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A brain–computer interface (BCI) can provide a non-muscular communication channel to severely 
disabled people. One particular realization of a BCI is the P300 matrix speller that was originally 
described by Farwell and Donchin (1988). This speller uses event-related potentials (ERPs) 
that include the P300 ERP. All previous online studies of the P300 matrix speller used scalp-
recorded electroencephalography (EEG) and were limited in their communication performance 
to only a few characters per minute. In our study, we investigated the feasibility of using 
electrocorticographic (ECoG) signals for online operation of the matrix speller, and determined 
associated spelling rates. We used the matrix speller that is implemented in the BCI2000 
system. This speller used ECoG signals that were recorded from frontal, parietal, and occipital 
areas in one subject. This subject spelled a total of 444 characters in online experiments. The 
results showed that the subject sustained a rate of 17 characters/min (i.e., 69 bits/min), and 
achieved a peak rate of 22 characters/min (i.e., 113 bits/min). Detailed analysis of the results 
suggests that ERPs over visual areas (i.e., visual evoked potentials) contribute significantly to 
the performance of the matrix speller BCI system. Our results also point to potential reasons 
for the apparent advantages in spelling performance of ECoG compared to EEG. Thus, with 
additional verification in more subjects, these results may further extend the communication 
options for people with serious neuromuscular disabilities.
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A growing number of recent studies (e.g., Leuthardt et al., 2004, 
2006; Wilson et al., 2006; Felton et al., 2007; Schalk et al., 2008; 
Miller et al., 2010; Ritaccio et al., 2010; Vansteensel et al., 2010) 
suggested that signals recorded from the surface of the brain [elec-
trocorticography (ECoG)] are a promising platform for real-time 
BCI communication. This advantage is due in part to the high 
spatial, spectral, and temporal fidelity that characterize ECoG sig-
nals (Leuthardt et al., 2004; Miller et al., 2007, 2008; Ball et al., 
2009; Brunner et al., 2009). It is possible that these favorable signal 
characteristics may provide distinct advantages in the context of 
the matrix speller, but this has not been explored.

In this study, we investigated this possibility by evaluating 
the feasibility and online performance of the matrix speller 
using ECoG signals recorded from frontal, parietal, and occipital 
areas in one human subject. We hypothesized that these experi-
ments will provide evidence that the ECoG-based speller may 
support communication rates that are higher than those typi-
cally expected by EEG-based spellers. The results demonstrate 
that ECoG allows for accurate single-trial detection of evoked 
responses, and thereby supports very high communication rates. 
Thus, with additional verification in more subjects, these results 
may further extend the communication options for people with 
serious neuromuscular disabilities.

1 IntroductIon
Many people affected by neurological or neuromuscular disorders 
such as amyotrophic lateral sclerosis (ALS), brainstem stroke, or 
spinal cord injury, are impaired in their ability to or even unable to 
communicate. A brain–computer interface (BCI) uses brain signals 
to restore some of the lost function. A BCI approach that several 
groups have begun to test in clinical applications in humans (e.g., 
Sellers et al., 2006, 2010; Vaughan et al., 2006; Nijboer et al., 2008; 
see Donchin and Arbel, 2009 for a comprehensive review) is the 
matrix-based speller originally described by Farwell and Donchin 
(1988). This speller uses different event-related potentials (ERPs) 
including the P300 evoked response. In this system, the user attends 
to a character in a matrix while each row or column flashes rapidly 
and pseudo-randomly. The brain produces a response to the row or 
column that contains the intended character (i.e., the oddball); this 
response is different for the other rows or columns. The BCI can 
detect the desired character by determining the row and column 
that produces the largest evoked response. Using this approach, 
recent electroencephalography (EEG)-based studies (Serby et al., 
2005; Sellers et al., 2006, 2010; Lenhardt et al., 2008; Nijboer et al., 
2008; Guger et al., 2009) reported real-time accuracies from 79 
to 91% (6 × 6 matrix of 36 characters; 2.8% chance) at 13–42 s 
per selection.
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of ECoG monitoring were based solely on the requirements of the 
clinical evaluation without any consideration of this study. Following 
placement of the subdural grid, postoperative CT imaging verified 
grid location (Talairach and Tournoux, 1988).

2.2 Data ColleCtion
We recorded ECoG from the implanted electrodes using six 
g.USBamp amplifier/digitizer systems (g.tec, Graz, Austria) and the 
BCI software platform BCI2000 (Schalk et al., 2004; Mellinger and 
Schalk, 2007; Schalk and Mellinger, 2010). Simultaneous clinical 
monitoring was implemented using a connector that split the cables 
coming from the patient into one set that was connected to the 
clinical monitoring system and another set that was connected to 
the g.USBamp devices. Thus, at no time was clinical care or clinical 
data collection compromised. Two electrocorticographically silent 
electrodes (i.e., locations that were not identified as eloquent cortex 
by electrocortical stimulation mapping) over inferior and superior 
posterior parietal cortex served as ground and reference, respec-
tively. We used a grounding connection between the g.USBamp 
systems and the patient’s skin to dissipate any electric currents 
generated by external electromagnetic fields and to block electro-
magnetic interference. The amplifiers sampled the signal at 512 Hz 
and used a high-pass filter at 0.1 Hz and a notch filter at 60 Hz.

2.3 experimental paraDigm
The subject sat 60 cm in front of a flat-screen monitor. She was pre-
sented with a matrix of alphanumeric characters that was centered 
on the screen and arranged in a 6 × 6 configuration (see Figure 2). 
At this distance, the matrix subtended ±7.1° of the horizontal and 
vertical visual field.

The subject participated in a recording session that consisted 
of offline and online experiments. In the offline (i.e., calibration) 
experiments, the BCI2000 matrix speller flashed each of the 12 rows 
or columns in a pseudo-random sequence. Flashes occurred at a rate 
of 16 Hz. Each flash lasted 1/64 s (16 ms) to 3/64 s (47 ms), followed 
by a 1/64 to 3/64-s inter-stimulus period. The intensity contrast 
between a flash and a non-flash was 3:1. Fifteen flash sequences 
comprised one trial. The subject’s task in each trial was to pay 

2 methoDs
2.1 human subjeCt
The subject in this study was a 29-year-old right-handed woman 
with intractable epilepsy who underwent temporary placement of 
subdural electrode arrays (see Figure 1A) to localize seizure foci 
prior to surgical resection. The subject had corrected-to-normal 
vision and gave informed consent through a protocol reviewed and 
approved by the review board of Albany Medical College.

A neuropsychological evaluation revealed a full-scale IQ score 
of 122 (93rd percentile; Wechsler, 1997), superior visuomotor scan-
ning performance (92nd percentile, Trail Marking Test; Reitan, 
1958), and average visual search capacity (75th percentile, WAIS-
III: Symbol Search Subtest; Wechsler, 1997).

The subject had a total of 96 subdural electrode contacts (i.e., one 
8 × 8 64-contact grid, one 23-contact grid, and two strips in 1 × 6 and 
1 × 3 configuration, respectively). These grids/strips were placed over 
the left hemisphere in frontal, parietal, temporal, and occipital regions 
(see Figure 1B for details). The implants consisted of flat electrodes 
with an exposed diameter of 2.3 mm and an inter-electrode distance 
of 1 cm, and were implanted for 1 week. Grid placement and duration 

A B

Figure 1 | implant. The subject had 96 subdural electrodes (two grids and 
two strips in different configurations) implanted over left frontal, parietal, 
temporal, and occipital regions. (A) Photograph of the craniotomy and the 
implanted grids in this subject. (B) Lateral X-ray of the subject, showing an 
8 × 8 grid over frontal/parietal cortex, a 23-contact grid over temporal cortex, 
and several strips.

Figure 2 | experimental setup. The subject sat 60 cm in front of a flat-screen monitor that presented a centered 6 × 6 matrix containing alphanumeric characters 
as well as space (Sp) and backspace (Bs). The rows and columns in the matrix flashed rapidly and pseudo-randomly. The subject’s task was to pay attention to the 
intended character. The computer determined the intended character from the subject’s ECoG responses.
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multiple approaches to determine the target-related response 
from data for which the intended selection is known (i.e., calibra-
tion data). These approaches included stepwise regression, peak 
picking, area under the curve measurements, and the covariance. 
In our study, we used a stepwise regression procedure that has 
been described in detail in Krusienski et al. (2006). In brief, 
we first filtered the brain signal from each channel between 0.1 
and 20 Hz and downsampled it to 40 Hz. The downsampled 
ECoG signal of all 96 channels for 500 ms after stimulus onset 
comprised a total of 1920 potential signal features. A stepwise 
procedure then produced a linear model that predicted, given 
a subset of all features, whether or not the stimulus associated 
with these features was a target or non-target. In this iterative 
procedure, each step added the most significant and/or removed 
the least significant feature based on the p-value of an F-statistic 
(p

add
 = 0.1, p

remove
 = 0.15; Jennrich, 1977). To prevent overfitting, 

the stepwise procedure limited the number of features to 60 and 
terminated when a step did not further improve the regression 
model or when the maximum number of iterations (5000) was 
reached. In summary, this procedure reduced the 1920 potential 
ECoG features to a maximum of 60 features, and resulted in a 
linear model that was predictive of target or non-target. This 
linear model was applied to the ECoG response to each stimulus 
(i.e., row or column flash). The row and column with the highest 
model output defined the predicted character. Because there were 
36 characters, chance accuracy was 2.8%.

2.6 onlIne experIments
For each online experiment, we used one of three different flash 
durations (i.e., 1/64, 2/64, 3/64 s). For each flash duration, we col-
lected calibration data (“THE QUICK BROWN”) and performed 
the offline analyses described above to establish a regression model. 
We then used this model to evaluate online system performance. 
In these online experiments, we asked the subject to use the matrix 
speller BCI system to spell “THE QUICK BROWN FOX JUMPS 
OVER THE LAZY DOG.” The BCI system provided feedback on the 
predicted characters as shown in Figure 2. The subject performed 
a “backspace” selection to correct for incorrect selections.

3 results
3.1 optImIzatIon of system performance
Over the course of online experimentation, we continually opti-
mized system parameters (i.e., the flash duration and number of 
flash sequences) so as to optimize the subject’s information trans-
fer rate. The results are shown in Figure 4 and Table 1. For one 
flash sequence, spelling accuracy reached a maximum of 81% (see 
Figure 4) at a flash duration of 3/64 s. We then used a flash duration 
of 3/64 s (i.e., 47 ms) and increased the number of flash sequences. 
The accuracy reached 98% at three flash sequences, while the actual 
information transfer rate (i.e., bit rate), which was  calculated 
including stimulation- and flight-time, peaked at 60.5 bits/min 
and two flash sequences (i.e., a selection every 4.5 s).

In a subsequent seventh 3.5 min run, we reduced the time 
between selections to 2 s. The subject achieved a selection every 
3.5 s at 86.4% accuracy. This represents an information transfer 
rate of 69 bits/min or 17 characters/min.

attention to the highlighted character in the words “THE QUICK 
BROWN,” and to make a mental note (i.e., to count) each time the 
correct row/column flashed. A 3-s pause (i.e., “flight time”) between 
characters gave the subject time to shift her attention onto the 
next character. We used the ECoG data collected in this calibration 
experiment to establish a classifier using the stepwise regression 
method reported in Krusienski et al. (2006). We then configured 
the BCI to use this classifier in online experiments.

During each of the seven online experiments, the subject copy-
spelled the sentence “THE QUICK BROWN FOX JUMPS OVER 
THE LAZY DOG.” The BCI system provided feedback of the 
characters predicted from the ECoG signals. The subject selected 
“backspace” to correct incorrect selections. In the seven online 
experiments, the subject spelled a total of 301 characters (i.e., 444 
characters including “backspace” and subsequent corrections) 
using different stimulation parameters that are described in more 
detail in the Section “Results.”

2.4 offlIne analyses
In offline analyses of data from each of the calibration experiments, 
we first filtered the signal between 0.1 and 20 Hz and downsampled 
it to 40 Hz. We then extracted the stimulus response, i.e., the ECoG 
signals from all 96 channels for 500 ms after stimulus onset (see 
Figure 3). This yielded 20 features (i.e., 40 × 0.5 = 20) per channel 
or a total of 1920 features for all 96 channels. We define a sequence 
to be 12 flashes, i.e., flashes of six rows and six columns of the pre-
sented matrix. Of these 12 flashes, two (i.e., the row and column 
that contained the desired character) are expected to elicit a target 
evoked response (i.e., oddball ERP) and 10 are not. With 15 flash 
sequences in each trial, this yielded 30 target ERPs and 150 non-
target ERPs. As we recorded 13 trials (i.e., each character in “THE 
QUICK BROWN”) during a calibration experiment, this resulted 
in a total of 390 target and 1950 non-target ERPs for calibration.

2.5 stepwIse regressIon model
In the matrix speller paradigm, the subject’s selection is predicted 
by the intersection of the row and column that elicits the largest 
target-related response. Farwell and Donchin (1988) proposed 

Figure 3 | event-related potentials (erPs). The figure above shows 
averaged event-related responses to target (red) and non-target (blue) flashes 
at each of the 96 recorded locations.
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data with the same flash duration and 1–3 flash sequences. Figure 5 
shows the locations of all 96 subdural electrodes (blue dots) and 
the corresponding color-coded classification accuracies. Accuracy 
ranged from chance level (1/(6 × 6) = 2.8%) to 50% for the best 
electrode location.

Statistical comparisons (two-sample t-test, Bonferroni corrected 
for the number of features, i.e., 1920) of each extracted feature 
(ECoG amplitudes at a given time and location) between target and 
non-target conditions revealed statistically significant (p << 0.001) 
differences over wide-spread areas in secondary visual cortex (see 
locations marked with A, B, C, D in the brain plot in Figure 5), 
associative visual cortex (E), angular gyrus (F), and somatosensory 
association cortex (G). The traces below show the correlation of 
the ECoG signals following the flash with the type of the ERP (i.e., 
target vs. non-target). This correlation analysis for locations A–G 
showed dominant peaks between 125 and 175 ms after the flash. 
The polarities of these peaks were reversed between the neighboring 
electrodes C, D, and E. Furthermore, signals recorded from angular 
gyrus (F), but not other locations, were sensitive to the orientation 
(i.e., row or column) of the attended flash (p = 0.00003).

3.3 optImIzIng number of electrodes
The results presented in the previous section show that, in this 
particular subject, ERPs recorded from electrodes over visual cortex 
contribute significantly to the performance of the matrix speller 
BCI system. This suggests that a similar level of performance may 
be achieved using recordings from only a few electrodes over a 
relatively small area, which is important for potential clinical appli-
cation of this approach. Thus, we were interested in the relationship 
between the number of utilized electrodes over visual cortex and 
spelling performance.

To do this, in offline post hoc analyses, we evaluated spelling per-
formance using 1–6 electrodes over visual cortex (i.e., locations A–F 
in Figure 5) and 1–3 flash sequences. In these analyses, we used 
the same calibration data as in the online experiment (i.e., “THE 
QUICK BROWN,” 15 flash sequences, 3/64 s flash duration). We then 
established one classifier for each possible combination of the 1–6 
electrodes over visual cortex. For each combination, we then applied 
the corresponding classifier to the data from the online experiments. 
The results in Figure 6 and Table 2 show the relationship between 
the best combinations of 1–6 electrodes and spelling performance, 
i.e., accuracy and bit rate, for 1–3 flash sequences. The results sug-
gest that this particular subject could achieve a maximum of 100% 
classification accuracy at three flash sequences and four electrodes, 
and a maximum of 64 bits/min at two flash sequences and five elec-
trodes. Furthermore, one bipolar derivation ( between locations C 
and A) may already allow for 57 bits/min or 90% of the peak spelling 
performance supported by five electrodes (see Table 2).

4 dIscussIon
The results of this study show that ECoG can support matrix BCI 
spelling at a sustained rate of 17 characters/min (i.e., 69 bits/min) 
and a peak rate of 22 characters/min (i.e., 113 bits/min). In line 
with recently completed studies (Brunner et al., 2010a,b; Treder 
and Blankertz, 2010), our offline analyses show that visual areas 
provided important contributions to the subject’s performance. 
The results also indicate that only one bipolar derivation over visual 

In a final run, we further decreased the number of flash sequences 
to one. In this run, which is shown in Video 1 in Supplementary 
Material, the subject spelled the word “FLOWER” at a rate of  
2.75 s/character (i.e., 22 characters/min or 113 bits/min).

3.2 cortIcal locatIons wIth sIgnIfIcant evoked responses
The results presented in the previous section demonstrated that 
the BCI system successfully predicted the intended character online 
with an accuracy of 81% using only one flash of each row/column. 
We were interested in the physiological basis for this successful 
demonstration, i.e., in the cortical locations and ERP components 
that held significant information. To do this, we trained the clas-
sifier separately on each location using the calibration data with a 
flash duration of 3/64 s, and evaluated performance on the online 

Figure 4 | Optimizing accuracy and information transfer rate. The figure 
on the left shows the relationship between the flash duration and letter 
classification accuracy with a single-flash sequence. The figure on the right 
shows the relationship between the number of flash sequences and 
classification accuracy using a flash duration of 3/64 s (i.e., 47 ms). The subject 
reached a maximum of 98% classification accuracy at three flash sequences, 
and a maximum of 60.5 bits/min at 92.2% accuracy (i.e., a selection every 
4.5 s) at two flash sequences.

Table 1 | Optimizing accuracy and information transfer rate.

Flash duration Flash sequences Accuracy  Bit rate 

(s)  (%) (bits/min)

1/64 1 42 

2/64 1 61 

3/64 1 81 

3/64 1 78 53

3/64 2 92 60

3/64 3 98 56

The first three rows of the table show the relationship between flash duration 
and classification accuracy with a single-flash sequence. The lower three rows 
show the relationship between the number of flash sequences and classification 
accuracy using a flash duration of 3/64 s (i.e., 47 ms). The data in these tables 
corresponds to the traces in Figure 4.
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Figure 6 | Optimizing number of electrodes. The two figures show the 
relationship between the number of electrodes over visual cortex and 
accuracy (left) or bit rate (right) that this subject may achieve with these 
electrodes at one (blue circle), two (green triangle), and three (orange square) 
flash sequences. The subject may achieve a maximum of 100% classification 
accuracy at three flash sequences and four electrodes, and a maximum of 
64 bits/min at two flash sequences and five electrodes.
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Figure 5 | Qualitative results. The figure at the top shows the locations of 
the 96 subdural electrodes (blue dots), as well as the color-coded single-flash 
classification accuracy at each individual electrode.The traces at the bottom 
show the correlation between ECoG amplitude and the type of the stimulus 
(target/non-target) for cortical locations A–g.

cortex could support almost the same level of performance. In 
conclusion, with verification of our results in more subjects, these 
findings may increase the BCI-based communication options for 
people with serious motor disabilities.

The spelling rate reported for the one subject in this ECoG-
based study (i.e., 17 sustained characters/min or 69 bits/min) is 
3–4 times higher than what had previously been reported in EEG-
based P300 BCI studies (i.e., 1.4–4.5 characters/min; Serby et al., 
2005; Sellers et al., 2006, 2010; Lenhardt et al., 2008; Nijboer et al., 
2008; Guger et al., 2009)1 or in EEG-based sensory motor rhythm 
(SMR) BCI studies (1.7–4.9 characters/min; Wolpaw et al., 1991; 
McFarland et al., 2003; Pfurtscheller et al., 2003; Müller et al., 2008). 
Furthermore, the sustained performance demonstrated in this study 
is within the same range of previously reported EEG-based steady-
state visual evoked potential (SSVEP) studies (15.8–18.7 characters/
min; Gao et al., 2003; Bin et al., 2009). Finally, to the best of our 
knowledge, the peak performance shown here is the highest BCI 
performance demonstrated in humans to date.

The spelling rate of the ECoG-based matrix speller BCI shown 
here is beginning to match or even exceed that of conventional assis-
tive devices. These devices are often either intrusive (e.g., cheek or 
tongue-switch), cumbersome (e.g., letter board), or susceptible to 
fatigue (e.g., video-based eye-trackers using the corneal reflection). 
Thus, while invasive, the BCI method presented here may provide 
distinct advantages over those conventional assistive devices.

While the spelling rate shown here is very high, it is still at least 
one order of magnitude slower than conventional communica-
tion (e.g., 200–400 characters using keyboard or voice; Majaranta 
and Räihä, 2002; Schalk, 2008). Although the spelling rate of the 
matrix speller could be further improved, there are fundamental 
limitations to these potential improvements. These limitations are 
due to the required dwell time (i.e., the time during which the 
rows/columns are intensified) and the flight time (i.e., the time 
between two characters). In our study, we used single-flash sequence 

1Some of these EEG-based studies used software and analysis methods that were 
identical to those used here.
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BCIs. However, generation of a VEP depends on foveation of the 
target character. This is of critical relevance to clinical application 
of this BCI method, because eye movements are often impaired or 
lost in the target population. For example, although some people 
with ALS maintain residual eye movement for years (Cohen and 
Caroscio, 1983; Palmowski et al., 1995; Birbaumer and Cohen, 
2007), others progress to near-complete or complete paralysis. 
The distance to foveation influences visual acuity and also VEP 
amplitude (Sherman, 1979; De Keyser et al., 1990) and thus would 
reduce the performance of any BCI that depends at least in part 
on VEPs.

An interesting finding was the polarity reversal of VEPs recorded 
from neighboring electrodes. While recording at the cortical surface 
(ECoG) can record these polarity-reversed VEPs, EEG recordings 
may only record the canceled superposition (Di Russo et al., 2002; 
Makeig et al., 2002). This cancellation effect may be one reason 
why the performance of EEG-based matrix speller systems, despite 
wider cortical coverage (e.g., 64 scalp locations of an extended 
10–20 montage; Sharbrough et al., 1991), appears to be lower than 
that shown here.

While quite encouraging, the results shown here are based on 
only one subject who had coverage of large cortical areas including 
visual areas. Thus, it is currently unclear whether the results pre-
sented here will generalize to other subjects. Furthermore, while we 
were able to make general performance comparisons of this ECoG-
based study with previously published EEG-based studies, we did 
not compare performance of ECoG and EEG within this subject.

The linear relationship between the flash duration and the 
accuracy, as well as the fact that only one electrode was sensitive 
to the orientation (i.e., row or column) of the attended flash, sug-
gests that, in this particular subject, the magnitude of the ERP in 
response to visual stimulation was determined mostly by lumi-
nance. However, many previous studies have shown that the cortex 
performs neuronal processing of other features of visual stimuli, 
such as spatial frequency, orientation, motion, direction, speed, and 
many other spatiotemporal features (Hubel and Wiesel, 1959, 1962; 
Zeki et al., 1991). A recent study (Martens et al., 2009) showed that 
these properties of the visual system can be exploited to increase 

 presentation/classification (i.e., the smallest possible number) and 
a dwell time (i.e., the time the subject sustained eye-gaze/attention) 
of as little as 0.75 s. While this dwell time compares favorably to 
what is used in other assistive devices (e.g., 0.6–1.0 s for a modern 
eye-tracker; Majaranta and Räihä, 2002), these other devices tend 
to provide higher communication performance. This is because 
the matrix spelling paradigm used here also requires a flight time 
during which the subject produces brain responses, the computer 
evaluates the responses, and the subject shifts gaze/attention to 
the next character. It appears impractical to further substantially 
decrease either the 2-s flight-time, or the 0.75-s dwell time. Thus, 
the paradigm presented here should be limited to a spelling rate that 
is only modestly higher than what we report here. This limitation 
appears to have two reasons. First, the current paradigm is syn-
chronous, i.e., the subject has to synchronize his/her behavior with 
the timing of the BCI. This requires the subject to shift eye-gaze/
attention onto the intended character within the 2-s flight-time 
and to sustain eye-gaze/attention for the 0.75-s dwell time. One 
potential solution to overcome this limitation is an asynchronous 
paradigm, i.e., a paradigm in which the subject does not have to 
synchronize behavior with the system. SSVEP-based BCIs often 
use such asynchronous paradigms. In such a paradigm, the subject 
performs a selection by focusing eye-gaze on the target character 
(i.e., one of multiple light sources flickering at different frequencies) 
while the BCI detects those frequencies in the EEG recorded over 
occipital cortex (Middendorf et al., 2000). These paradigms not 
only overcome the synchronization requirement, they also permit 
stimulating each potential target independently for the whole dwell 
time (i.e., by using individual frequencies for each potential target). 
Using such a paradigm, Bin et al. (2009) reported 18.7 characters/
min for EEG. The use of this paradigm with ECoG may further 
increase performance.

The results suggest that ERPs over visual areas (VEPs) contribute 
significantly to the performance of the matrix speller BCI system. 
Recent studies (Bin et al., 2009; Martens et al., 2009) suggest that 
a time-, frequency-, and code-based stimulation may elicit a wide 
range of VEPs while minimizing the flight time and obtrusive flick-
ering that currently limits the utility of P300- and SSVEP-based 

Table 2 | Optimizing number of electrodes.

 Accuracy (%) Bit rate (bits/min)

Number of Location(s) Flash sequences Flash sequences
locations

  1 2 3 1 2 3

1 C 53 75 78 28 41 38

1* C–A 75 91 93 50 57 51

2 C, A 81 94 96 56 60 54

3 C, B, A 86 96 98 62 63 56

4 E, C, B, A 86 96 100 62 63 59

5 E, D, C, B, A 87 97 100 63 64 59

6 F, E, D, C, B, A 86 96 100 62 63 59

This table shows the relationship between the number of electrodes over visual cortex and accuracy (left) or bit rate (right) that this subject can achieve with these 
electrodes at 1–3 flash sequences. The data in these tables corresponds to the traces in Figure 6; locations A–F correspond to the electrode locations and evoked 
responses in Figure 5.
*Bipolar derivation.
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