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Complementary roles of systems representing sensory 
evidence and systems detecting task difficulty during 
perceptual decision making
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Perceptual decision making is a multi-stage process where incoming sensory information is 
used to select one option from several alternatives. Researchers typically have adopted one 
of two conceptual frameworks to define the criteria for determining whether a brain region is 
involved in decision computations. One framework, building on single-unit recordings in monkeys, 
posits that activity in a region involved in decision making reflects the accumulation of evidence 
toward a decision threshold, thus showing the lowest level of BOLD signal during the hardest 
decisions. The other framework instead posits that activity in a decision-making region reflects 
the difficulty of a decision, thus showing the highest level of BOLD signal during the hardest 
decisions. We had subjects perform a face detection task on degraded face images while we 
simultaneously recorded BOLD activity. We searched for brain regions where changes in BOLD 
activity during this task supported either of these frameworks by calculating the correlation 
of BOLD activity with reaction time – a measure of task difficulty. We found that the right 
supplementary eye field, right frontal eye field, and right inferior frontal gyrus had increased 
activity relative to baseline that positively correlated with reaction time, while the left superior 
frontal sulcus and left middle temporal gyrus had decreased activity relative to baseline that 
negatively correlated with reaction time. We propose that a simple mechanism that scales a 
region’s activity based on task demands can explain our results.

Keywords: evidence accumulation, face perception, fMRI

Edited by:
Shu-Chen Li, Max Planck Institute for 
Human Development, Germany

Reviewed by:
Mauricio R. Delgado, Rutgers-Newark: 
The State University of New Jersey, 
USA
Hyojung Seo, Yale University School of 
Medicine, USA
Mark E. Wheeler, University of 
Pittsburgh, USA

*Correspondence:
Leslie G. Ungerleider, Laboratory of 
Brain and Cognition, National Institute 
of Mental Health, Building 10, Room 
4C104, 10 Center Drive, MSC 1366, 
Bethesda, MD 20892-1366 USA. 
e-mail: ungerlel@mail.nih.gov
†Current address:
Douglas A. Ruff, Department of 
Neurobiology, Harvard Medical School, 
Boston, MA, USA.

activation in decision-making regions to successfully compute a 
decision (Binder et al., 2004; Grinband et al., 2006; Thielscher 
and Pessoa, 2007).

Because these frameworks predict changes in the fMRI signal 
of opposite sign, it is not surprising that studies investigating per-
ceptual decision making have drawn disparate conclusions. In an 
attempt to reconcile these models and gain a better understanding 
of the brain regions involved in computing perceptual decisions, 
we used a face detection task with degraded stimuli that had para-
metrically varied amounts of face strength (i.e., sensory evidence) 
while we measured subjects’ reaction times. We used two ranges of 
stimulus variability in alternating experimental runs to test whether 
the regions we identified were engaged during decisions under dif-
ferent sensory contexts. We identified regions where activity was 
significantly different from baseline during both ranges of the 
detection task, and determined which of these regions exhibited 
activity that correlated with reaction time. This analysis allowed 
us to identify brain regions that met the criteria established by 
both hypotheses.

Based on previous studies we expected to find two sets of brain 
regions with activation patterns that were opposite in their rela-
tionship to reaction time. Indeed, we found that the right sup-
plementary eye field (SEF), right frontal eye field (FEF), and right 
inferior frontal gyrus (IFG) exhibited increased activity relative to 

IntroductIon
In the decision-making literature, two main hypotheses have been 
proposed to describe the relationship between brain activity and 
task difficulty. One hypothesis makes the prediction that during 
easier decisions activity will be greater in brain regions involved in 
the computation of a decision (Heekeren et al., 2008; Rolls et al., 
2010). This hypothesis is derived from the idea that the computa-
tion of a perceptual decision requires a comparison of the activity 
of two or more populations of neurons whose responses reflect 
the accumulated sensory evidence in support of different options 
(Shadlen and Newsome, 1996; Heekeren et al., 2004; Gold and 
Shadlen, 2007). Thus, in a situation where there is clear sensory 
evidence in support of one option, activity in a decision-making 
area will reach threshold faster and will lead to greater integrated 
activity. Evidence for the accumulation of sensory evidence in 
higher-level brain regions has been demonstrated in both non-
human primates (Kim and Shadlen, 1999; Shadlen and Newsome, 
2001; Romo et al., 2004) and human subjects (Heekeren et al., 
2004, 2006, 2008; Ploran et al., 2007; Tosoni et al., 2008; Gross and 
Ploner, 2009; Ho et al., 2009). A competing hypothesis makes the 
opposite prediction, namely, that during difficult decisions, activ-
ity will be greater in brain regions involved in the computation of 
a decision. This hypothesis is derived from the idea that, during 
difficult decisions, increased task demands will require greater 
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between these two run types in the fMRI data, we combined the 
data from both to test the predictions from the decision-making 
frameworks described above.

Subjects performed three runs of each type (HV and LV), except 
for one subject who only completed two of each type due to time 
constraints. Subjects were not informed about the difference between 
run types and the order of the two run types was counterbalanced 
across subjects. Subjects were instructed to fixate a central spot and 
respond as quickly and as accurately as possible by pressing one of 
two buttons with their right hand to indicate their decision. Stimuli 
were projected onto a back-projection screen by an LCD projector 
(Sharp) for 850 ms using Presentation software (Neurobehavioral 
Systems Inc, Albany, California). Images subtended a visual angle 
of approximately 5°. The sequence of events was optimized using 
OPTSEQ21. Stimuli were presented with stimulus onset asynchronies 
that averaged 6 s and ranged from 4 to 10 s. The jittering of stimulus 
onsets allowed for an accurate modeling of the baseline for analysis 
purposes. In a separate functional localizer run, subjects performed 
a 1-back discrimination task that was used to map category-selective 
regions in the brain. The functional localizer run consisted of blocks 

baseline during the detection task, which positively covaried with 
reaction time. By contrast, activity in the left superior frontal sul-
cus (SFS) in the DLPFC and the left middle temporal gyrus (MTG) 
showed decreased activity relative to baseline during the task, 
which negatively covaried with reaction time. The task related 
changes in these two sets of regions are consistent with results 
from previous studies, but the sign of these negative activations 
has not been previously reported. We suggest that both of these 
patterns of activation can be accounted for by a simple mecha-
nism, whereby increased task difficulty leads to larger deviations 
of activity, either positively or negatively, from baseline during 
task performance.

MaterIals and Methods
subjects
Twelve right-handed healthy subjects (6 female, age 30.75 ± 2.07 years) 
participated. All had normal or corrected vision, no neurological 
or psychiatric history and no structural brain abnormality evident 
on MRI. Written consent was obtained according to procedures 
approved by the National Institute of Mental Health Intramural 
Research Program (NIMH-IRP) Institutional Review Board.

stIMulI
A set of 38 male face images (face database, MPI for Biological 
Cybernetics, Germany) were degraded by noise as described previ-
ously (Heekeren et al., 2004). Briefly, the fast Fourier transforms 
(FFT) of the images were computed, producing 38 magnitude and 
38 phase matrices. Each stimulus was produced by calculating the 
inverse FFT (IFFT) using the average magnitude matrix of the 
stimulus set and individual phase matrices. The phase matrix used 
for the IFFT was a linear combination of a random noise matrix 
with the original phase matrix computed during the forward FFT. 
This process resulted in a stimulus set where all images had an 
identical frequency power spectrum (corresponding to the average 
magnitude matrix) with graded amounts of noise. Additionally, a 
weighted mean phase correction was implemented as suggested 
by Dakin et al. (2002).

task
Subjects indicated with a button press whether stimuli contained 
a face or not (Figure 1). Stimuli were presented in two run types 
that consisted of different noise ranges. High variability (HV) 
runs contained noise levels from 20 to 100% noise in steps of 20% 
and low variability (LV) runs contained noise levels from 40 to 
60% noise in steps of 5%. These noise levels were selected based 
on pilot data as being on either the flanks (HV runs) or steep 
portion (LV runs) of subjects’ psychometric functions as well as 
being roughly balanced around the point of subjective equality, 
such that subjects responded roughly equally to either choice. 
Each noise level appeared 21 times in each run for a total of 105 
trials per run and both run types contained stimuli that were 
degraded to 40 and 60% noise. This task design was originally 
employed to test for differences in BOLD signal in decision-
making regions to these identical stimuli when they occurred 
during different ranges of stimulus variability, i.e., in differ-
ent contexts. Because no significant differences were detected 1http://surfer.nmr.mgh.harvard.edu/optseq/
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FIguRe 1 | experimental task and stimuli. (A) In the fMRI experiment we 
used a rapid event-related design that consisted of phase scrambled face 
images. Subjects were instructed to respond with a button press as quickly 
and as accurately as possible as to whether they perceived a face in the phase 
scrambled image. Each run consisted of five noise levels and 21 exemplars 
from each noise level. (B) Stimuli appeared for 850 ms followed by a variable 
SOA that averaged 6 s and ranged from 4 to 10 s. There were two run types: 
high variability (HV) runs that contained noise levels that ranged from 20 to 
100% noise in steps of 20% and low variability (LV) runs that contained noise 
levels that ranged from 40 to 60% noise in steps of 5%. Note that there were 
two identical noise levels between the run types, the 40 and 60% trials.
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and FLIRT from the FSL package2. Group effects (N = 12) were 
computed by using the transformed contrast images in a mixed-
effects model, treating subjects as a random variable and conditions 
as fixed variables. Trials with no recorded response were modeled 
as a regressor of no interest. A group level contrast was computed 
to determine the voxels where activity was significantly different 
from baseline for both the HV and LV runs separately. Higher-level 
analysis was carried out using FLAME (fMRIB’s Local Analysis of 
Mixed Effects) (Beckmann et al., 2003; Woolrich et al., 2004). In the 
higher-level analysis, we report clusters of maximally activated voxels 
that (i) survived statistical thresholding at Z > 2.59 and (ii) had a 
cluster volume of at least 1725 mm3, resulting in a corrected p < 0.05 
as determined using AlphaSim in AFNI (Cox, 1996). This analysis 
yielded two independently corrected maps, one for the HV runs and 
one for the LV runs (see Tables 1 and 2 for regions). To determine 
the brain regions that were involved in the detection task regardless 
of the amount of stimulus variability contained in an experimental 
run, we computed the conjunction of the two independently cor-
rected maps (Nichols et al., 2005) and the intersecting voxels were 
used as ROIs (see Table 3) for the subsequent analysis.

The ROIs that were obtained from the previous analysis were 
used as masks to determine the percent signal change values from 
each subject from the independent data that were set aside prior to 
the mapping analysis. The group-averaged percent signal change 
was then computed and plotted against the group-averaged RTs 

of images that were either faces, houses and places, or objects and 
subjects were instructed to press a button when the current image was 
identical to the previously displayed image. The images used for the 
localizer were the same as those used by Kriegeskorte et al. (2003).

data acquIsItIon and analysIs
Behavioral data
Response choice and response time (RT), defined as the time 
between the appearance of the stimulus and the button response, 
were recorded while subjects were in the scanner. An ANOVA was 
used to test for the main effect of noise for both the HV and LV 
runs and paired t-tests were used to compare detection perform-
ance and RT between the identical stimuli (images of 40 and 60% 
noise) from both HV and LV runs.

fMRI data acquisition
Whole-brain MRI data were collected on a 3T GE Signa (GE 
Medical Systems) using an 8-channel phased array coil. Echoplanar 
imaging (EPI) data were acquired using standard parameters (field 
of view, 200 mm; matrix, 64 × 64; 32 axial slices, 3.5 mm thick; 
in-plane resolution, 3.281 mm; repetition time, TR, 2.0 s; echo 
time, TE, 30 ms; flip angle, 90°). Six runs of 274 volumes each 
were acquired. An additional run of 292 volumes was collected 
as a functional localizer. The first four volumes of each run were 
discarded to allow for magnetization equilibration. A T1-weighted 
volume (MP-RAGE) was acquired for anatomical comparison (flip 
angle: 10°, resolution: 0.98 × 0.98 × 1.2 mm3).

fMRI data analysis
fMRI data were analyzed using a mixed-effects approach within the 
framework of the general linear model (GLM) as implemented in 
FSL 5.63 (Smith et al., 2004). EPI data pre-processing included slice 
time correction (Cox, 1996), motion correction using MCFLIRT 
(FSL), non-brain removal using BET (FSL), spatial smoothing 
using a Gaussian kernel of 6 mm FWHM, mean-based intensity 
normalization of all volumes by the same factor and high pass 
temporal filtering (Gaussian-weighted LSF straight line fitting, 
with sigma = 50.0 s). Registration to high resolution and standard 
space images was carried out using FLIRT (Jenkinson et al., 2002). 
Time-series statistical analysis was carried out using FILM with 
local autocorrelation correction (Woolrich et al., 2001).

To determine which brain regions were involved in the detection 
task we first searched for regions where activity was significantly 
different from baseline during either run type. Next, we searched for 
regions that were activated during both run types as a way to identify 
regions that might be generally involved in decision computations, 
regardless of stimulus variability. Then, we tested these regions for 
significant correlations with subjects’ RTs to determine which might 
be involved in decision computations. To address the first issue, con-
trast maps were computed for each stimulus type, for each subject, 
using two-thirds of each subject’s data. The third run of each type 
was left out of the mapping analysis and used as independent data, 
to avoid selection bias, for use in subsequent analysis (Kriegeskorte 
et al., 2009). Data from the subject with only two runs of each type 
was split in half for this purpose. After spatial  normalization,  contrast 
images were transformed into standard (MNI152) space using BET 

Table 1 | Anatomical locations and coordinates of activations  

during HV runs.

Region Left/ BA Z Peak MNI 

 right   coordinates

   Max x y Z

PosITIVe AcTIVATIoNs

SEF (medial frontal gyrus) R 8 3.37 4 14 46

FEF R 6 3.61 40 6 26

Middle frontal gyrus (anterior) L 10 3.20 −34 44 22

 R 10 3.89 30 38 18

Inferior frontal gyrus (IFG) L 47 4.79 −38 16 −2

 R 47 3.71 32 26 −10

Primary motor cortex (M1) L 4 4.68 −54 −14 42

Superior parietal lobule (SPL) L 7 3.76 −30 −54 46

 R 7 4.11 34 −50 44

Fusiform gyrus (FG) L 37 3.79 −42 −62 −24

 R 37 4.23 36 −54 −26

Early visual areas R 17/18 4.91 12 −74 10

Putamen L  4.10 −14 −16 6

 R  3.52 14 −12 8

Thalamus R  4.18 2 −22 24

NegATIVe AcTIVATIoNs

Superior frontal sulcus (SFS) L 8/9 −3.29 −26 16 44

Middle temporal gyrus (MTG) L 39 −3.67 −54 −70 22

 R 39 −3.96 60 −62 22

2http://www.fmrib.ox.ac.uk/fsl/
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from those same runs. Linear regression fits were computed for 
each ROI and the resulting r2, slope and p-values are reported 
in Table 4.

Three further analyses were performed to address other aspects 
of our data. First, to test for differences in brain activity due to 
stimulus variability, contrasts between the identical stimuli (40 and 
60% noise) from both run types were computed using all of the 
experimental runs. A 2 × 2 model tested for a main effect of stimulus 
variability, the pair-wise difference between identical stimuli (both 
40 and 60%, separately) in different ranges, and the interaction of 
noise level and the amount of variability. This analysis was carried 
out and thresholded identically to the previous mapping analysis 
and no significant voxels clusters were found.

The data from the separate functional localizer runs were used 
to generate ROIs for the two remaining analyses. In contrast to the 
activation in ventral temporal cortex that we acquired during our 
task, the localizer data allowed us to identify voxels that responded 
selectively to faces. Thus we could relate these signals to a commonly 
studied portion of visual cortex, often referred to as the “fusiform 
face area” (Kanwisher et al., 1997). Additionally, the use of these 
independent data allowed us to average across all of our experimental 
data to obtain a sufficient number of trials for both hits and misses. 
For both analyses, the localizer data were preprocessed and analyzed 
similarly to the data from the main experiment. The first analysis 

Table 2 | Anatomical locations and coordinates of activations  

during LV runs.

Region Left/ BA Z Peak MNI  

 right   coordinates

   Max x y Z

PosITIVe AcTIVATIoNs

SEF (medial frontal gyrus) R 8 4.76 2 16 48

FEF R 6 3.99 46 14 22

Inferior frontal gyrus (IFG) L 47 4.45 −34 18 −2

 R 47 4.42 30 26 −6

Primary motor cortex (M1) L 4 3.81 −40 −14 58

Superior parietal lobule (SPL) L 7 5.32 −28 −52 46

 R 7 4.47 30 −50 44

Fusiform gyrus (FG) L 37 4.17 −42 −58 −26

 R 37 5.80 40 −58 −24

Early visual areas L 17/18 4.39 4 −74 14

Putamen L  3.48 −14 −22 −6

NegATIVe AcTIVATIoNs

Superior frontal sulcus (SFS)  L 8/9 −4.34 −28 26 46

 R 8/9 −3.96 22 28 34

Inferior frontal gyrus (IFG) L 45 −3.71 −54 30 8

Primary motor cortex (M1) R 4 −4.18 28 −28 52

Insula (posterior) R 13 −3.87 38 −20 10

Posterior cingulate cortex L 31 −4.08 −14 −60 14

Middle temporal gyrus (MTG) L 39 −3.62 −48 −68 30

 R 39 −4.96 50 −70 24

Inferior temporal gyrus L 37 −3.71 −64 −46 −6

Anterior middle temporal gyrus L 21 −3.75 −58 −4 −18

 R 21 −4.25 54 −8 −20

Table 3 | Anatomical locations and center of mass coordinates of 

intersection regions.

Region Left/ BA coM MNI 

 right  coordinates

   x y Z

PosITIVe AcTIVATIoNs

SEF (Medial Frontal Gyrus) R 8 1 15 44

FEF R 6 43 −2 24

Inferior frontal gyrus (IFG) L 47 −37 15 −1

 R 47 33 23 −6

Primary motor cortex (M1) L 4 −44 −18 50

Superior parietal lobulue (SPL) L 7 −29 −54 47

 R 7 30 −56 40

Fusiform gyrus (FG) L 19/37 30 −69 −18

 R 19/37 −34 −81 −15

Early visual areas R 17/18 7 −73 8

Putamen L  −22 13 −5

NegATIVe AcTIVATIoNs

Superior frontal sulcus (SFS) L 8/9 −30 20 44

Middle temporal gyrus (MTG) L 39 −46 −71 26

 R 39 53 -66 23

Table 4 | Regression values for the relationship between fMRI signal 

change and response time in commonly activated regions.

Region Left/ r 2 slope p-Value 

 right

PosITIVe AcTIVATIoNs

SEF (medial frontal gyrus) R 0.603 0.442 0.01

FEF R 0.433 0.596 0.04

Inferior frontal gyrus (IFG) L 0.127 0.204 0.31

 R 0.392 0.444 0.05

Primary motor cortex (M1) L 0.015 0.114 0.73

Superior parietal lobule (SPL) L 0.013 0.070 0.76

 R 0.239 0.378 0.15

Fusiform gyrus (FG) L 0.031 −0.185 0.63

 R 0.001 −0.044 0.92

Group-defined face-selective  R 0.095 −0.433 0.39 

voxels*

Early visual areas R 0.068 0.222 0.47

Putamen L 0.047 −0.093 0.55

NegATIVe AcTIVATIoNs

Superior frontal sulcus (SFS) L 0.502 −0.735 0.02

Middle temporal gyrus (MTG) L 0.556 −0.835 0.01

 R 0.284 −0.404 0.11

*Voxels within the fusiform gyrus that were determined (using separate data) to 
respond selectively to faces compared to other object categories.

determined the correlation between the percent signal change values 
in group-defined face-selective voxels and RT. These face-selective 
voxels were identified by computing a contrast of faces greater than 
objects from each subject’s localizer run and applying a threshold 
to a group map at Z = 3.1 (p < 0.001 uncorrected). This resulted in 
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of the 60% noise stimuli between the HV and LV runs (p < 0.05), 
but not between the 40% noise stimuli ( p < 1) and there were no 
significant RT differences between the two identical stimuli (40%, 
p < 0.47 and 60%, p < 0.42). Thus, overall, the amount of stimulus 
variability in a run had little effect on behavioral measures for the 
identical stimuli.

fMrI results
Comparisons of identical stimuli across run types
A whole-brain mapping analysis comparing activations to the 
identical stimuli in the two different run types revealed no signifi-
cant regions (see Materials and Methods). Further, there were no 
significant differences in the responses of face-selective voxels to 
the identical stimuli in HV and LV runs for trials that were either 
detected or rejected.

Main task effect
Tables 1 and 2 list the anatomical locations of the voxel clusters 
where BOLD signal was significantly different from baseline dur-
ing the HV and LV runs, respectively. Overall, more brain regions 
exhibited significantly different activity relative to baseline during 
the LV runs than the HV runs. This is particularly true for regions 
where we observed a decrease in BOLD signal relative to baseline, 
such as the posterior insula and posterior cingulate cortex.

Commonly activated regions
A conjunction analysis of the thresholded maps from these two run 
types identified regions where activity was significantly different 
from baseline during only one range of variability and also yielded 
several intersecting regions (Figure 3 and Table 3). Voxels within the 
right SEF, right FEF, bilateral IFG, left primary motor cortex (M1), 
bilateral superior parietal lobule (SPL), bilateral fusiform gyrus (FG), 
early visual areas (including Brodmann area [BA] 17 and 18), and 
left putamen showed significant increases in their activity relative to 
baseline during both experimental run types. Voxels within the left 
SFS and bilateral MTG showed significant decreases in activation 
relative to baseline during both experimental run types.

Correlation with RT
Using the ROIs derived from the conjunction analysis, we deter-
mined the percent signal change evoked by each stimulus from 
independent data (see Materials and Methods). The percent signal 
change values from each ROI were then plotted against the group-
averaged RTs and fit by linear regression (Figure 4; Table 4). Three 
of the areas that showed an increase in BOLD signal relative to 
baseline had a significant positive relationship between RT and 
percent signal change: right SEF (r2 = 0.603, p < 0.01), right FEF 
(r2 = 0.433, p < 0.05), and the right IFG (r2 = 0.392, p < 0.05). Two 
of the regions that showed a decrease in BOLD signal relative to 
baseline had a significant negative relationship between RT and 
percent signal change: the left SFS (r2 = 0.502, p < 0.05) and left 
MTG (r2 = 0.556, p < 0.05).

Face responsive voxel analysis
Voxels in the FG where activity was significantly greater than base-
line during the main experiment showed no significant relation-
ship between the BOLD signal and RT (Table 4). Additionally, 

a group-averaged ROI in ventral temporal cortex that was defined 
in an analogous way to the ROIs made from the main experimental 
data. This ROI was used as a mask to plot the group-averaged per-
cent signal change values against RT. A second analysis determined 
whether the activity in face-selective voxels reflected subjects’ per-
ceptual judgments about the stimuli. To select face-selective voxels 
from each subject, a contrast between face and object images was 
thresholded at Z = 2.59 and voxels that intersected with a hand-
drawn mask covering ventral temporal cortex were used as an ROI. 
All subjects had voxels that survived these criteria. Percent signal 
change values were computed from all runs of each subject’s main 
experimental data for both detected and rejected trials. Values from 
each subject’s individually defined ROI were averaged at the group 
level. An ANOVA was used to determine the main effect of detection 
and pair-wise comparisons were made between the HV and LV runs 
for the identical stimuli on both detected and rejected trials.

results
behavIoral data
Figure 2 shows that subjects’ mean detection frequency decreased 
and mean RT increased as noise in the stimuli increased. Detection 
frequency on both HV and LV runs showed a significant main effect 
of noise (both p < 0.001) as did RT (LV, p < 0.001, HV, p < 0.016). 
There was a very small but significant difference in the detection rate 
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We also investigated the relationship between detection per-
formance and noise in face-selective voxels (Figure 5). Consistently, 
in both run types, and for all but one noise level, trials where a face 

 face- selective voxels, as defined from the separate functional localizer 
data, showed no significant relationship between the BOLD signal 
and RT (Table 4).
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FIguRe 4 | Percent signal change plotted against group-averaged RT. 
Independent data were used to plot percent signal change values from the 
ROIs determined from the conjunction analysis. These percent signal change 
values are plotted against the group-averaged RTs from those same runs. The 

five regions that showed a significant correlation between percent signal 
change and RT are shown: right SEF, right FEF, right IFG, left SFS, and left 
MTG. All ROIs and their correlation values are listed in Table 4. Error bars 
are SEM.
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focus of this paper, this latter result may have important implica-
tions for models of decision making. Despite the large difference 
in variability of the stimuli between run types, our findings dem-
onstrate that, in this task, stimulus variability does not significantly 
alter how the brain represents sensory information provided by 
identical stimuli nor does it affect, in any major way, how this 
information is processed by decision-making regions.

Face responsive activations during the detection task
A comparison of the change in BOLD signal in face-selective voxels 
on trials where subjects classified the images as containing a face or 
not revealed larger responses, on average, on trials when the subjects 
detected a face. The activation on these detected trials did not show 
a strong effect of noise, as had been demonstrated on correct trials 
in face-selective voxels in our previous study (Heekeren et al., 2004). 
This is likely due to the change of task between the two studies; 
whereas Heekeren et al. (2004) used a categorical discrimination 
task with noisy faces and houses, we employed a face detection 
task with noisy faces only. The imagining, or misperception, of a 
face has been shown to activate face-selective brain regions (Ishai 
et al., 2000; O’Craven and Kanwisher, 2000; Summerfield et al., 
2006) and it is possible that the search for a face in a noisy image 
leads to increased activity in face-selective regions during a face 
detection task. Additionally, the larger activity on detected trials 
could reflect a combination of both bottom-up sensory processing 
and subsequent, top-down or post-decision activity that reflects a 
subject’s perceptual judgment. In a contrast detection task, Ress and 
Heeger (2003) demonstrated that the amplitude of the BOLD signal 
to near-threshold stimuli in early visual cortex better reflected a 
subject’s perceptual judgment than it did the physical properties of 
the stimulus. Here, we have shown a similar effect in face-selective 
voxels during a face detection task.

decIsIon coMputatIon
Commonly Activated Regions – Positive Activations
The right SEF, right FEF and right IFG showed an increase in BOLD 
signal relative to baseline during both HV and LV runs and the 
degree of activation in these regions was positively correlated with 
RT, i.e., the activation was larger on trials that had a longer RT. Using 
different tasks and different analysis techniques, several groups have 
found similar results. Grinband et al. (2006, 2008) using a method 
that explicitly models differences in reaction times, reported a rela-
tionship between the BOLD signal and uncertainty in a network 
of fronto-striatal-thalamic regions that included bilateral medial 
frontal gyrus and bilateral anterior insula. The peak coordinates 
they reported for the medial frontal gyrus (x = −8, y = 36, z = 36) 
are slightly anterior to the center of mass of activation that we 
found in the SEF (x = 1, y = 15, z = 44), but the peak coordinates 
they reported for the right anterior insula (x = 36, y = 26, z = 8) 
are very close to the center of mass of activation that we found in 
the right IFG (x = 33, y = 23, z = −6). Similarly, Thielscher and 
Pessoa (2007) found that the BOLD signal in the anterior cingulate 
cortex (x = 0, y = 20, z = 40) and right IFG (x = 35, y = 23, z = −5) 
covaried positively with RT during a fear-disgust discrimination. 
Both of those peak coordinates are very close to the peak coordi-
nates that we found in the SEF and IFG, respectively. Activations 
in the SEF and bilateral IFG were also reported in our previous 

was detected led to a greater response in face-selective voxels than 
did trials where the subject reported not seeing a face at the same 
noise level (p < 0.01 for both HV and LV).

dIscussIon
We sought to determine regions of the brain that are involved in 
the computation of perceptual decisions. We searched for regions 
that showed either increased or decreased activity relative to base-
line during a face detection task with experimental runs that con-
tained different ranges of stimulus variability. Of the regions where 
activity was significantly different from baseline during runs of 
both variability levels, we determined which might be involved in 
the computation of perceptual decisions by investigating which 
exhibited activity that correlated with reaction times. We found 
that five regions exhibited activity that correlated with reaction 
times: activity in the right SEF, right FEF, and right IFG positively 
correlated with RT, whereas activity in the left SFS in the DLPFC 
and left MTG negatively correlated with RT. Finally, we showed that 
during the face detection task, activation in face-selective voxels 
reflected subjects’ perceptual judgments by being greater on trials 
when subjects detected the presence of a face compared to trials 
when they rejected the presence of a face at the same noise level.

representatIon of stIMulus evIdence
Identical stimuli
Our design allowed us to test whether there were any significant 
differences in BOLD signal in response to identical stimuli (face 
images degraded to 40 or 60% noise) that occurred during runs 
with different ranges of stimulus variability. Whole-brain analy-
sis revealed no voxel clusters that exhibited significantly different 
activity in response to these identical stimuli during different runs. 
Further, comparing the responses in face-selective voxels to these 
identical stimuli on HV and LV runs for either detected or rejected 
trials revealed no significant differences. Although not the major 
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FIguRe 5 | Percent signal change values from localizer-defined 
face-selective voxels. Group-averaged percent signal change values (plotted 
with SEM) are shown for each behavioral response to each condition. Data 
points are displayed for every noise level where there were at least four 
subjects that had 5 or more trials per condition (there were insufficient 
numbers to plot rejected 40% noise trials from the narrow runs). Detected 
trials had a larger response in these face-selective voxels than did rejected 
trials for both run types.
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correlation means that as RT increased with more difficult trials, 
the region showed a progressive decrease in BOLD signal. This is 
similar to our previous reports where we demonstrated greater 
BOLD signal in the left SFS on trials with high-coherence stimuli 
(i.e., easier trials with faster RTs).

These negatively activating regions show significant overlap with 
regions that have been referred to as the “default mode network” 
whose activity has been shown to be more active during rest peri-
ods than during task periods across a wide variety of conditions 
(Raichle et al., 2001). It is unclear whether regions in the “default 
mode network” disengage during task performance or are actually 
involved in sensory processing (Morcom and Fletcher, 2007), but 
McKiernan et al. (2003) have demonstrated that the BOLD signal 
in these regions parametrically decreases with changes in task dif-
ficulty. Among the regions in the human brain that were reported 
to deactivate by McKiernan et al. is the middle occipital gyrus, 
which partially overlaps with the region we found in the MTG, 
and the left SFS (x = −23, y = 25, z = 46), which is very close to the 
SFS coordinates in the present study. Aside from these similarities 
with our current study, these authors also reported numerous other 
regions in the default mode network (including the left anterior 
cingulate gyrus, left superior frontal gyrus, bilateral posterior cin-
gulate gyrus, bilateral precuneus, and bilateral SPL), which did not 
exhibit significant decreases in activity relative to baseline during 
both ranges of stimulus variability in our face detection task.

Additional considerations
In the current study, activity in several areas was significantly dif-
ferent from baseline across two levels of stimulus variability and 
positively or negatively covaried with subjects’ reaction times. 
Previously we have argued, based on findings from single-unit 
studies, that regions showing a larger BOLD signal on trials with 
high stimulus coherence relative to trials with low stimulus coher-
ence could be involved in the computation of a perceptual decision 
(Heekeren et al., 2004, 2006, 2008). By comparing the activity 
of sensory areas that represent evidence in support of different 
options, these regions would exhibit greater activity when there 
is clear evidence in support of one option relative to when sen-
sory evidence is more ambiguous. However, regions that show 
the opposite profile (i.e., larger BOLD signal on trials with low 
stimulus coherence) have been implicated by other authors as 
being involved in decision making (Binder et al., 2004; Grinband 
et al., 2006; Thielscher and Pessoa, 2007). Our present data identify 
two networks of regions, each of which fits one of these criteria, 
suggesting that both networks may play a role in perceptual deci-
sion making.

One important observation from these data is that the regions 
where activity positively correlates with reaction times during the 
task all exhibit positive activations relative to baseline. Likewise, 
the regions where activity negatively correlates with reaction times 
during the task all exhibit negative activations relative to baseline. 
These patterns of activation suggest a common mechanism whereby 
increasing task demands lead to a larger deviation of a region’s 
activity from baseline during more difficult trials. This framework 
is an appealing explanation because it can completely account for 
the observation that regions that positively activate  during the task 

 studies as regions that responded more on trials with low-coherence 
compared to those with high-coherence stimuli (Heekeren et al., 
2004, 2006). The proximity of these peak activation coordinates 
across studies suggests that they represent elements of a common 
network of brain regions. In fact, these regions have been associ-
ated with the attentional network and may play a role in attentional 
processing (Corbetta and Shulman, 2002; Pessoa et al., 2003). It is 
possible that differential eye movements, or covert attention, has 
led to increased activation during more difficult trials in these areas. 
However, the roughly 200 ms difference in RTs between the easiest 
and hardest trials could at best account for only one additional 
saccade, which does not seem long enough to fully account for 
these differences in activation. Additionally, we cannot rule out 
the possibility that these higher-level brain regions are actually 
encoding stimulus strength rather than task difficulty – as these two 
properties are correlated in our task. While we cannot disentangle 
these factors in our data, Grinband et al. (2006) demonstrated that 
similar regions represent stimulus uncertainty (i.e., task difficulty) 
during a categorization task.

A number of other regions showed increased BOLD signal in 
both HV and LV runs, but activations in these regions did not cor-
relate significantly with RT (see Table 3). Two examples are the left 
IFG and bilateral SPL. These regions may therefore be more gener-
ally involved in attention, visual processing or response selection 
rather than playing a critical role in the formation of perceptual 
decisions. Additionally, activity in early visual areas (BA 17 and 
18), the bilateral FG, and face-selective voxels in the FG showed 
no correlation with RT. It was surprising that activity in face-se-
lective regions did not correlate with RT as, in our task, stimulus 
evidence and RT were correlated. Activations in primary motor 
cortex (M1) and the left putamen also did not correlate with RT 
and instead likely reflected the button press that subjects used to 
render their response.

Commonly activated regions – negative activations
BOLD signals in the left SFS and bilateral MTG decreased rela-
tive to baseline during both HV and LV runs and the amount 
of decrease in the left SFS and left MTG significantly correlated 
with RT. Significant activity in bilateral MTG was not found in 
our previous studies, but the peak coordinates from the left SFS 
activation from the HV (x = −26, y = 16, z = 44 ) and LV (x = −28, 
y = 26, z = 46) runs as well as the center of mass of the intersecting 
region (x = −30, y = 20, z = 44) are in strikingly similar locations 
to the region observed in our previous reports [peak voxels were 
at x = −24, y = 24, z = 36 (Heekeren et al., 2004) and x = −23, 
y = 29, z = 37 (Heekeren et al., 2006)]. In these previous studies, 
we demonstrated that the activity in the left SFS within the DLPFC 
(i) is greater in response to high-coherence than to low-coherence 
stimuli; (ii) covaries with the difference signal between face- and 
house-selective regions in ventral temporal cortex; (iii) predicts 
behavioral performance in a categorization task; and (iv) reflects 
the computation of a decision in a way that is not tied to a specific 
motor response (Heekeren et al., 2004, 2006). In the present study, 
we have additionally demonstrated that the BOLD signal in the 
left SFS is negatively correlated with RT across different ranges 
of stimulus variability during a face detection task. This negative 
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exhibit larger activations on trials with longer reaction times while 
regions that negatively activate during the task exhibit larger deac-
tivations (see Figure 4). This idea is also compatible with previous 
studies that have associated several of the regions that positively 
activated during this task with the attentional network (Corbetta 
and Shulman, 2002; Pessoa et al., 2003), while the regions that 
negatively activated in our study have been associated with the 
default mode network (Raichle et al., 2001).

While this interpretation differs from that of our previous work, 
it does not rule out the possibility that negatively activating regions 
are performing important functions during perceptual decisions. A 
central question is whether a diminished decrease in BOLD signal 
on easier trials is equivalent to an increase in BOLD signal? Are 
these default mode network regions being deactivated because of a 

reallocation of attentional resources – with less deactivation caused 
by less attentional demand, or is the increase above a negatively 
changed BOLD signal somehow indicative of additional compu-
tations taking place in these areas that are related to the task? It 
may be possible to gain answers to these questions by perturba-
tions of the default mode network by methods such as TMS, or 
with electrical recordings from homologous regions in animals. 
Already, there is some evidence that regions of cat cortex thought 
to be homologous to the human default mode network can show 
decreases in LFP power, a measure linked to the BOLD signal 
(Logothetis et al., 2001; Mukamel et al., 2005) accompanied by 
increases in spike rates (Popa et al., 2009). Thus, changes in the 
BOLD signal, irrespective of sign, may indeed reflect task relevant 
changes in neuronal activity.
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