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Adaptive sound localization with a silicon cochlea pair

Vincent Yue-Sek Chan†‡, Craig T. Jin and André van Schaik*

School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia

A neuromorphic sound localization system is presented. It employs two microphones and a pair 
of silicon cochleae with address event interface for front-end processing. The system is based 
the extraction of interaural time difference from a far-field source. At each frequency channel, 
a soft-winner-takes-all network is used to preserve timing information before it is processed 
by a simple neural network to estimate auditory activity at all bearing positions. The estimates 
are then combined across channels to produce the final estimate. The proposed algorithm is 
adaptive and supports online learning, enabling the system to compensate for circuit mismatch 
and environmental changes. Its localization capability was tested with white noise and pure 
tone stimuli, with an average error of around 3° in the −45° to 45° range.
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ITD. Other localization cues include the spectral cues and motion 
cues, which are useful in removing ambiguities associated with 
elevation discrimination when localization of both azimuth and 
elevation is required.

One of the earliest ITD processing models was proposed by 
Jeffress over 60 years ago (Jeffress, 1948), where he modeled the 
computation of ITD by having signals from the two ears propa-
gating along delay lines in opposite directions and arriving at an 
array of coincidence detectors, each responding best to a particular 
ITD (Figure 2). This neural arrangement is analogous to a math-
ematical cross-correlation operation, with the delay between the 
signals given by the position of maximum correlation. Such neu-
ral computational circuits were later found in the owl’s brainstem 
(Konishi, 1992).

Localization systems are dominated by those based on ITD 
because time delay can be determined accurately, is relatively 
frequency independent (compared to IID), and its relationship 
with the source position can be most easily determined among 
all localization cues. Further, in many localization systems, the 
microphones are mounted on a plane or in free space so that no 
spectral cues or IIDs are available. Traditional ITD-based localiza-
tion systems, whether using two microphones or a microphone 
array, often perform cross-correlation in software to determine the 
time delays between microphones (Huang et al., 1999, 2002; Julian 
et al., 2003, 2004). In systems with more than two microphones, 
these delays are combined using statistical methods, such as maxi-
mum likelihood or minimizing mean square error, to estimate the 
location of the source (Rabinkin et al., 1996; Svaizer et al., 1997). 
Alternatively, spatial temporal processing can be performed on the 
microphone array signals to compute the gradient of the sound 
field to obtain source direction (Clapp and Etienne-Cummings, 

IntroductIon
Sound localization is the ability to identify the direction of a sound 
and is a key to survival in the animal world. In robotics, how-
ever, sound localization has received much less focus compared 
to vision. Nevertheless, sound localization is expected to become 
more important as robots are required to operate in the real world 
and must handle both visual and auditory stimuli.

Unlike the retina, which creates a two-dimensional map of 
electromagnetic activity in the visible spectrum, the cochlea 
decomposes sound into its frequency components, i.e., a tonoto-
pic representation. Spatial information, i.e., the position of the 
sound sources, must therefore be extracted from the tonotopic 
information. Several cues are available for the brain to perform this 
task. The first cue is the interaural time difference (ITD). It arises 
because of the difference in time of arrival of the sound to the two 
ears – the ear nearer to the source will receive the sound before the 
far ear (Figure 1). At low frequencies, this appears in the form of 
interaural phase difference (IPD), whereas at high frequency, it takes 
the form of interaural envelope delay (IED). This is a result of the 
half-wave rectification and first order low pass filtering introduced 
by the inner hair cells (IHCs) that sense the vibration of the basilar 
membrane in the cochlea.

The second and equally important cue is the interaural intensity 
difference (IID), also known as interaural level difference (ILD), 
and is the result of the head being an obstacle that shadows the 
sound’s path to the eardrum. Since the head is a dense medium, 
a sound must diffract around the head to reach the far ear and 
its amplitude drops as a result. This effect is more perceptible 
when the wavelength of the sound is less than or comparable to 
the size of the head. As a result, the IID is more pronounced at 
high frequencies and provides complimentary information to the 
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and colleagues (Handzel et al., 2003; Andersson et al., 2004), and an 
 audio-visual object localization system being developed by Schauer 
and Gross (2001).

Others have taken the challenge one step further by imple-
menting some of these processing in analog VLSI (a-VLSI). The 
most notable was Lazzaro’s silicon model of sound localization 
(Lazzaro and Mead, 1989) based on Konishi’s owl model. In this 
implementation, the silicon cochleae decompose the incoming 
signals from the left and right ears into different frequency bands 
and convert the signals into spike trains. Cross-correlations are 
then performed on the spike trains using the silicon axons as 
delay lines and logic AND gates as coincident detectors, similar to 
the computation performed at the nucleus laminaris in the owls. 
The cross-correlation results are summed across frequency, and 
finally, a non-linear inhibition circuit is used to model the com-
petition among inferior colliculus neurons, producing a neural 
map of ITD. A similar architecture was adopted by Bhadkamkar, 
who also implemented sound localization systems on chip but 
with limited success (Bhadkamkar and Fowler, 1993; Bhadkamkar, 
1994). Both Lazzaro and Bhadkamkar’s work suffered from mis-
match, particularly at the delay lines. Methods of extracting ITD 
without delay lines have been proposed by Shamma et al. (1989), 
van Schaik and Shamma (2003), and Grech et al. (2000, 2004). 
However, all these ITD extraction methods deviated somewhat 
from biology.

Once the ITDs from multiple bands are extracted they have 
to be processed to estimate the source location and several tech-
niques can be used. In the first and simplest technique, it assumes 
the relationship between source location and ITD is known, e.g., 
if ITD = sin(θ), where θ is the azimuth angle of the source, then 
source location can be directly computed using the inverse function 
or a look-up table. Examples include (Huang et al., 1999; Julian 
et al., 2003).

The second method is a search strategy similar to the Nearest 
Neighbor Search, where the system searches through an entire range 
of discrete positions and the position resulting in the best match 
becomes the estimate. This is used by the ITD algorithm in Huang 
et al. (2002) and the IPD/IID algorithm in Handzel et al. (2003), 
Andersson et al. (2004). A more elaborated version is used by Grech 
et al. (2004) to localize sound in both azimuth and elevation. This 
method is more computationally intensive but offers greater flex-
ibility and accuracy.

In the last method, the localization system is trained to learn the 
relationship between the sound features and source position, and 
the learning can be either supervised or unsupervised. In supervised 
learning, training data with known source positions are presented 
to the system, while in unsupervised learning, the source posi-
tions are not given explicitly but have to be determined by the 
system itself. This is usually achieved via the interaction of motion 
(head-turning) and sensing (both audition and vision). Examples 
of system which learns sound localization can be found in Irie 
(1995), Nakashima et al. (2002), Nakashima and Mukai (2005), 
Hornstein et al. (2006).

In this paper, we propose an ITD-based sound localization system 
that can be implemented in a-VLSI. The proposed system is biologi-
cally realistic as it uses only two sensors and it employs an a-VLSI 
cochlea model. Unlike some previous a-VLSI  implementations, 

2002, 2004; Stanacevic and Cauwenberghs, 2005; Gore et al., 2010). 
While software implementations are more flexible, hardware 
implementations offer lower power consumption and guarantee 
real-time operation, which is especially important for sensor and 
robotic applications.

Some researchers have taken the bio-mimetic approach in an 
effort to build more human-like artificial systems. Subsequently, 
many of these systems employ biologically realistic strategies 
to perform sound localization. For instance, they use only two 
microphones mounted on a spherical head or manikin. A filter 
bank or Fourier Transform is often used to mimic the function 
of the biological cochlea, and the ITD and the IID in each band 
are then extracted. Some examples include the Cog project (Irie, 
1995), the humanoid robot SIG (Nakadai et al., 2001; Okuno and 
Nakadai, 2003; Okuno et al., 2004), the robots used by Andersson 

Incoming sound 
wave

Ears

Figure 1 | iTD arises from the difference in time of arrival of sound to the 
two ears, while iiD is a result of sound attenuation by the head.

From left ear

From right ear

Figure 2 | An illustration of Jeffress’ model. Each coincidence detector 
responses best to a particular ITD corresponding to sound arriving from a 
specific direction.
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room in which the walls are fitted with sound absorbing material to 
minimize reflection with the only major reflection coming from the 
floor, which is covered with thick carpet. The Tannoy loudspeaker 
features concentric bass driver and tweeter unit to provide a single 
point source for all audio frequencies, and has a flat spectrum from 
44 Hz to 20 kHz. It was placed at the same height as the sphere, 
2.6 m from the center of the sphere, and the IRs were recorded at 10 
steps. These IRs allow us to present any stimulus to the AER EAR to 
simulate a far-field source in an open environment for both learn-
ing and testing, from different directions, by simply convolving the 
source signal with the appropriate left and right IRs. This method 
also allows simulated automatic gain control to be applied to the 
signals before they enter the cochleae, which is required due to a 
limited dynamic range in our silicon cochlea.

Each of the two silicon cochleae in the AER EAR contain 32 
sections and is tuned to cover the frequency range from 200 Hz to 
10 kHz, logarithmically spaced. In the human cochlea the cut-off 
frequency of the low pass filter created by the inner hair cell (IHC) 
is around 1 kHz and significant phase locking cannot be expected 
for frequencies above 3 kHz. In biology, around 10 auditory nerves 
innervate a single IHC and many IHCs would cover a frequency 
range equivalent to the bandwidth of our silicon cochlea channels. 
To simulate many fibers innervating a single cochlear region with 
our AER cochlea, which has only one output address for this region, 
we have turned off the low-pass filtering in the IHC and used a 
high spike rate. At the same time any cochlear section with a best 
frequency above 3 kHz will not be used by the system, leaving us 
with 19 pairs of left and right cochlea channels for the current bias 
settings of the cochlea.

Each channel generates, on average, 6000 spikes per second 
when a 35 mV

rms
 sine wave is presented at the channel’s best fre-

quency (BF). The leakage current at the integrate-and-fire neuron 
is adjusted to strike a balance between sensitivity and spontane-
ous spike rate. For demonstrative purposes, all processing after the 
cochlea has been performed in MATLAB.

MaterIals and Methods
tradItIonal IMpleMentatIon
The block diagram of a commonly used bio-inspired algorithm 
for ITD-based sound localization (Lazzaro and Mead, 1989; 
Bhadkamkar and Fowler, 1993; Bhadkamkar, 1994; Lotz et al., 1999; 
Schauer and Paschke, 1999; Schauer and Gross, 2001) is shown in 
Figure 4. It is based on Jeffress’ model, where a pair of cochleae 
analyze the incoming sound and separate it into different frequency 
bands. Cross-correlation, typically implemented by delay lines and 
coincidence detectors, is then performed on the left and right out-
puts of each section, Y

L i
 and Y

R i,

R Y t Y t dti L i R iτ( ) = ( )⋅ +( )⋅ ⋅∫ τ
 

(1)

before being summed across frequency. The delay position with 
maximum correlation is selected using a winner-takes-all (WTA) 
circuit (Lazzaro et al., 1989; Indiveri et al., 2002) and becomes the 
estimate of the ITD.

ˆ arg maxτ τ= ( )



∑Ri

i  

(2)

our solution requires no prior model of ITD and can be trained to 
localize sound in any environment. In addition, the training allows 
it to adapt to compensate for ITD variation across frequency and 
mismatch in circuit components.

This paper is organized as follows: the experimental setup is 
described in Sections “Experimental Setup” and “Materials and 
Methods,” we will introduce our approach to the localization 
problem, cumulating to a neuromorphic architecture supporting 
learning and adaptation; experimental results are presented next 
in Section “Results”; this is followed by a discussion in Sections 
“Discussion” and “Conclusion” will conclude the paper.

experIMental setup
The experimental setup is shown in Figure 3. Two electret micro-
phone capsules are mounted on opposite sides of a sphere 15 cm 
in diameter, made of foam. The microphone capsules measure 
10 mm in diameter and are omnidirectional with a frequency 
range from 50 Hz to 12.5 kHz. The sphere itself is then fixed atop 
a robot, 15 cm from the ground. This sphere simulates the effect 
of head shadowing and diffraction introduced by the head, hence 
the recording from one microphone is not simply a time-delayed 
version of the other. Furthermore, because the head is mounted 
near the front of the robot, there are front-back asymmetries, 
which become evident in later sections. The microphone signals 
are amplified before being fed into the silicon cochlea chip, the 
AER EAR (Chan et al., 2007), and can be recorded and played back 
via a computer sound card.

We recorded the “head”-related impulse responses (IRs) of the 
microphones in response to a loudspeaker (Tannoy System 600A) 
at different azimuth positions in an “almost anechoic” environment. 
Although our “head” is a simple sphere, it is a good approximation 
in this case, since our system is ITD-based and pinna related spec-
tral cues are minimal at the frequencies where ITD is thought to 
operate in humans (<3 kHz). The audio environment consists of a 

Source

Left

Microphones

θ

Front

Figure 3 | Localization setup. Two microphones are installed on opposite 
side of a 15 cm foam ball mounted on a 6-wheel robot. Azimuth = 0° at the 
front, 90° on the left, −90° on the right, and ±180° at the back.
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WTA since only the delay corresponding to maximum correlation is 
extracted. Lastly, the implementation of a circuit capable of discarding 
outliers is not trivial. Therefore, we will investigate an alternative that 
is more robust and simpler to implement neuromorphically.

Instead of extracting only the global maximum in each band, 
it is more beneficial to retrieve all local maxima of significant 
magnitudes. In this way, even if the stimulus is a pure tone and 

If ITD is independent of frequency and determined by

τ = ( )f θ  
(3)

where θ is the direction of the source (Figure 3), then direction can 
be computed from τ̂ by applying the inverse function,

ˆ ˆθ τ= ( )−f 1

 
(4)

However, if the microphones are mounted on a head, the intro-
duced diffraction will cause f(θ) to be frequency dependent, as 
shown in Figure 5. According to Kuhn (1977), at frequency less than 
500 Hz, it can be approximated by a sine function, but becomes 
proportional to sin(θ) + θ as frequency increases above 1.5 kHz. 
Thus, different estimates will be given as the frequency of the source 
changes. The task is further complicated when implemented in 
a-VLSI as there will be mismatch in the delay lines at the cross-
correlator, phase mismatch between the left and right cochleae, as 
well as mismatch in delay introduced by the signal conditioning 
circuits at the inputs of the cochleae.

MappIng and soft-Wta
The first and most intuitive solution to the ITD variation problem 
is to extract the delay in each band and individually map these 
delays to azimuth angles. They can then be averaged to obtain a 
global estimate. Since mapping is performed before the results are 
combined, the frequency dependency is corrected. A block diagram 
of the algorithm is shown in Figure 6.

While this algorithm works fine for noise inputs, it is less suitable 
for stimuli consisting of pure tones because the cross-correlation 
would result in more than one peak in some bands. If the wrong 
peak is picked, then in the best scenario, it is discarded (because it is 
physically impossible or is an outlier compared to the results from the 
other bands), resulting in some loss of information. In the worst case, 
however, it would generate a completely wrong estimate. This algo-
rithm is also sensitive to noise and error introduced by mismatch at the 

Cochleae Cross-correlators

Summing across 
Frequency

WTA

Map
Estimate of source 

direction

YL i

YR i

Ri(� )

R(� )

�̂

Figure 4 | A commonly employed sound localization algorithm. A block 
arrow signifies a signal in multiple frequency bands. The cross-correlation 
results are summed across frequency without any adjustment for the 
frequency dependency of ITD.
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Figure 5 | A plot of iTD vs. azimuth for two microphones mounted on 
opposite sides of the foam ball, for four different octave bands. The delay 
is larger at low frequencies, which is consistent with Kuhn’s model (Kuhn, 
1977). Note that there are small front-back asymmetries (e.g., at 60º and 120º) 
at some frequencies due to the sphere being mounted near the front of the 
robot. Sound arriving from the back will experience more interference 
introduced by the robot’s body.
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Figure 6 | The first method to correct for iTD variation. For each band, the 
position of a single maximum is selected from the cross-correlation result 
using a WTA and mapped to azimuth position individually. These azimuth 
positions are then averaged to obtain the global estimate. The block arrows 
represent signals in multiple frequency bands.
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Figure 9 shows the result of the application of a soft-WTA1 (with 
the strength of inhibition equal to that of excitation) to a cross-
correlation resulting from a pure tone stimulus. Both peaks are 
well-preserved.

Referring to Figure 8, for each frequency band, given the soft-
WTA output S

i
(τ), we can create a new function by mapping time (τ) 

to azimuth angle (θ) with the measured ITD function τ = f
i
(θ),

S S f Gi i i iτ θ θ( ) = ( )( ) = ( )
 

(5)

This new function can be thought of as a measure of auditory 
activity at different bearing positions. Assuming there is only one 
source, the G

i
(θ) in each band should produce a peak at the position 

of the source (even though there may be more than one peak if the 
signal is a mixture of pure tones). When the results are summed 
together, there will be one global maximum which gives us the 
correct estimate of the source direction:

ˆ arg maxθ θ= ( )



∑Gi

i  

(6)

MappIng as MatrIx MultIplIcatIon
For the algorithm presented in Section “Mapping and Soft-
WTA,” in each frequency band, the mapping essentially con-
nects neurons representing the soft-WTA output at different 
delays, τ, with neurons representing auditory activity at different 
azimuth, θ. Since both time delay and angle are discrete, we can 
rewrite the WTA output as a vector S ∈ Rk and the activities at 
different azimuth as a vector G ∈ Rn. The mapping can then be 
expressed as:

G W S= ⋅  (7)

the correlation result at the true time delay is not the global maxi-
mum, the true delay would still be passed on to subsequent stages 
rather than being discarded. This is accomplished by tuning the 
WTA. A typical WTA network is shown in Figure 7 and by adjust-
ing the strength of the inhibition relative to that of the excitation, 
one can vary the selectivity. A weak to moderate global inhibition 
allows it to be used to implement the soft-max function, which 
selects not only the strongest but also those similar in strength 
(Indiveri and Delbruck, 2002). Figure 8 shows this system and 

x1 x2 xN-1 xN

y1 y2 yNyN-1

wi wiwi wi

we

wewe

we

Figure 7 | A winner-take-all network consists of neurons with excitatory 
and inhibitory synaptic connections. The global inhibitory neuron (in black) 
provides the negative feedback necessary for competition to occur. By 
adjusting the strength of the inhibition (Wi) relative to that of the excitation 
(We), one can vary the selectivity – more and more neurons go to zero as 
inhibition increases. (Adapted from (Indiveri and Delbruck, 2002)).
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Figure 8 | An improved algorithm using a Soft-WTA.

1We use the term “soft-WTA” to describe any WTA network where the inhibition is 
weakened to allow more than one winner.
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Figure 9 | Application of soft-WTA to the result of cross-correlation. The 
stimulus is a 650 Hz pure tone with an ITD of approximately −0.6 ms. This ITD 
information would have been lost if a normal WTA is used, since there is a 
larger maximum at +1.0 ms.
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Err s

Err S
i j

T

 

(13)

and our weight update rule2 is

W W Err ST
new old= − ⋅ ⋅ε  (14)

With a sufficiently small learning rate, ε, the error function will 
always converge to a local minimum. One of the elegant features of 
such an update rule is that learning can be performed online, i.e., the 
system can gradually adapt while in operation, as long as feedback is 
provided about the target position. This will allow us to implement 
a sound localization system that is continually trained by visual 
feedback, which will be the subject of a companion paper.

Figure 10 shows the complete block diagram of the final system. 
The mapping is replaced by a multiplication with a weight matrix. 
Such an operation is essential in artificial neural networks and has been 
implemented in VLSI with examples include (Morie, 1999; Serrano-
Gotarredona and Linares-Barranco, 1999; Wang and Liu, 2006). Most 
implementations consist of an array of programmable synapses, with 
the weights stored in either digital or analog memory.

The complete system is simulated in MATLAB, except for the AER 
EAR, which was implemented in hardware. We use 101 delay posi-
tions (−1 to 1 ms with 20 μs resolution) and 61 azimuth angles (−90° 
to 90° with 3° step), resulting in weight matrices that are 61 × 101.

The weights are trained with band-limited noise stimuli under 
supervised learning. For each training example, we set the target T 
to be a Gaussian function centered at the expected position of the 
source, with σ = 25°. One of the advantages of choosing a Gaussian 
function instead of an impulse function is that it updates not only 
the weights going into the neuron representing the position of the 
source, but also those surrounding it. As a result, there is no need 
to provide training data at every source position and the system 
will be able to interpolate upon successful training. For simplicity, a 
fixed learning rate of 0.02 is used. While more complicated learning 
rate schedules can be used to speed up learning, we consider them 
outside the scope of this paper.

results
After the weights have been trained, we are able to transform the 
soft-WTA outputs to a spatial map representing auditory activity. 
Figure 11 demonstrates this at one frequency channel. The out-
puts are essentially in a straight line, showing good correspondence 
between the actual and the perceived sound sources, with small 
imperfections at the larger azimuth positions. We repeat this process 
at a higher frequency channel with a different weight matrix, and 
again good results are shown in Figure 12.

Figure 13 shows how the error function f(W), in equation 10, 
reduces over time as the weights slowly adapt to the training data. 
The weights in the 2 kHz channel converge much slower than those 

where W ∈ Rn × Rk is a weight matrix. In each row, there will be 
only one “1” with all other entries being “0,” and the positions of 
the 1’s are given by the relationship between azimuth and ITD at 
that band. Thus, each neuron in G will receive spikes from exactly 
one neuron in S.

In biology, connections between neurons are never one-to-one. 
A typical neuron has dendritic trees that collect inputs from hun-
dreds to thousands of other neurons, weighted differently depend-
ing on the synaptic strength. Such a rich network of interconnecting 
neurons allows computations involving hundreds of variables to 
be performed in parallel. Furthermore, it allows learning to take 
place gradually by making small incremental changes to synaptic 
strength, in contrast to the abrupt changes of updating a lookup 
table. With this mind, we generalize equation (7) and allow each 
element of W to take any value.

Now the question becomes: how do we determine W such that 
given the WTA output S, it can be transformed into G to represent 
activity in the auditory space? The solution can be found based on 
the gradient descent method.

In gradient descent, the goal is to find the point P such that f(P) 
is minimized. This is implemented by computing the gradient of f 
at the current position and move in the opposite direction, which 
gives the steepest rate of descent (Anderson, 1995). Mathematically, 
this can be expressed as:

P P f Pi i i+ = − ⋅ ∇ ( )1 ε
 

(8)

where P
i
 is the current position, P

i + 1
 is the new position, and ε 

controls the rate of descent. In our case, given the input S and target 
T ∈ Rk, we define the error to be

Err T G= −  (9)

and our aim is to find W which will minimize the square error 
function:

f W t g t W si i
i

i ij j
ji

( ) = −( ) = −






∑ ∑∑1

2

1

2

2

2

 

(10)

where t
i
 and g

i
 are the i-th elements of T and G, s

j
 is the j-th element 

of S, and W
ij
 is the element at the i-th row and j-th column of W. To 

determine the gradient, we take the partial derivative with respect 
to each element of W,

∂ ( )
∂

= ∂
∂

−






∑f W

W W
t W s

ij ij

i ij j
j

1

2

2

 

(11)

since this is the only term in the sum containing W
ij

= −






∑t W s si ij j

j
j

= −( )t g si i j

= Err si j  
(12)

So,

2Gradient descent is used in the popular back-propagation algorithm to train mul-
ti-layers neural networks. The update rule is very similar, with the addition of an 
activation function (Anderson, 1995; Russell and Norvig, 1995).
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Figure 10 | Block diagram of the final system. Mapping is replaced by matrix multiplication. S in each band is multiplied by a weight matrix to generate the 
activity map G. These frequency specific maps are then summed to produce the final estimate.
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Figure 11 | Before and after transformation at one channel with a best frequency (BF) of 340 Hz. (A) The soft-WTA output S, is transformed into (B) G, a 
representation of activity in auditory space for this frequency channel.

in the 340 Hz channel. This is probably due to the gradual loss 
in phase-locking at the cochlea as frequency increases, resulting 
in more variation in the cross-correlation results, degrading the 
quality of the training data.

Localization tests were performed after the weights had been 
trained. We tested the system with white noise (3 kHz band-
width), a 400 Hz pure tone, and a 650 Hz pure tone, and the 
results are presented in Figures 14–16. 10 trials are performed 
at each source position and the average as well as the error of 
estimates is recorded. The front-back asymmetries that we saw 
in Figure 5, caused by the interference of the robot, are evident 
when the 650 Hz pure tone is played. Since the weights are trained 
with the source in front of the robot, the errors are large when 

the source comes from behind. The average RMS errors in the 
different ranges are presented in Table 1. The overall RMS error 
within the entire range is under 6º.

dIscussIon
In Table 2, we compare the performance of our system with other locali-
zation systems in which localization results are available or can be com-
puted from published data. RMS errors are calculated manually from 
the average error and the standard deviation at each position, before 
they are combined across the two ranges, [0°, 45°] and [45°, 90°].

The accuracy of our system is comparable with all the other 
2-microphone hardware implementations (Julian et al., 2003; van 
Schaik and Shamma, 2003; Grech et al., 2004) and some software 
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Figure 14 | Localization result for a white noise stimulus, showing both 
the average estimate and rMS error at each position over 10 trials.

systems (Nakashima et al., 2002; Okuno and Nakadai, 2003). It 
can be seen that software systems generally offer better accuracy, 
with errors as low as 1° in the [0°, 45°] range, as computation can 
be performed in higher precision, at the expense of higher power 
consumption. For accurate 3-D source localization (i.e., azimuth, 
elevation and distance) in a reverberant and noisy environment, a 
microphone array has to be used.

Although our system only offers average performance in terms 
of accuracy, it is one of the most biologically realistic and the only 
one employing a pair of spiking cochleae. It is capable of local-
izing both white noise and pure tone sounds. This is in contrast 

to some existing systems which are tested with only one type of 
sound. Furthermore, our system is designed to adapt and learn 
during operation as long as feedback is provided. As a result, it 
is no longer necessary to accurately calibrate it to ensure good 
localization – instead the system will adapt and compensate for 
mismatch at the sensors and the processing circuitries. This is 
an important feature for both biological and robotic systems. 
However, for the system to adapt, feedback is needed with regards 
to the correct target position when the system encounters a new 
environment. In a companion paper, we will present a system that 
uses a silicon retina to provide visual feedback about the target 
positions in the visual field, which will be used to train the sound 
localization system.
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Figure 15 | Localization result for a 400 Hz pure tone stimulus, showing both the average estimate and rMS error at each position over 10 trials.
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Figure 16 | Localization result for a 650 Hz pure tone stimulus, showing both the average estimate and rMS error at each position over 10 trials.

Table 1 | rMS error for the three types of stimuli.

Stimulus type 0°–45° 45°–90° entire range (0°–90°)

White noise 

(3 kHz bandwidth) 2.7 5.5 4.4

400 Hz 2.7 8.2 6.2

650 Hz 4.4 8.5 6.9

conclusIon
An ITD-based neuromorphic sound localization system has been 
proposed. It uses the AER EAR as a front-end and unlike earlier 
attempts to implement neuromorphic sound localization systems 
in a-VLSI (Lazzaro and Mead, 1989; Bhadkamkar and Fowler, 1993; 
Bhadkamkar, 1994), by using a modular approach and process-
ing each frequency channel individually, circuit mismatch and 



Frontiers in Neuroscience | Neuromorphic Engineering  November 2010 | Volume 4 | Article 196 | 10

Chan et al. Adaptive sound localization silicon cochlea

Bhadkamkar, N. A. (1994). Binaural 
source localizer chip using subthresh-
old analog CMOS. IEEE Int. Conf. 
Neural Netw. 3, 1866–1870.

Bhadkamkar, N. A., and Fowler, B. (1993). 
Sound localization system based on 
biological analogy. IEEE Int. Conf. 
Neural Netw. 3, 1902–1907.

Chan, V., Liu, S.-C., and van Schaik, A. 
(2007). AER EAR: a matched  silicon 

references
Anderson, J. A. (1995). Gradient Descent 

Algorithms, An Introduction to Neural 
Networks. Cambridge, MA: MIT Press, 
239–279.

Andersson, S. B., Handzel, A. A., Shah, 
V., and Krishnaprasad, P. S. (2004). 
Robot phonotaxis with dynamic 
sound localization. IEEE Int. Conf. 
Robot. Autom. 5, 4833–4838.

cochlea pair with address event rep-
resentation interface. IEEE Trans. 
Circuits Syst. I: Regul. Pap. 54, 48–59.

Clapp, M. A., and Etienne-Cummings, R. 
(2002). Ultrasonic bearing estimation 
using a MEMS microphone array and 
spatiotemporal filters. IEEE Int. Symp. 
Circuits Syst. 1, 661–664.

Clapp, M. A., and Etienne-Cummings, R. 
(2004). Bearing angle estimation for 

sonar micro-array using analog VLSI 
spatiotemporal processing. IEEE Int. 
Symp. Circuits Syst. 4, 884–887.

Grech, I., Micallef, J., and Vladimirova, T. 
(2000). Low-voltage, SC TDM corre-
lator for the extraction of time delay. 
IEEE Int. Conf. Electron. Circuits Syst. 
1, 112–115.

Grech, I., Micallef, J., and Vladimirova, 
T. (2004). Analog CMOS chipset 

Table 2 | Comparison with other sound localization systems.

Localization system No. of 

mikes

Localization cues used Stimulus rMS error 

(0º–45º/45º–90º)1

implementation

Current work 2 ITD Noise 2.7º/5.5º Hardware + Simulation

Pure tone 3.7º/8.4º

van Schaik and Shamma, 

2003

2 ITD Low freq 

(<300 Hz)

3º/12º Hardware (time difference in 

zeros-crossing)

Julian et al., 2003, 2006 22 ITD Low freq 

(<300 Hz)

3º/8º3 Hardware (modified cross-

correlation)

Julian et al., 2005, 

Stanacevic and 

Cau-wenberghs, 2005

4 Acoustic wave field Low freq 

(<300 Hz)

4º4 Hardware

Gore et al., 2010 4 Acoustic wave field 1 kHz pure tone 1º Hardware

Grech et al., 2004 2 IPD4 + IED5 + IID + spectral 

cues

Impulse 5º (azimuth and 

elevation)

Hardware (cue 

extraction) + Software (mapping 

cues to position)

Nakashima et al., 2002 2 ITD Unknown 3º/12º6 Software, with localization trained 

by vision

Handzel et al., 2003 2 ITD Noise 2º/3º Software

IPD + IID Noise 1º/3º Software

Andersson et al., 2004 2 IPD + IID with motion Noise 1º/2º Software

Okuno and Nakadai, 2003 2 IPD + IID Speech 3º/12º Software

Huang et al., 1999 3 ITD 1 kHz 1º Software

Hand-clapping 5º

Svaizer et al., 1997 8 TDOA7 Speech/Noise 1.5º (azimuth and 

elevation)

Software (CSP8 and maximum 

likelihood)

Rabinkin et al., 1996 8 TDOA Speech 3º (azimuth and 

elevation)

Software (CSP and searching by 

LMS error)

Clapp and Etienne-

Cummings, 2002; 2004

9 Spatial temporal filtering 50 kHz 1º9 Hardware

(ultra-sound)

1The error is separated into two ranges for 2-microphone systems which localize the azimuth angle only.
2The complete system consists of two pairs of microphones arranged orthogonally so that each pair only has to cover azimuth angles up to 45º. The errors shown 
here result from using only one pair.
3The authors claim an accuracy of 1º based on the standard deviation of their estimates, while ignoring the average error. This would require accurate calibration to 
map each computed value to the correct source direction, which has not been shown in their works.
4Interaural phase difference.
5Interaural envelop difference.
6Only the average errors are available.
7Time-difference-of-arrival.
8Crosspower spectrum phase.
9Only simulation results are available.

frequency dependent variations are overcome. The final system 
demonstrates the ability to reliably determine the azimuth posi-
tion of the source for both pure tone and white noise sounds. In 

 addition to the modest localization performance, this new archi-
tecture supports online learning, allowing the system to learn while 
in operation.
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