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The new inhibitor of monoamine oxidase, M30, has a 
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Stress detrimentally affects the brain and body and can lead to or be accompanied by depression. 
Although stress and depression may contribute to each other, the exact molecular mechanism 
underlying the effects is unclear. However, there is a correlation between stress and an increase 
in glucocorticoid secretion which causes a subsequent increase in monoamine oxidase 
(MAO) activity during stress. Consequently, MAO inhibitors have been used as traditional 
antidepressant drugs. Cellular treatment with the synthetic glucocorticoid, dexamethasone (a 
cellular stressor), has been reported to markedly increase both MAO A and MAO B catalytic 
activities, as well as apoptosis. This study compares the neuroprotective abilities of M30 (a 
new generation inhibitor of both MAO A and MAO B) with rasagiline (Azilect®, another new 
MAO B inhibitor) and selegiline (Deprenyl®, a traditional MAO B inhibitor) in the prevention of 
dexamethasone-induced brain cell death and MAO activity in human neuroblastoma cells, SH-
SY5Y. M30 demonstrated the highest inhibitory effect on MAO A; however, M30 showed the 
lowest inhibitory effect on MAO B enzymatic activity in comparison to rasagiline and selegiline. 
Although, M30 exhibited the greatest neuroprotective effect by decreasing cell death rates and 
apoptotic DNA damage compared to rasagiline and selegiline, these neuroprotective effects 
of M30 were, overall, similar to rasagiline. Summarily, M30 has a generally greater impact on 
neuroprotection than the MAO B inhibitors, selegiline and rasagiline. Our results suggest that 
M30 may have great potential in alleviating disorders involving increases in both MAO A and 
MAO B, such as stress-induced disorders.
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Glucocorticoids are involved in many cellular functions that 
also involve MAO as MAO plays a role in stress, behavioral adap-
tation, and mood (de Kloet et al., 1990). MAO, appearing as two 
isoforms: MAO A and MAO B, is located on the outer membranes 
of mitochondria in neuronal, glial, and other cells and catalyzes 
the oxidative deamination of monoamine neurotransmitters 
(Shih et al., 1999). MAO (Meyer et al., 2006, 2009; Sacher et al., 
2010) and glucocorticoid hypersecretion (Duval et al., 2006) are 
associated with depression. The synthetic glucocorticoid, dex-
amethasone, has been documented to increase MAO A activity 
in human neuroblastoma and glioblastoma cells through its role 
as a cellular stressor (Ou et al., 2006). More specifically, dexam-
ethasone has been shown to increase MAO A mRNA, protein 
and enzymatic activity in human skeletal muscle cells (Manoli 
et al., 2005) and increases MAO A in the dorsal raphe nucleus in 
rats (Jahng et al., 2008). Additionally, dexamethasone has been 
reported to induce MAO B expression and activity in both neu-
ronal cells (Tazik et al., 2009) and astrocytes (Carlo et al., 1996) 
and reduces the number of viable brain cells (Yu et al., 2010). 
Elevated levels of MAO degrade serotonin and produce reactive 
oxygen species (ROS, such as hydrogen peroxide) (Carlsson et al., 

IntroductIon
Stress encompasses the specific responses that affect the normal 
physiological state of the body. The chief organ that responds to stress 
is the brain. Stress interferes with the emotional, social, physiologi-
cal, mental and physical aspects of health, and well being and often 
leads to depression. According to the World Health Organization, 
major depression is among the most burdensome diseases in the 
world. Depression is a major public health concern that costs the 
United States 83 billion dollars, annually. Furthermore, the point 
prevalence of depression is approximately 3–5% for males and 
8–10% for females, and has a lifetime prevalence about twice that 
of the point prevalence (Lyness et al., 2009). A major response 
to stress is the production of glucocorticoids which are steroid 
hormones secreted from the adrenal gland. Glucocorticoids have 
a significant role in neuronal cell death and depression related to 
stressors as an abnormal increase of glucocorticoid levels has been 
associated with atrophy of the hippocampus (Lee et al., 2002) and 
major depression (Duval et al., 2006). Due to an improved under-
standing of the cellular changes that occur during stressful events, 
antidepressants such as monoamine oxidase (MAO) inhibitors are 
a traditional drug class used for treatment.
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of dexamethasone and with or without 0.25 nM of rasagiline, M30 
or selegiline in the presence of charcoal-stripped fetal calf serum. 
The treatments were performed daily for 3 days.

MAo cAtAlytIc ActIvIty AssAy
SH-SY5Y cells were seeded in 10-cm dishes. After 24 h, cells were 
treated with dexamethasone (2 μM) with or without 0.25 nM M30, 
rasagiline, or selegiline for 72 h. Cells were then harvested and 
washed with phosphate-buffered saline (PBS).

MAO A catalytic activity assay
For determining the catalytic activity of MAO A, 100 μg of total pro-
teins was incubated with 100 μl of 14C-labeled 5-hydroxytryptamine 
(New England Nuclear Corporation) in the assay buffer (50 mM 
sodium phosphate buffer, pH of 7.4) at 37°C for 20 min and ter-
minated by the addition of 100 μl of 6 N HCl (Ou et al., 2006). 
The reaction products were extracted with ethyl acetate/benzene 
(1:1) and centrifuged at room temperature for 7 min. The organic 
phase containing the reaction product was extracted from each 
sample and its radioactivity was quantified by liquid scintillation 
spectroscopy (Ou et al., 2006).

MAO B catalytic activity assay
For measuring the catalytic activity of MAO B, 100 μg of total 
proteins was incubated with 10 μl of 14C-labeled phenylethylamine 
(Amersham Biosciences) in the assay buffer at 37oC for 20 min 
and terminated by the addition of 100 μl of 6 N HCl. The reac-
tion products were extracted with ethyl acetate/toluene (1:1) and 
centrifuged at room temperature for 7 min. The organic phase 
containing the reaction product was extracted from each sample 
and its radioactivity was quantified by liquid scintillation spectros-
copy (Ou et al., 2004).

Mtt AssAy
The survival and proliferation rates of the cells were measured 
using MTT assays. MTT, 3-[4.5-dimethyl-thiazol-2-yl]-2,5-diphe-
nyl tetrazolium bromide, is a yellow salt that is metabolized within 
the mitochondria of the cells forming a purple formazan crystal, 
which can be dissolved with the use of a detergent. The inten-
sity of the dissolved purple color allows for the measurement of 
the solution’s light absorbance. For the 24-well plates, 100 μl of 
MTT dye (0.5 mg/ml) was added to each well and the cells were 
then incubated at 37°C for 4–5 h. During the incubation period, 
the yellow dye was converted into a purple formazan crystal by 
the mitochondria of the viable cells. The purple crystals were dis-
solved by the addition of 250 μl dimethyl sulfoxide (DMSO). The 
NanoDrop Spectrophotometer was used to determine the optical 
density of each well at 572 nm (Alexander-Kaufman et al., 2006; 
Lu et al., 2008).

tunEl AssAy
The terminal deoxynucleotidyl transferase (TdT)-mediated dUTP 
Nick End Labeling (TUNEL) assay was used to assess the extent of 
apoptosis in treated cells. Briefly, cells were plated on a four-well 
chamber slide on the day preceding the experiment, and treated 
with or without 2 μM dexamethasone and/or 0.25 nM of M30, 
rasagiline or selegiline for 3 days. Cells were then washed with PBS 

1980) that may cause cell death and, as a result, an MAO  inhibitor 
prevents cell death related to this manner of toxicity (Haynes 
et al., 2004; Lu et al., 2008).

MAO B inhibitors, such as rasagiline (Azilect®) and selegiline 
(Deprenyl®), are effectively used for the treatment of several neu-
ropsychiatric and neurodegenerative diseases such as Parkinson’s 
disease (Youdim et al., 2005). Additionally, these drugs have also 
exhibited neuroprotective properties by increasing cellular prolif-
eration rates at low concentrations (Malorni et al., 1998; Youdim 
et al., 2001). The neuroprotective mechanism of MAO B inhibitors 
has been suggested through the blockage of the translocation of 
the GAPDH complex with the transcriptional activator, transform-
ing growth factor-beta-inducible early gene 2 (TIEG2) into the 
nucleus, and, secondarily, inhibiting MAO B gene expression (Ou 
et al., 2009b).

Rasagiline is reportedly more effective than selegiline due to the 
differences in metabolite formation. Aminoindan, the metabo-
lite of rasagiline, reinforces the neuroprotectivity of rasagiline 
as it, in fact, possesses its own neuroprotective properties (Lu 
et al., 2008; Bar-Am et al., 2009; Ou et al., 2009a). In contrast, 
the metabolite of selegiline, methamphetamine, counteracts the 
neuroprotectivity afforded by selegiline (Chen and Ly, 2006). A 
novel therapeutic agent, M30, has been introduced as a potential 
drug to be used for the treatment of neurodegenerative disor-
ders (Youdim, 2006). M30, an iron-chelator, possesses the same 
neuroprotective propargylamine moiety as rasagiline; however, 
M30 is a brain selective MAO A and B inhibitor that does not 
cause a cheese effect in response to tyramine (Gal et al., 2005, 
2009; Zheng et al., 2005). Studies have demonstrated that M30 
exhibits a wide range of pharmacological activities including 
neuroprotection against ROS-induced neurotoxicity (specifically 
caused by increased hydrogen peroxide production) in mouse 
motor neurons (Kupershmidt et al., 2009) and neurorestoration 
in lactacystin- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced models of Parkinson’s disease (Zhu et al., 2007; 
Gal et al., 2009).

In the present study, we have extended our comparative analy-
ses to describe the neuroprotective effects of rasagiline, selegiline, 
and M30 in the human neuroblastoma SH-SY5Y cells treated with 
dexamethasone in charcoal-stripped serum.

MAtErIAls And MEthods
cEll lInEs And rEAgEnts
The human neuroblastoma cell line, SH-SY5Y, was purchased from 
ATCC. The cells were grown in Dulbecco’s modified Eagle’s medium 
supplemented with 2 mm l-glutamine, 100 units/ml penicillin, 
10 μg/ml streptomycin, and 10% fetal bovine serum (Invitrogen). 
Rasagiline was synthesized by a doctoral student, Hailin Zheng, 
in the laboratory of Dr. Youdim (Teva Pharmaceutical Co., Haifa, 
Israel). M30 was also developed in Dr. Youdim’s laboratory. 
Selegiline was purchased from Sigma-Aldrich, USA.

cEll culturE And trEAtMEnts
SH-SY5Y cells were seeded into 24-well plates or 10-cm dishes 
and cultured overnight in medium. Cells were supplemented with 
charcoal-stripped, steroid-free fetal calf serum for ∼6 h for acclima-
tion. The medium was then replaced with medium containing 2 μM 



www.frontiersin.org November 2010 | Volume 4 | Article 180 | 3

Johnson et al. M30, protects dexamethasone-induced apoptosis

Although M30 showed a statistically significant decrease in MAO 
B catalytic activity, its inhibitory effect was lower than those of 
rasagiline and selegiline.

Additionally, cellular survival rates of SH-SY5Y cells were 
evaluated among the different treatment groups by MTT assay 
(Figure 2). Cells were seeded in 24-well plates and, after overnight 
incubation, treated with 2 μM dexamethasone with or without 
0.25 nM M30, rasagiline or selegiline for 72 h. The vehicle-treated, 
control cells were taken as 100%. Treatment with dexamethasone 
alone had a negative effect on cell viability with a survival rate 
of 60%. The effects of the drugs were compared to the survival 
rates of cells that underwent stress induction by dexamethasone. 
M30 significantly increased cell viability to ∼90% after exposure 
to dexamethasone (Figure 2, lanes 3 vs. 2, P < 0.02). Rasagiline 
and selegiline increased cell viability to 85 and 70% (Figure 2, 
lanes 4 vs. 2 and 5 vs. 2, P < 0.02 and P < 0.05, respectively). 
Although selegiline (Deprenyl) demonstrated a statistically sig-
nificant increase in cell viability, its neuroprotective effect was 
significantly lower than those of M30 and rasagiline (Figure 2, 
lanes 5 vs. 3 and 4, P < 0.05).

Results from the MAO A and B enzymatic activity assays and the 
MTT assay were further validated by the TUNEL assay (Figure 3) 
which uses TUNEL staining to measure fragmented DNA due 
to cellular apoptosis caused by an MAO catalytic activity-linked 
increase in H

2
O

2
 production (Phillips, 2003). Cells were plated 

on a four-well chamber slide and, after overnight incubation, 
treated with 2 μM dexamethasone with or without 0.25 nM of 
M30, rasagiline or selegiline for 3 days. Figure 3A depicts a sig-
nificant increase in green fluorescent-labeled DNA fragmenta-
tion in SH-SY5Y cells that were treatment with dexamethasone 
compared to the untreated cells [(b) vs. (a)]. Figure 3 also indi-
cates that treatment with M30, rasagiline or selegiline significantly 
decreases the occurrence of fragmented DNA compared to the 
dexamethasone-treated group [(c) vs. (b)]. An immunohistologi-
cal representation of the effect of M30 on DNA fragmentation is 
shown in Figure 3A(c); rasagiline and selegiline exhibited similar 
effects. M30 caused a 34% decrease in the percentage of TUNEL-
positive cells in dexamethasone-treated SH-SY5Y cells (P < 0.02; 

and fixed using 4% paraformaldehyde in PBS. The slides were again 
washed with PBS and fragmented DNA was detected in apoptotic 
cells by adding Fluorescein 12-dUTP to nicked ends of DNA (In 
Situ Cell Death Detection Kit, Roche). Slides were incubated for 
1 h at 37oC in the dark, followed by a wash with PBS three times 
and stained with DAPI (for the nucleus), and then visualized with 
a fluorescent light microscope. Green fluorescence was correlated 
with DNA fragmentation. Experiments were done in three inde-
pendent sets of duplicates and the percentages of TUNEL-positive 
cells were determined directly under a fluorescence microscope 
using a camera lucida with an excitation wavelength in the range 
of 450–500 nm and detection in the range of 515–565 nm (green) 
(Tazik et al., 2009).

stAtIstIcAl AnAlysIs
The statistical significance was analyzed using a one-way ANOVA 
to test for differences between groups. A value of P < 0.05 was 
considered significant.

rEsults
The expression of MAO, subsequent to treatment with MAO inhibi-
tors after dexamethasone exposure, was comparatively investigated 
in human neuroblastoma SH-SY5Y cells. Cells were seeded in 10-cm 
dishes. After 24 h, cells were treated with dexamethasone (2 μM) 
and/or 0.25 nM M30, rasagiline or selegiline for 72 h. The catalytic 
activities were determined for MAO A (Figure 1A) and MAO B 
(Figure 1B) after treatment with the MAO inhibitors. With regards 
to MAO A, the results indicated that M30 significantly (*P < 0.05) 
decreased MAO A catalytic activity by 37% (Figure 1A, lanes 2 vs. 
1); there was a 26% decrease due to rasagiline (Figure 1A, lanes 4 
vs. 3) and a 24% decrease in MAO A enzymatic activity after treat-
ment with selegiline (Figure 1A, lanes 6 vs. 5).

Figure 1B demonstrates the effects of the MAO inhibitors 
on MAO B catalytic activity. Rasagiline and selegiline showed 
the greatest impact in MAO B catalytic activity decreasing the 
activities by 66% (P < 0.002) and 48% (P < 0.01), respectively 
(Figure 1B, lanes 4 vs. 3 and 6 vs. 5). M30 decreased MAO B 
enzymatic activity by 34% (Figure 1B, lanes 2 vs. 1, P < 0.05). 

Figure 1 | effects of the MAO inhibitors, M30, rasagiline and selegiline, on MAO catalytic activity in SH-SY5Y cells. (A) Cells were treated with the MAO 
inhibitors (0.25 nM) for 72 h and the MAO A catalytic activities were determined. (B) Cells were treated with the MAO inhibitors (0.25 nM) for 72 h and the MAO B 
catalytic activities were determined. *P < 0.05, **P < 0.01, and ***P < 0.002 compared to untreated controls, respectively.
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dIscussIon
The results of this study indicate that the new generation of MAO 
inhibitors (M30 and rasagiline) provides increased neuroprotec-
tion to cells which are subject to the toxic and damaging effects of 
increased glucocorticoid secretion and MAO activity, compared 
to the traditional drug, selegiline. Rasagiline and selegiline are 
currently being used as pharmaceutical therapies for neurodegen-
erative diseases and mental disorders such as Parkinson’s Disease 
(Fernandez and Chen, 2007; Hughes, 2008), depression (Youdim 

Figure 3B, lanes 6 vs. 5). Rasagiline and selegiline decreased the 
amount of fragmented DNA in cells treated with dexamethasone 
by 31 and 20% (P < 0.02 and P < 0.05; Figure 3B, lanes 7 vs. 5 and 
8 vs. 5, respectively).

With similar results pertaining to cell survival rates (MTT assay), 
although selegiline (Deprenyl) showed a statistically significant 
increase in cell viability, its neuroprotective effect was significantly 
lower than those exhibited by M30 and rasagiline (Figure 3B, lanes 
8 vs. 6 and 7, P < 0.05).

Figure 2 | effects of dexamethasone and MAO inhibitors on cell survival rates (cell proliferation rates) of SH-SY5Y cells. Cells were treated with 
dexamethasone (2 μM) with and without the MAO inhibitors (0.25 nM) for 72 h. The cell survival rates were determined by MTT assay. *P < 0.05 and **P < 0.02 
compared to cells treated with dexamethasone alone. #P < 0.05 compared lanes 5 vs. 3 and 4.

Figure 3 | effects of dexamethasone and MAO inhibitors on cell 
apoptosis in SHSY5Y cells. (A). Immunofluorescence showing TUNEL(+) and 
TUNEL(−) cells in (a) control cells, (b) cells treated with 2 μM dexamethasone 
for 72 h, and (c) cells treated with 2 μM dexamethasone and 0.25 nM M30 for 
72 h. Photomicrographs show representative cells from each experimental 
group and the arrows indicate apoptotic cells. (B) Percentage of cells that 
contain damaged DNA as revealed by the TUNEL assay in each group. 

TUNEL-labeled DNA fragmentation correlates with green fluorescence. 
Experiments were done in duplicates, three times. The bar graph represents 
the average percentage of TUNEL-positive cells counted from each 
experimental group manually under a fluorescence microscope using a camera 
lucida. The counted cell numbers are shown at the top of each group. *P < 0.05 
and **P < 0.02 compared to cells treated with dexamethasone alone. #P < 0.05 
compared lanes 8 vs. 6 and 7.
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mal in a situation in which both MAO A and MAO B are elevated, 
such as in disorders involving stress and depression, in which the 
glucocorticoid levels are abnormally increased (Duval et al., 2006; 
Kieran et al., 2010). The synthetic glucocorticoid, dexamethasone is 
been documented to increase oxidative stress and the expression of 
MAO A (Ou et al., 2006) and MAO B (Carlo et al., 1996; Tazik et al., 
2009) in dopaminergic neurons; this dexamethasone-induced neu-
rodegeneration was prevented by an MAO inhibitor (Tazik et al., 
2009) which suggest that the toxic effects of dexamethasone and 
other glucocorticoids is mediated by MAO (Arguelles et al., 2010). 
Furthermore, aged rats given dexamethasone showed robust induc-
tion of both MAO A and MAO B in the frontal and parietal cortices 
(Slotkin et al., 1998). More relevantly, MAO A and MAO B activity 
levels increased considerably in brains of mice exposed to chronic 
unpredictable stress for 24 days (Mao et al., 2009).

Summarily, M30 has demonstrated its effectiveness in providing 
neuroprotection by significantly decreasing the levels of enzymatic 
activity of both MAO A and MAO B in human neuroblastoma 
cells, in addition to decreasing the amount of fragmented DNA 
due to ROS production and increasing cell viability in stressful 
environments. The results of this distinctive study have identified 
a potential pharmacological agent, M30. This new generation of 
MAO inhibitor may be considered as a potential drug candidate 
for treating disorders involving chronic stressful situations which 
cause increases in both MAO A and MAO B.
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