and moving each knight to two 
possible squares. However, not all moves are made with equal 
frequency, the majority of moves correspond to e2-e4 (advanc-
ing the king pawn) or d2-d4 (advancing the queen pawn). As the 
game progresses, the distribution of move-types becomes broader 
(Figure 2). This distribution was estimated out of a total of 650,000 
games, which assured convergence of these distributions.

We then calculated the entropy of the distribution, which esti-
mates the weighted number of options. The entropy increased 
with move number, reaching a plateau in the middle game and 
then decreasing moderately (Figure 2). The decrease in entropy 
during the endgame is interesting. During endgame the board is 
less cluttered and hence piece mobility is greater. However, there 
are less pieces, restricting the number of possible moves. This is 
clearly illustrated, when observing the probability of piece-move 
throughout the game (Figure 2).

To investigate whether move-type entropy could partially explain 
the duration variability, we plotted the average move duration as 
a function of the entropy of move-types distribution (Figure 2). 

each position that estimates of the likelihood of the final result. 
Conventionally, positive values indicate that the most probable 
outcome is a win for white.

If after a white move, the score drops abruptly, white winning 
chances decrease correspondingly. It is then said, in the chess jargon, 
that white has blundered. Seemingly, if the result of a black move is 
that the score goes up abruptly, he has lost winning chances, com-
mitting a blunder. Hence, the measure ∆S = [S(i + 1) − S(i)]·C where 
C is the color function (−1 for black moves and +1 for white moves) 
provides a measure of the goodness of the move. Negative (posi-
tive) values of ∆S indicate that the moving side has lost (increase) 
its winning chances.

We quantify the goodness of a move by calculating each move 
score. The score is a number between −999 and +999, that show 
the valuation of a certain move; 0 meaning this moves is not good 
for white nor black, positive and negative values give advantage 
to white or black, respectively. For the analysis of the results, we 
saturated the score larger than 10 and smaller than −10, as these 
extreme values are not interesting in the current analysis.

We used crafty7 an open source chess engine written by Robert 
Hyatt8, to analyze the moves and calculate the score. The analysis 
consists of evaluating the decision tree from a given board position, 
up to a predefined depth of move number; we used analysis with 
eight moves of depth. A chess game consisting of approximately 
100 moves would take at least 15 s to be analyzed on a Intel XEON 
2.2 GHz, 2 GB RAM. Due to the amount of downloaded games and 
moves, score is calculated in parallel on a cluster. Every 3 h, new games 
downloaded are sent automatically to the cluster9 to be analyzed in 
parallel using 24 nodes. In the following table we show the number 
of games analyzed so far for each total time (without increment):

Total time (minute) No.

 2 11322

 4 21987

10 29591

 5 37355

 3 91340

 1 142141

For this work, we took into account only 3-min games without 
increment, with more than 10 moves but less than 100 moves. 
These constraints were applied to filter abandoned or long-
ending games.

reSultS
reSponSe tIMe dIStrIbutIonS
We first examined the distribution of move durations. In what 
follows we will use the term RT, typically used in psychological 
research, for the time taken by a player to make a move since 
the opponent’s prior move. RT distributions for different move 
numbers revealed a clear and expected trend: RTs were rapid dur-
ing the first moves (the opening of the game) and the last moves 

7http://www.craftychess.com/
8http://www.cis.uab.edu/hyatt/
9http://cecar.fcen.uba.ar
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with a major decrease in average move duration. This suggests 
that speeding of last moves is not dominated by the complexity 
of the position, being most likely determined by time pressure 
(Figure 1D).

For the first moves, these observables showed a strong correlation, 
indicating that such broad measure explains some aspects of the 
trends observed in average duration (Figure 1A). However, for the 
last moves, the decrease in entropy was very moderate compared 

Figure 1 | rrT distributions: (A) RT distributions as a function of move number. 
Color indicates log frequency in a rainbow (red to blue) scale. The inverted U-shape 
shows that for intermediate moves RTs are slower and the distribution has a longer 
tail. (B) Log–log representation of the RT distribution for a move in the opening 
(blue) middle game (green) and endgame (red). (C) Average RT as a function of 
move duration for high rated (green) and low-rated (blue) players. (D) Cumulative RT 
distribution. Since error bars are small and can barely be seen in the main figure, 

the inset shows a zoom of the figure for move numbers between 30 and 40. Note 
that within this range, higher rated players have used a greater fraction of their 
budget. (e) Standard deviation of the distribution shows a linear relation with the 
mean. The image shows the mean and SD for all move numbers (color coded) and 
the regression line. The lines represent the trajectory of the game, connecting 
sequential moves. (F) Same as (e), comparing mean and SD for all moves for high 
rated (green) and low rated (blue) players.
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the  history of the previous moves1. In practical terms,  however, 
it is not expected that a human player will play according to 
a state-function. Rather, the existence of plans and schemes, 
the influence of previous thoughts and evaluations, the assess-
ment of the opponent ability in deciding whether to gamble 
on a risky move, and in particular, the presence of a time 
constrain, are likely to be reflected in an interaction between 
successive moves.

Here we explored quantitatively the existence of such interaction, 
measuring the linear correlation in RT across different moves. As 
an example to ground this measure, a positive correlation between 

Finally, we explored whether there was a linear relation between 
the mean and the standard deviation of the RT distributions, another 
hallmark of human decision making (Wagenmakers and Brown, 
2007). We measured the mean and standard deviation of RT dis-
tributions for different move numbers. As observed in laboratory 
experiments, mean and standard deviation are related linearly 
(Figures 1E,F). Higher rated players show a greater scaling of varia-
bility with the mean (low rated players, regression: SD = 0.1 s + 0.91 
〈RT〉, for high rated players SD = 0.6 s + 1.36 〈RT〉). This further 
emphasizes that lower rated players play with a more conserved time 
policy while higher rated players deploy time in a more variable 
manner, probably depending on necessities of the position.

correlAtIonS In reSponSe tIMe dIStrIbutIonS
Chess should be played as a state-function. In perfect play, the 
best move is solely a function of the position and should not 
depend on how this position was reached or in other elements of 

Figure 2 | entropy and distribution of move time depending on move 
number. (A) Probability of the 70 most frequent move-types for each move 
number (x-axis). Probability is color coded and move-types were sorted in the 
y-axis by rank. (B) Entropy of the move-type distribution for different move 
numbers. Entropy increases rapidly and then shows a moderate decrease during 
the endgame. (C) During the first moves, entropy of move-type distribution 
(x-axis) and mean duration (y-axis) covary. During the endgames (red dots) 

average duration decreases substantially while the entropy of move-type 
distribution shows a very modest decrease. (D) Piece-move probability as a 
function of move number. The resulting pattern is quite recognizable for chess 
players. The pawns move first, then the knights and then the bishops. Castle is 
restricted to a narrow range of moves. The endgame is mainly dominated by 
rook, pawns and by the king which gains great relevance in this last stage of 
the game.

1By position here we mean a set of statements which include a statement of the 
position of each piece and other statements which provide information of previous 
moves: whether the king has previously moved or not (to know if castle is possible), 
the number of moves made since the last pawn move or capture (which has to be 
known since after 50 such moves the game is drawn), etc.



Frontiers in Neuroscience | Decision Neuroscience  October 2010 | Volume 4 | Article 60 | 6

Sigman et al. Response time in rapid chess

Significance of the correlations were measured calculat-
ing the statistics of a linear regression. For each pair of dis-
tributions of moves i and j we performed a linear regression 
d(i) = β1

ij
d(j) + β0

ij
 and errors (shadow bars in Figure 3C) were 

estimated calculating the 95% confidence intervals for the coef-
ficient estimates.

moves 10 and 11 implies that when a player makes move 10 slower 
(faster) than the average time of the tenth move, then move 11 will 
also be played slower (faster) than average.

The cross-correlations amongst all moves revealed a conserved pat-
tern: correlations were positive for consecutive moves and significantly 
negative for long-range differences in move number (Figure 3A).

Figure 3 | Correlations in rT distributions: (A) Correlation matrix of 
move durations. The color of the position (i,j ) of the image codes the 
correlation of white-move i, with white-move j. (B) Same as (A), comparing 
the correlation of the duration of players playing white and black. 

(C) Detail of the correlation of a specific move with all other moves. The 
shaded bars indicate the 0.01 confidence interval of the correlation. The 
vertical line indicates the particular move to which the correlation  
is plotted.
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temporal correlations between moves separated only by one ply 
(successive movements in the game), while 〈dW(i),dW(i + 1)〉 correla-
tions between moves separated by two plies. A ply (plural plies) refers 
to one turn taken by one player and, correspondingly, to one level 
of the game tree. Thus, our results show that the correlation proved 
to be stronger for single ply separations even when this involved 
opponent players than for successive moves of the same player.

the dynAMIcS of Score
Human decisions can be classified, as done in the previous section, 
according to the time they take. They can also be classified accord-
ing to their outcome, i.e., an objective measure of the goodness of 
choice. In controlled laboratory experiments, conditions can be set 
so that the goodness of a decision is under control (by parametri-
cally varying the reward of each choice). In more realistic setups, 
the outcome of choice is more difficult to quantify, and indirect 
measurements such as self-reported post-choice satisfaction have 
been used to estimate the goodness of choice (Dijksterhuis et al., 
2006). A great advantage of analyzing decisions in a chess game is 
that current chess software can rapidly and accurately evaluate a 
position, providing what it is usually called a score for each move 
number, S(i) (see Methods for details).

Conventionally, positive values of S indicate that the most proba-
ble outcome is a win for white. If after a white move, the score drops 
abruptly, white winning chances decrease correspondingly. It is then 
said, in the chess jargon, that white has blundered. Seemingly, if 
the result of a black move is that the score goes up abruptly, he has 
lost winning chances, committing a blunder. Hence, the measure 
∆S = [S(i + 1) − S(i)]·C where C is the color function (−1 for black 
moves and +1 for white moves) provides a measure of the good-
ness of the move. Negative (positive) values of ∆S indicate that the 
moving side has lost (increase) its winning chances.

The score of a typical game of chess is a fluctuating variable. 
In some games one side takes the advantage and remains with a 
better position until the end in which case the score function does 
not change sign. In some games, the advantage progresses slowly 
and in other games it can change abruptly. The evolution of score 
of representative games of high rated and low rated players can be 
seen in Figure 4A). As intuition suggests, the fluctuations in a game 
between low rated players are larger than in a game between high 
rated players. Intuitively, one would also expect that fluctuations 
in score should increase with move number. During opening play, 
players are less likely to blunder less since they use previous knowl-
edge and less pieces are exposed. In addition, as the game proceeds, 
players have progressively less time left and thus the resulting moves 
are more prone to errors.

To examine these two predictions we measured 〈∆S〉 as a func-
tion of move number and player rating (Figure 4B). As expected, 
we verified that, for players of all ratings, 〈∆S〉 decreased monot-
onically with move number. In addition, rating had also a signifi-
cant effect in 〈∆S〉 which was larger for lower rated players than 
for higher rated players for all move numbers. These two effects 
showed an interaction: while for the highest rated players 〈∆S〉 
was constant during the first 10 moves and decreased thereafter, 
for the lowest rated players 〈∆S〉 decreased steadily from the first 
moves of the game (see Methods for a technical explanation of 
this trend).

Negative correlations were simply expected by the finite time 
budget. The positive neighboring correlations indicate that the 
overall dominating trend amongst close moves is to deviate 
coherently from the mean. As with our other analysis, this broad 
statistical marker collapses several patterns. Hence, if a position 
is difficult (and thus requires thinking time) the position of the 
following move is also likely to be difficult and thus long sequences 
of slow moves are expected, resulting in positive correlations. A 
different trend can also be expected due to the existence of plans, 
or conception of long sequences of chunked moves. Then, a slow 
move (for instance, when global plan or strategy is being set) is 
likely to be followed by rapid moves (the practical execution of the 
plan). Our results merely show that these interaction effects create 
a positive correlation and provide a measure of the kernel (the 
number of moves) in which a significant interaction is observed. 
Interestingly, this kernel varies with move number: correlations 
in the opening are much stronger and narrow than in the middle 
game (compare the first and middle panels of Figure 3B). This 
result is consistent with the existence of qualitative different forms 
of play: rapid  opening and slow middle game. A slow opening 
move may reflect that the player is “out of the book”, i.e., with-
out prior knowledge of the position. This certainly implies that 
subsequent moves will similarly be performed without opening 
knowledge and thus comparatively slower. Hence, correlations 
are markedly positive.

To quantify this observation we measured, for each move number, 
the kernel size at different thresholds of correlation. When the cor-
relation was set at a relative high value (C = 0.1) only moves in the 
opening and endgame were correlated with subsequent moves. The 
size of this kernel varied between 5 to 7 for the first 10 moves and 
for moves after the 35th move. On the contrary moves in the middle 
game did not correlate with neighboring moves at such threshold. 
The contrary result was observed when measuring the number of 
moves with significant correlation at a low threshold (C = 0.01). 
The kernel-size measure showed a peak at the middle game (move 
18) and was minimal during the opening and endgame.

The previous correlation analysis explored the interactions of 
successive moves of a single player. In chess, as most two-player 
games, the behavior of both players does not need to be inde-
pendent. Just to guide intuition, we mention two concrete exam-
ples from the folklore of chess: firstly, complicated positions are 
typically complicated for both sides, establishing an inter-player 
correlation (similarly, simple positions tend to be simple for both 
sides). Certainly, there are exceptions to this rule; many positions 
are easy to play for one side and difficult to play for the other. 
Secondly, a player may use the opponent’s time to think his future 
moves. To avoid this, players often play fast when the rival has lit-
tle time left, resulting in positive correlation of move durations of 
both players. We examined this hypothesis numerically, measur-
ing 〈dW(i),dB(j)〉, the correlation between the duration of the i-th 
white-move and the duration of the j-th black-move, for all values 
of i and j (Figure 3B).

Black–white correlations showed virtually the same pattern as 
white–white correlations, indicating that the usage of both clocks 
is remarkably tied. Note that the max of black–white correlation is 
greater than that of white–white correlations. This seemingly para-
doxical result can be easily understood: 〈dB(i),dW(i + 1)〉 reflects 
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Indeed, only 0.5% of the moves had a value of 〈∆S〉 greater than 
a standard deviation of this distribution (1.56). On the contrary 
8.3% of the moves (a 16-fold increase) had a value 〈∆S〉 < −1.56. 
This asymmetry is even more pronounced if one does not consider 
moves from the endgame (where the engine is likely to underesti-
mate the score of a position and hence to improve its evaluation as 
the game moves on; for instance, as a pawn gets closer to promo-
tion): 0.2% of the moves had 〈∆S〉 > 1.56 and 10% (i.e., a 50-fold 
increase) 〈∆S〉 < −1.56. This result testifies the quality of the evalu-
ation engine relative to the examined players in our database.

Finally, we converted the analogous 〈∆S〉 into a discrete measure 
of blunders, defining a blunder as a move whose 〈∆S〉 < −2. From 
the cumulative 〈∆S〉 histogram it is quite clear that the results are 
not strongly dependent on small perturbations of this threshold. 
We then measured the number of accumulated blunders as a func-
tion of move number and rating. Low rated players make (on 
average) their first blunder before move 17. High rated players do 
not make (on average) a blunder until move 40 (Figure 4D).

Score And tIMe: the prIce of A Second
In most psychological experiments, a relation is found between 
the duration of a choice and its outcome. The most widely studied 
example is the speed-accuracy trade-off (Corbett and Wickelgren, 
1978) according to which participants may invest more time to 
assure more accurate performance. These factors may interact 

We generated a grand distribution of 〈∆S〉, collapsed across all 
moves in the database and measured the cumulative histogram 
(Figure 4C) which revealed that the 〈∆S〉 is clearly asymmetric and 
biased toward the negative values.

Understanding the significance of this observation requires 
some understanding of the way the engine’s evaluation function 
works. At any given position, the score is determined following 
a finite tree driven exploration of successive moves. In our case 
the depth of the search was set to eight moves (16 plies). This 
signifies that, when the engine assigns a score of s to a posi-
tion, it considers that this is the score of the resulting position 
when the best moves have played by both sides. According to 
the engine’s exploration, other moves would worsen the score. 
Hence, when a player makes a move which results in a posi-
tive value of 〈∆S〉 – i.e., the value of its position has increased 
according to the engine – it evidences the non-perfect play of 
the engine. This may origin from two different reasons: first, 
simply, when the move has been made, the same depth advances 
further in the game which may improve the assessment of the 
position. Alternatively, the player may have chosen a move which 
the engine had not even considered. In either case, it shows that 
the engine is not providing a perfect evaluation of the position. 
Hence, the fraction of moves with a positive value of 〈∆S〉 pro-
vides an estimate of the goodness of the engine relative to the 
players of the database.

Figure 4 | Fluctuations in the value function of the position: (A) example 
of the evolution of the evaluation function for high rated (left) and low 
rated (right) player. (B) 〈∆S〉 as a function of move number. In each curve, 
players were rated according to their ratings (in 100 bins). Darker lines 

correspond to progressively lower ratings. (C) Cumulative distribution of score 
change. The black line (∆S = −2) indicates the blunder threshold. Any move with 
a ∆S < −2 is considered a blunder. (D) Cumulative fraction of blunders as a 
function of move number.
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following more complicated rules when the “complexity” of the 
decision, the urge to respond and many other factors of the deci-
sion may vary in a correlated manner (Gold and Shadlen, 2002; 
Kamienkowski and Sigman, 2008; Zylberberg et al., 2010).

In games with finite time, players adopt (typically implicitly) 
a strategy compromising accuracy and speed. Some chess players 
are known to use the clock “badly”, leading often to situations in 
which the over-evaluation of subtle differences in a position leaves 
them without time for a significant portion of the game. The find-
ings presented in the first section revealed clear markers of regular 

time policies (fast play in the opening moves and slow play in the 
middle game), suggesting that there is a correlation between chess 
rating and policy choice.

In this section we sought to measure the combined effects of 
time and score, to estimate the price of a second measured in pawns, 
knights, and open files2. As described previously, the score is a con-

Figure 5 | The effect of value and time on the final outcome of the game: 
(A) Average game result (blue = −1: black wins; red = 1: white wins) as a 
function of move number and evaluation score. (B) Average game result 
(blue = −1: black wins; red = 1: white wins) as a function of time difference (time 
remaining for white − time remaining for black). (C) Average game result as a 
function of evaluation score and time left for white. Only games in which time 
left black was more than 40 s were considered. Curves indicate the contour 

lines along which the average game result does not change, thus indicating how 
time and score have to covary to maintain the winning probabilities constant. (D) 
Same as in (C) when black is in time trouble. (e) Mean result as a function of 
time left for white (when black has between 20 and 30 s). Each line corresponds 
to a different score. Note that when the score is +5 (i.e., a rook up) winning 
probabilities are equal if white has around 17 s. For this time configuration, 8 s is 
worth a rook!

2Time here refers to the clock time, measured in seconds. Just to avoid misleading 
we emphasize that here we do not refer to the notion of initiative or development 
which is also referred as a time factor often in the chess game.
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tinuous estimate of the winning probability of each side. Figure 5A 
simply testifies this known fact, displaying the average games in which 
white won as a function of the score, for different move numbers.

For this analysis we grouped moves independently of the time 
left. Figure 5B illustrates the complementary analysis. It shows 
the average number of games in which white won as a function of 
the difference in time left. As expected, the figure shows that the 
side which has more time at its disposal has a greater probability 
of winning. This finding begs the question as to how these factors 
combine. In other words, given the triplet {T

white
,T

black
,S}, is it pos-

sible to determine the side with greater winning probability?
We next concentrate on some critical behavior of this probability 

function, illustrated in Figure 5C. We represent the winning prob-
ability (color coded, red indicates probability 1 of white winning and 
blue probability 1 of black winning) as a function of T

white
 and S. This 

analysis was restricted to moves for which black had  sufficient time, 
i.e., more than 40 s, at least about 1/4 of their original time budget. 
The limit behaviors are quite evident: when white has virtually no 
time (left portion of the image) his winning chances are close to 0, 
even when it has a better position. When both sides have sufficient 
time (right portion of the image), winning probability is almost 
exclusively a function of the score. We plotted the contour lines 
of the function, i.e., the curves in the T

white
 − S plane along which 

the winning probability for white is constant. Contour lines are 
almost flat for large time budgets. Changing T

white
 from 150 to 50 s 

is compensated by a small fraction of a pawn in the score function. 
In contrast, when the total time of white becomes shorter, the con-
tour lines become very steep. In this regime (see also Figure 5D), a 
mere few seconds can change significantly the winning probability 
function, largely overriding score differences.

To quantify this observation we estimated the price of time on 
time trouble situations. We considered all moves in which black had 
between 20 to 30 s remaining. For each values of S, we measured 
which value of T

white
 resulted in equal winning probabilities for both 

sides. For S = 0, the winning probabilities equalize when white has 
on average the same time than black (25 s); this simply serves as a 
control. We then determined the value of white time left, at which 
probabilities equalize when the score difference is +3 (roughly when 
white is a minor piece up without other forms of compensation). 
Analysis revealed that this value is 17 s. Thus, a small difference of 
8 s (note the difference in time between the crossing of the cyan 
and green lines, Figure 5E) is on average sufficient to compensate 
for a full piece when the time left is between 20 to 30 s. This func-
tion is clearly asymmetric. If black is on the advantage of a clear 
minor piece, then winning probabilities equalize when white has 
(to compensate) a total of 40 s at his disposal, 15 more seconds than 
black. When these data are grouped on fractional quantities, the 
time difference measured relative to the total time, the two estimates 
become comparable indicating that, within this degree of time trou-
ble (about half a minute of total time to complete the game), a 50% 
increase in total time is roughly equivalent to a minor piece.

dIScuSSIon
Here we have studied the statistics of a large ensemble of rapid chess 
games, concentrating on questions of time usage, value as a measure of 
execution efficacy, and the relationship between them as a function of 
the game’s progression. Our results revealed highly reliable patterns:

1. RT distributions are heavy-tailed and show a qualitatively 
distinct shape at different stages of the game.

2. RTs are positively correlated for successive moves of both pla-
yers. For more distant moves, as expected for a finite time bud-
get, correlations are negative.

3. Fluctuations of ∆S increase steadily throughout the game. 
Fluctuations decrease for higher rated players but not in a very 
sharp manner.

4. The winning likelihood 〈R〉 can be reliably estimated from a 
combination of time and score. With sufficient time (more 
than a minute), changes in score are not compensated by time 
saving. When the remaining time is less than 30 s, in practical 
terms, rapid moves are more efficient than slow moves even if 
they result in an immediate significant loss of value.

While endgame and opening stages result in comparable RT 
distributions, these may originate in different causes. Opening play 
is largely determined by memorized schemes leading to very rapid 
responses. Endgame RTs are also very rapid which may result from 
the fact that, at this stage of the game, the time budget has largely 
been spent and thus players have to respond very fast. In certain 
cases (for instance in a Rook + King vs King ending) players also 
play at great speed using a memorized sequence or algorithm. These 
different sources of RT variability are blurred in our analysis which 
simply captures the main emergent statistical elements.

A large body of research has studied human RT in laboratory 
setups, reliably finding that they systematically result in skewed 
heavy-tailed distributions for different experimental paradigms 
(Luce, 1986). In particular for chess, it has been previously 
reported that RT distributions are non-Gaussian (Van Der Maas 
and Wagenmakers, 2005). We find that, more precisely, the dis-
tributions display a power-law behavior over several decades, a 
feature that has several theoretical implications. It implies that a 
wide spectrum of time scales are, if not equally, at least significantly 
involved in the dynamics of such a process, and likely interacting 
with each other. The lack of defined scales has been postulated as a 
hallmark of emergent behavior in complex systems by Bak (1996) in 
the theory of self-organized criticality and places a clear constraint 
on the modeling of chess as a decision process. Crucially, the finite 
time budget poses a definite cutoff for power-law distributions of 
RT in complex decision making. Buridan’s metaphor – wherein 
an ass, placed precisely midway between a stack of hay and pail 
of water, dies of both hunger and thirst since it cannot make any 
rational decision to choose one over the other – of infinite RT in 
even decisions may not be out of relevance. Indeed, single chess 
decisions can scale up to hours indicating that, in the absence of a 
budget forced cutoff, power-law behavior may extend over several 
more decades. An important follow up of this study will be to 
determine the rescaling of RT distributions when the total time 
budget changes.

The effect of chess expertise on RTs has also been studied using 
classic psychological tasks (change blindness, Stroop, detection,…). 
Reingold et al. (2001b) studied the effect of distractors on RTs in check 
detection tasks. They found that distractors had no effect in expert 
players indicating parallel and automatic processing of the board in 
expert play. Further supporting this view, in an extensive program 
investigating eye-movement in chess problems, they showed that 
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the perceptual advantage demonstrated by chess experts is mediated 
by a larger visual span for chess-related, but not for chess-unrelated 
visual patterns (Reingold et al., 2001a; Reingold and Charness, 2005). 
Our approach, relying on massive sampling, allowed us to investigate 
the structure of RTs during concrete play.

The correlation structure observed in RT data also constrains the 
possible models which may account for this data. First, it discards at 
once any model in which decisions are made independently, or even 
in which decisions are made only taking into account the remaining 
time budget. The strong positive correlations simply discard this pos-
sibility. It remains also for further studies to unfold the many different 
contributions to RT interactions which integrate in our measure of 
correlation: first, a player cannot avoid being primed or influenced 
by the inertia of previous thoughts (Shallice, 1982, 1988; Shallice and 
Burgess, 1996). Chess players know that this is a well known cause 
of blunders: in their calculations they often confuse pieces positions 
with ones occupied previously or even in mental variation which 
were never settled on the board. Also, as the game progresses, a player 
reads the opponent and sets a risk policy according to an estimation 
of the opponent abilities or strength. If during the course of a game a 
player has estimated that his rival is not very strong he may be more 
willing to take risks. This strategy is very frequent in backgammon, 
were optimal play depends on risk policies that take the opponent’s 
strength into account. However, the most likely source of correlations 
is determined by a relative continuous function of complexity of the 
board. We currently lack a good measure of “chess complexity”. As de 
Groot had identified in his early work, simply counting the number 
of possible moves, or even the number of good moves does not 
constitute a good estimator of complexity (de Groot, 1965). A rich 
an indexed databased, in which each position is labeled according 
to all conceivable elements of the chess lexicon (open files, threats, 
mobility of pieces, number of pieces, time left, ratings, etc.) could 
be used to conduct regression analysis to measure – by brute force 
– what elements of a position determine that a player will spend a 
long time sitting on it before making a move.

A class of algorithms, broadly known as Markov decision proc-
esses (Littman, 1996) have been very useful and widely studied in 
artificial intelligence to model sequential decision making. These 
models generically assume that decisions are made in a stationary 
environment and are state-functions. The results described here 
challenge the validity of this class of theoretical models to under-
stand human decision making. First, the observation of heavy-tailed 
RT distribution in time-constrained human decision making imply 
that long time scales are statistically significant, essentially violating 
the stationarity premise. Second, the observation of long-range 
positive correlations in RT (unrelated to finite time budget) violate 
the state-function hypothesis. Our finding, therefore, will require 
the development of new theoretical models to accommodate deci-
sion making in non-stationary, transient settings. It also raises an 
interesting series of questions to understand the discrepancies 
between formal models with great practical relevance (Littman, 
1996) and human-computation inspired algorithms.

The steady increase in score fluctuations is an expected feature 
given the time limitation rule in rapid chess. This is the case for 
players of all ratings, even though there are clear differences between 
the lower and higher rate tiers. It is less obvious, thought, to note 
that there are no sharp transitions or non-linear separations in 

the blunder behavior as a function of the player’s rate. In a way, 
this implies that rapid chess, while demanding, still has the ability 
to tap into cognitive functions that do not admit over-training or 
high specialization. This interpretation is also well aligned with our 
finding that when the remaining time is relatively short, it is more 
effective for a player to be able to make a decision, any decision, 
than to ponder several alternatives. The finding that blunder count 
only modestly separated high and low rated players also motivates 
further research in this direction. A possible improvement of the 
method is to classify blunders not only based on their score dif-
ference but also on the “complexity” of the blunder. For instance, 
a move that looses a piece because it simply puts it in a position 
where it can be captured without cost, is a very “evident” blunder 
not expected in high rated players. On the contrary, a move that 
looses a piece because after a complex combination involving a 
long sequences of forced-moves it is found that the piece is lost, 
constitutes a more subtle blunder which may be more typical in 
high ranked players. At an analysis of high depth both moves are 
equally ranked as blunders with the same score difference. In practi-
cal terms, such an analysis may involve including analysis depth, 
as well as score, to catalog blunders as an efficient manner to rank 
players. It will also be useful, in this context, to understand the pat-
terns of score and blunder behavior in computer vs computer and 
computer vs human games, as a means to further constraint models 
of human decision making under temporal constraints.

The proliferation of chess servers on the Internet has turned 
active chess, blitz and lightning, into a vast cognitive phenomenon 
involving engaged participants. This large database of human deci-
sion making can be used as a privileged window to understand 
human cognition. Computer scientist have been recently embarked 
in a project to direct voluntary use of human computing cycles 
in a coherent and productive direction (Von Ahn and Dabbish, 
2004; Von Ahn, 2006; Von Ahn et al., 2006, 2008). For instance, in 
GWAP (Games With a Purpose) people play a game in which they 
determine the contents of images by providing meaningful labels 
for them. Thus, a computationally intractable problem (image 
labeling) is solved by encouraging people to do the work by tak-
ing advantage of their desire to be entertained. Here, we use in a 
similar vein a leisurely cognitive activity, rapid chess, as a window 
into cognition. We hope that our work may prompt other large-
scale studies in chess as well as similar decision making activities. 
As Gary Kasparov suggests in his book “How Life Imitates Chess: 
Making the Right Moves, from the Board to the Boardroom” chess 
is more than a metaphor: it makes the case for using chess as a 
model for understanding and improving human decision making 
everywhere else.
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