
www.frontiersin.org January 2011 | Volume 5 | Article 8 | 1

Original research article
published: 26 January 2011

doi: 10.3389/fnins.2011.00008

Exploiting statistical methodologies and controlled 
vocabularies for prioritized functional analysis of genomic 
experiments: the StRAnGER web application
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StRAnGER is a web application for the automated statistical analysis of annotated gene 
profiling experiments, exploiting controlled biological vocabularies, like the Gene Ontology or 
the KEGG pathways terms. Starting from annotated lists of differentially expressed genes and 
gene enrichment scores, regarding the terms of each vocabulary, StRAnGER repartitions and 
reorders the initial distribution of terms to define a new distribution of elements. Each element 
pools terms holding the same enrichment score. The new distribution thus derived, is reordered 
in a decreasing order to the right, according to the observation score of the elements, while 
elements with the same score, are sorted again in a decreasing order of their enrichment scores. 
By applying bootstrapping techniques, a corrected measure of the statistical significance of 
these elements is derived, which enables the selection of terms mapped to these elements, 
unambiguously associated with respective significant gene sets. The selected terms are 
immunized against the bias infiltrating statistical enrichment analyses, producing technically 
very high statistical scores, due to the finite nature of the data population. Besides their high 
statistical score, another selection criterion for the terms is the number of their members, 
something that incurs a biological prioritization in line with a Systems Biology context. The 
output derived, represents a detailed ranked list of significant terms, which constitute a starting 
point for further functional analysis.

Keywords: ontological analysis, pathway analysis, gene enrichment analysis

Edited by:
Radhakrishnan Nagarajan, University of 
Arkansas for Medical Sciences, USA

Reviewed by:
Ying Xu, West Virginia University, USA
Fan Zhang, Indiana University, USA

*Correspondence:
Aristotelis A. Chatziioannou, Institute 
of Biological Research and 
Biotechnology, National Hellenic 
Research Foundation, 48 Vassileos 
Constantinou Avenue, Athens 11635, 
Greece.  
e-mail: achatzi@eie.gr

rather than isolated genes, in order to uncover sets of genes that 
participate or regulate the same cellular pathway. For this scope, 
biological ontologies, or more general controlled biological vocabu-
laries constitute valuable sources of standardized biological infor-
mation, appropriate for DNA microarrays functional analysis. 
The Gene Ontology (GO; Ashburner et al., 2000) provides such 
functional annotation adopting a hierarchical schema. In addition, 
the Kyoto encyclopedia of genes and genomes (KEGG) biological 
pathway database (Kanehisa et al., 2010) comprises a well structured 
and constantly enriched library of molecular networks, which has 
been widely used as a reference point for biological interpretation 
of large-scale datasets.

Nowadays, multiple software tools are targeting the issue of detect-
ing over-represented ontological terms, in processed biological data-
sets (Dennis et al., 2003; Hosack et al., 2003; Beissbarth and Speed, 
2004; Boyle et al., 2004; Martin et al., 2004; Zhong et al., 2004; Conesa 
et al., 2005; Zhang et al., 2005; Bauer et al., 2008; Zheng and Wang, 
2008). The majority are statistical implementations of tests, which 
estimate the number of successes in a sequence of draws from a finite 
population without replacement, like the hypergeometric distribu-
tion. Generally, the detection of an over-represented ontological term 
(e.g., a GO term) can be accurately approximated by the well known 
example of drawing two-colored balls from an urn, where the balls are 
equal to the number of genes. Testing statistically an ontological term 
corresponds to drawing the genes linked to it and examining which 
of them are parts of the DE list and which are not, in other words 

IntroductIon
DNA microarrays (cDNA or oligonucleotide) constitute a widely 
used measuring technology regarding the response of whole 
genomes, yielding estimates of total gene expression in selected 
species. Measuring the comparative gene expression with micro-
arrays, has a critical importance in the analysis of biological con-
trol mechanisms, phenotyping, molecular profiling of diseases, 
and more accurate disease classification. Applications include the 
classification of tumors with different prognosis, indistinguishable 
solely by microscopic examination or optical inspection, derivation 
of diagnostic or prognostic signatures, monitoring responses to 
multiple or different treatments or therapies, rational drug design 
(Maynard et al., 2003; Tarca et al., 2006). In general, DNA microar-
rays promote the understanding of the plasticity of cellular circuitry 
and how this is linked to the manifestation of a phenotypic versatil-
ity, regarding various cellular functions in different organisms.

Today, several software packages, commercial or open source, 
perform routinely microarray analysis and interpretation usually 
deriving lists of differentially expressed (DE) genes with several 
hundreds of genes. Though indispensable, the derivation of DE 
gene lists still remains a primary step, failing to provide insight on 
the underlying molecular mechanisms, governing the biological 
problem interrogated and leaving the experts bewildered. In order 
to highlight statistically significant and biologically relevant actors, 
enabling thus a systemic perspective, a new round of analysis is 
applied, emphasizing in the involvement of molecular pathways 
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 counting white (members) and black (not-members). This process 
leads to the derivation of a contingency table with four categories for 
each ontological term: (i) DE genes annotated at this term, (ii) DE 
genes not annotated at this term, (iii) non-DE genes annotated at this 
term, and (iv) non-DE genes not annotated at this term. A proper sta-
tistical test is then used to determine the extent of over-representation 
of a term in the DE gene list, compared to mere chance. As the number 
of the ontological terms in each dataset may vary from several tens to 
hundreds or even thousands of terms, the probability for false posi-
tives rises, and this requires application of several, possible, multiple 
correction methodologies (Osier et al., 2004). Apart from gene names, 
other software can accommodate DNA sequences (Conesa et al., 2005) 
in order to perform the aforementioned analysis.

There are various software implementations of the aforemen-
tioned approach, each one with its own advantages and limitations. 
A number of them (GO-TermFinder, GoSurfer, Blast2GO, EASE; 
Hosack et al., 2003; Boyle et al., 2004; Zhong et al., 2004; Conesa 
et al., 2005) supports only one statistical mode for the detection 
of over-represented ontological terms, while others present limi-
tations in their capability to support various available microarray 
platforms, experiment types, or multiple organisms (Dennis et al., 
2003; Beissbarth and Speed, 2004; Boyle et al., 2004; Martin et al., 
2004). Some, like GO-TermFinder for instance, require from the 
user to provide a suitable set of genes, which is used as reference set 
for the statistical enrichment test (Boyle et al., 2004), while at the 
same time, certain programming skills are required from the user, 
in order to exploit the software. Others, being user friendly, require 
only specific gene accessions but with the cost of becoming inflex-
ible in integrating further relevant information (i.e., gene specific 
p-values, gene expression values or other statistics) to their output. 
Moreover, certain tools are inflexible regarding data import, requiring 
often time consuming manipulations by the user like the Ontologizer 
(Bauer et al., 2008), while DAVID results in complex outputs (Dennis 
et al., 2003), bewildering the researcher with a deluge of statistical 
measures, that confound the interpretation procedure.

The intelligible analysis and interpretation of ontological terms 
is inextricably bound to the implementation of efficient visualiza-
tion mechanisms, which illustrate the functional relations among 
over-represented terms, as well as with all of the terms, neatly and 
hierarchically. Although various tools provide a visual representa-
tion of the results (usually in tree-like demonstrations), still many, 
like GOToolBox for instance, lack either the feature of automated 
generation or the capability of visual representation (Martin et al., 
2004). Finally, a different category of tools, exploiting ontologies 
but giving emphasis around specific gene sets, utilize the entire gene 
lists of a given high-throughput experiment, after sorting them 
in terms of expression, rather than smaller lists of selected, based 
on statistical or empirical thresholds, entities. Their algorithms 
estimate the enrichment of their top or bottom ranked genes to 
the aforementioned, particular gene sets, as they are formed based 
on their functional annotations, utilizing different statistical scores 
coupled with resampling techniques for validation. Typical tools of 
this category are GSEA (Subramanian et al., 2005) and ErmineJ (Lee 
et al., 2005). These tools seem suitable for pairwise experimental 
designs, for example control vs treatment or disease configura-
tions (Huang et al., 2009), a feature which proves to be limiting, if 
more complex experimental designs, such as time-course studies 
or multiple drug–response experiments, are targeted.

A common inherent problem, typical of the statistical methodolo-
gies that test over-representation, stems from the hierarchical struc-
ture of ontologies and their finite nature. Thus, many terms describing 
biochemically very particular sub-functions of a given cellular process, 
are ranked very high, simply because they are linked to very small gene 
numbers. This trivial finding from a pathway perspective, results from 
the fact that such terms possess a very strong statistical score, since 
their enrichment is very high or even complete. Such terms represent 
at the same time a large proportion of the total annotations of a dataset 
obfuscating the interpretation, with descriptions of limited informa-
tion content from a pathway perspective. Multiple-testing correction 
methods do not remedy the problem, as their properties have not 
yet been adequately studied (Osier et al., 2004) and most of them do 
not take into account the graph structure of biomedical ontologies 
(Goeman and Mansmann, 2008). As high-throughput technologies 
are noise sensitive, the presence of false positives, due to technological 
limitations, may severely contaminate the interpretation. Processes 
corresponding to these GO terms (or more general similar, control-
led vocabularies) may thus have limited functional biological value. 
Graph theoretic approaches are addressing this issue by consider-
ing the tree structure of the description. For example, GOToolBox 
(Martin et al., 2004) uses a combination of modules that detect 
over-represented GO terms, clusters them and scores genes based on 
their shared GO terms using a Czekanowski-Dice like distance, while 
Ontologizer (Bauer et al., 2008) considers the GO inheritance problem 
that is, the fact that the probability of a GO term being significant 
is much higher if one or more of its parental terms are significant. 
Ontologizer addresses this issue by implementing the parent–child 
method (Grossmann et al., 2007) or the elim algorithm (Alexa et al., 
2006). However, both tools have certain particularities regarding data 
import, which limit their applicability.

StRAnGER is a web-based application1, which performs functional 
analysis of high-throughput -omic datasets, on an initial list of sig-
nificant entities, derived after applying statistical, and/or empirical 
thresholds. At present, it utilizes GO or the KEGG pathway database. 
However, the implementation is generic enough to accommodate other 
available biological ontologies, related to -omic data or more generally 
controlled vocabularies. StRAnGER uses established statistical meth-
ods, in order to relate the identified significant genes with important 
nodes in the GO tree structure or interchangeably map those genes 
to over-represented metabolic pathways, like KEGG Pathways. Aim of 
StRAnGER is to suggest whole molecular pathways or parts of them, 
incorporating a crucial number of significantly DE genes of the list 
as interesting targets for further biological research rather than iso-
lated genes, which are more susceptible to the impact of systematic or 
random errors. The main goal of StRAnGER is to sort out among all 
terms of a controlled vocabulary associated with the significant gene 
list, those revealing critical aspects of cell function (i.e., nodes higher in 
the GO hierarchy, densely enriched KEGG metabolic pathways), which 
consequently encompass a reliably high number of genes that implies 
unambiguously the involvement of a specific biochemical pathway. 
These terms are ranked according to their statistical significance, fol-
lowing their p-value score as derived from a suitable over-representa-
tion test. In this sense, the impact of noise on high-throughput genomic 
experiments is significantly mitigated, thus consolidating the selection 
of specific biological targets, for further investigation.

1http://www.grissom.gr/stranger/
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where γ denotes the lower incomplete Gamma function and Γ 
denotes the Gamma function (Soong, 2004).

the StrAnGer AlGorIthm
The lists of statistically significant entities obtained after the high-
throughput data processing are utilized to perform functional analy-
sis, exploiting ontological terms. Each ontological term has a certain 
score (number of observations) both in the whole array list just as 
in the significant list. The ratio of the number of observations of 
a certain term in the significant list to its number of observations 
in the whole array or more general reference list is called “enrich-
ment” and is considered a feature. Having defined the enrichment 
objects, the significance of a term is assessed through the use of a 
proper statistical test. Appropriate statistical tests for this analysis 
are the aforementioned hypergeometric test, the χ2 test or the Fisher 
exact test.

At this point, the need to identify the desirable elements from 
the biological point of view should be stressed, namely, terms with 
a low p-value score, that comprise a substantial number of genes 
linked to this term in the whole reference list, which at the same 
time present high enrichment. In the case of GO terms, the GO 
schema defines a hierarchical tree for the representation of genes, 
distinguishing description of gene in three principal categories, 
viz., biological process, molecular function, cellular component. All 
complex biological actions within a cell are perceived by adopting 
a “top-down” logic, as functional entities, which can be analyzed to 
a combination of cellular, biochemical (metabolic, signaling, trans-
port, etc.) pathways. Every process can be broken down to numer-
ous other elementary processes, linked with subsets of the parent 
gene set, to the point of trivial cases of GO terms, related to only one 
or two genes, presenting therefore an extremely high enrichment 
of (50–100%), which is reflected in a very low p-value.

The processes corresponding to these GO terms have limited 
biological value from a global, cellular perspective. Nevertheless, 
they have a very strong statistical score merely because their enrich-
ment is 100%. To overcome this problem, and define a set of ranked 
terms with both high biological content and statistical significance, 
the following steps are adopted.

Many terms have identical ratios (enrichments). By grouping 
terms according to their specific enrichments, a distribution of ele-
ments is created, which pools together terms with the same enrich-
ment, and is then sorted from the most to the less frequent cases 
(left to right order). Elements with the same frequency are sorted 
again in a decreasing order, according their p-value enrichment 
scores. Using this list, a figure depicting the relative frequency of 
each group is created (Figure 1A).

In this way, elements are sorted by taking into account both the 
statistical and biological significance and defining a final popula-
tion distribution for the ranked elements. In this distribution, 
a percentile threshold is set (default 90th percentile) to define 
the acceptable cutoff for significant terms. By applying boot-
strapping in the thus formed distribution (Efron and Tibshirani, 
1993), a corrected assessment of the statistical  significance of 

mAterIAlS And methodS
dAtA Import And Supported bAckGround SetS
StRAnGER requires a tab-delimited text file, with unique gene iden-
tifiers corresponding to the microarray platform used or to the 
public database that is chosen for genomic annotation extraction 
(e.g., Ensembl). An additional column, with p-values correspond-
ing to each gene, is optional. StRAnGER offers the possibility to 
use a variety of sources and organism-related information, for the 
generation of the background dataset, including Bioconductor 
(Gentleman et al., 2004) array annotation packages or Ensembl 
gene annotations for various organisms (Flicek et al., 2008). In 
addition, the user can upload a custom annotation file, including 
the minimum information required for StRAnGER analysis, in tab-
delimited text format. In all cases, a user-friendly wizard enables 
the user to specify the number and type of columns, containing 
information needed for the subsequent analysis.

StAtIStIcAl ASSIGnment of enrIched ontoloGIcAl termS
StRAnGER currently provides three statistical tests for the identifi-
cation of enriched ontological terms, given a list of selected entities 
(i.e., genes, but also proteins or other molecules), and together, 
the appropriate reference set. If t is the total number of significant 
entities, z the number of significant entities related to a term T

i
, 

n the total number of the members of the reference set, and x the 
members of the reference set related to a term T

i
, then

(1) The hypergeometric test, where the probability for a term T
i
 to 

be over-represented is given by the formula:
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i
 to be over-represented is given by 

(assuming w = χ2 and one degree of freedom for the χ2 cumula-
tive  distribution function)
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these elements is enabled, which targets the selective gleaning of 
terms mapped to these elements. These terms are unambiguously 
associated with respective sets of differentially expressed genes. 
Using the population of the elements as the starting sample pool, 
a number of bootstrap iterations (default 10000) is performed. 
Each bootstrap yields a new element distribution. From the fre-
quencies of each element distribution, a histogram is built and a 
cutoff threshold is derived. Based on all these cutoff thresholds, a 
distribution of the ranked thresholds is built, which is compared 
with the cutoff threshold of the initial element distribution. An 
illustrative description of the distribution of the cutoff thresholds 
of the bootstrap technique in the present analysis is given in 
(Figure 1A). At this point, there are two possible options:

•	 If	 the	 cutoff	 threshold	 of	 the	 initial	 element	 distribution	
(Figure 1A) belongs to the elements above the cutoff (90th per-
centile) of the bootstrap distribution, then it is admitted as a 
cutoff threshold for the selection of the significant terms. Since 
elements comprising ontological terms are sorted in ascending 
order of significance, only elements greater than the element that 
corresponds to the cutoff percentage are accepted from the initial 
distribution.

•	 If	the	cutoff	threshold	of	the	initial	element	distribution	is	below	
the cutoff of the bootstrap distribution then it cannot be accep-
ted as a cutoff threshold for the significant ontological terms. 
In that case, the element just over the cutoff threshold of the 
bootstrap element distribution is taken as the desired threshold 
instead.

In this way, the terms selected (Figure 1B) are immunized 
against the bias infiltrating statistical enrichment analyses, pro-
ducing technically very high statistical scores due to the finite 
nature of the data population. Besides their high statistical score, 
the terms gleaned contain a substantial number of biological 
entities ( biomolecules-genes, proteins, etc.) thus incurring a 
biological prioritization in the selection of the terms, amenable 
to a Systems Biology context. The output derived, represents a 
detailed ranked list of significant terms and sets a starting point 
for further functional analysis.

A mathematically formalized algorithmic description of the 
aforementioned process for the case of GO terms follows:

//  GO Term

//  Significant GOT

//  List of Diff

GOT

SGOT

DE

→
→

→ eerentially Expressed genes

//  List of genes in whole AAL → rrray

//  Element Distribution

//  Unique Element Dis

ED

UED

→
→ ttribution (no element repetition)

//  Bootstrapped EleBED → mment Distribution

//   Bootstrapped Unique Element DiBUED → sstribution

//   Percentiles Element Distribution

// 

PED

EID

→
→→
→

 Element IDs assignment function in UED

//   Element IID DDs
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where m is the number of resampling iterations. p̂c represents a 
modification of the estimation of the Achieved Significance Level 
for bootstrap (Efron and Tibshirani, 1993).

output
StRAnGER supports different output options. The text output of 
the application is a structured text file, in tab-delimited format that 
contains the enriched ontological terms resulting from StRAnGER, 
accompanied by their biological annotations and statistics, such as 
the statistical test’s p-value (raw and corrected) and the enrichment 
ratio. Under each term, the names of the biological entities related 
to this term are placed, which comprise the significant list (genes, 
proteins, other molecules), together with further useful informa-
tion like their unique accessions, names, descriptions and individual 
p-values (if provided by the user). In addition, additional informa-
tion on each entity (e.g., expression values, additional identifiers), 
can be appended to the output file, if included in the input file with 
the significant entities, should the user wished so. This information 
is also given as a webpage (html file), where each GO term is linked 
with the AmiGO browsing tool for GO (Carbon et al., 2009), each 
resulting KEGG pathway is linked to the corresponding fully anno-
tated entry (and map) in the KEGG pathways database and each 
gene is hyperlinked with GeneCards database (Safran et al., 2010), 
in order to provide additional, versatile, available, annotated infor-
mation about each entity (i.e., gene). The design of the text output 
is user friendly, facilitating the interpretation from the side of the 
expert. The text output can be further configured to comply with 

ASSeSSment of kInShIp AmonG ontoloGIcAl termS
Another important, unique feature of StRAnGER, has to do 
with its capability, to assess the level of kinship among the dis-
tribution of significant ontological terms, compared to a similar 
distribution of terms that would be randomly picked by mere 
chance. This functionality enables a first, overall validation of 
the results of the analytical procedure at the computational 
layer, prior to the biological one. In order to examine the sig-
nificance of the extent of kinship for the resulting population 
of enriched ontological terms, StRAnGER uses the following, 
graph-theoretic, pairwise, absolute distance metric (Moulos 
et al., 2009), of the relevant ontological tree (i.e., for the GO tree, 
Cellular Component-CP, Molecular Function-MF, or Biological 
Process-BP):

D
n n
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where n
c
 denotes the number of ontological terms in either cat-

egory (for the GO tree CP, MF, or BP) and denotes the absolute 
distance between nodes i and j in the tree undirected acyclic 
graph (UAG). D

c
 represents the average of all pairwise abso-

lute distances among significant ontological terms, UAG cal-
culated for all ontological categories. The statistical validity of 
D

c
, is assessed by resampling the same number of ontological 

terms from each corresponding ontological category (here GO 
categories) from the respective reference GO sets, resulting in 
distinct background bootstrap distributions of D

c
’s for each 

ontological category. Statistical significance is assessed using the   
bootstrap p-value:

Figure 1 | (A) Frequency of sorted elements, according to StRAnGER 
algorithm: the figure presents the number of observations for each element. 
The dash-dotted line depicts the cutoff element by just applying a threshold 
on the statistical p-value, while the dashed line depicts the corrected 
threshold based on the application of bootstrap. (B) The left bar labeled 
“Before” depicts the ratio of enriched terms to the number of all terms that 
the significant genes are annotated to. This ratio is derived after the 

application of solely an enrichment score p-value cutoff. The finite nature of 
the enrichment statistical tests renders the analysis extremely sensitive  
to false positives, and thus tremendously error prone, due to bias infiltration, 
as many terms can obtain technically a high statistical score. The right  
bar labeled “After” depicts the same ratio after the application of  
StRAnGER algorithm. The graphs are based on the data presented in Moulos 
et al. (2009).
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reSultS And dIScuSSIon
StRAnGER is a web-based application1, which performs high-
throughput genomic experiment functional analysis, for multi-
ple types of data (i.e., microarray or next generation sequencing 
experimental datasets). For this scope, it exploits two organizational 
schemas for standardized biological description: that of GO and 
that of KEGG pathway database. StRAnGER is unique, regarding its 
capability of performing either GO analysis or molecular pathway 
analysis, exploiting the top-rated internationally KEGG pathways 
collection. In both cases, it performs enrichment analysis, through 
various statistical tests, coupled with resampling techniques to 
ensure robustness of the results. StRAnGER supports intelligible 
graphical representation of the results (Figure 2), whether the 
enrichment analysis concerns GO or KEGG pathway terms. In this 
way, the researcher can project and correlate results from different 
experiments, and possibly extract biologically useful conclusions. 
Its web-based nature renders StRAnGER platform-independent. Its 
design is absolutely transparent, enabling easy accessibility to all 
its features, even for computer beginners. Additionally, its simple, 
user-friendly interface (Figure 3) empowers the user to complete 
several analysis rounds fast and accurately.

StRAnGER is fully operative1. StRAnGER has been successfully 
used, routinely, for analysis of several microarray datasets, exploit-
ing either GO or KEGG Pathways, among which, datasets concern-
ing human PC-3 prostate cancer cell survival (Tenta et al., 2007) 
and the effects of mastic oil on mouse lung cancer cells (Moulos 
et al., 2009). In order to demonstrate the usefulness of StRAnGER 
in enabling prioritized functional analysis, by deriving a sorted list 
of GO terms or KEGG pathways, the results of the analysis of the 
effects of mastic oil on mouse lung cancer cells are presented in 
brief. Mastic oil, a natural extract from Pistacia lentiscus variation 
chia is a blend of bioactive terpenes with identified therapeutic 
properties (Koutsoudaki et al., 2005). It has been shown to induce 
anti-tumor activities by possibly inhibiting cancer cell prolifera-
tion, survival, angiogenesis, and inflammatory response (Magkouta 
et al., 2009). In Moulos et al. (2009), StRAnGER was used to infer 
enriched GO terms, in a designed time-course DNA microarray 
study, performed to reveal possible anti-tumor effects exerted by 
mastic oil treatment on mouse Lewis lung carcinoma (LLC) cells. 
The significantly enriched GO terms according to StRAnGER, are 
presented in Table 1. The correlation of the enriched GO terms, 
to specific biological processes, was assessed based on the resa-
mpling distance-based algorithm described in Section “Materials 
and Methods” (p

F 
= 0 and p

P 
= 0.001), supporting the validity of 

those terms.
From those top performing GO terms according to StRAnGER, 

emphasis was given to four of them, GO:0008285 (negative regula-
tion of cell proliferation), GO:0007049 (cell cycle), GO:0006917 
(induction of apoptosis) and GO:0043123 (positive regulation of 
I-κB kinase/NF-κB cascade). Those terms were selected on the 
basis of including genes with high expression rates but also for 
their established role in cancer progression supported by previous 
experimental evidence (Magkouta et al., 2009). The phosphatase 
and tensin homolog deleted on chromosome ten (Pten) gene was 
found to be involved in three of the selected GO categories while 
there is evidence supporting a functional cross-talk between PTEN 
and NF-κB signaling (Vasudevan et al., 2004). Pten along with three 

the following three subtypes: (i) a file containing all information 
(ontological terms, entities related, statistics), (ii) a file containing 
only the ontological terms with their statistics (p-value, enrichment 
score), and (iii) a file that contains only the names of the ontological 
terms. The latter is provided for compatibility or further process-
ing with other applications (e.g., pathway mapping based only on 
GO terms).

VISuAlIzAtIon
StRAnGER supports advanced visualization capabilities of its 
results in both cases, namely GO or KEGG pathway terms analysis. 
Regarding visualization of GO analysis, a tree-like illustration is 
adopted depicting the ancestor/descendant relationships among the 
enriched GO terms, so that correlation among the significant ones 
can be visualized and conceptualized. The depth of the hierarchi-
cal relationships is determined by the user at the beginning. Each 
significantly enriched GO term is colored. By accentuating (lower 
p-values) or dimming (higher p-values) the node color, statistical 
significance is demonstrated. In this way, the user can easily cap-
ture overall the most significant GO terms, at a glance. In addition, 
the application supports batch mode, appropriate for performing 
integrative analysis of various datasets together, where the users 
may upload multiple StRAnGER outputs. In this way a combined 
graph output is created, able to visualize possible relationships 
among several experimental outcomes at the functional level. The 
GO terms from each experiment are colored differently, whereas 
also terms that are common among different experimental results 
may be colored elsewise. In this way, the researcher can easily locate 
biological functions shared in multiple experiments and set points 
of further investigation. Regarding the visualization of the results of 
KEGG Pathways, StRAnGER interfaces with web services originally 
developed by KEGG administration that implement advanced visu-
alization functionalities of KEGG pathway maps, in order to paint 
selected pathway maps, resulting as significant from its execution, 
with the related molecular entities (genes, or possibly proteins) that 
are considered significantly differentially expressed and are present 
in these pathway illustrations.

ImplementAtIon
The core StRAnGER routine is programmed in Perl. The GO 
directed acyclic graph (DAG) is retrieved and handled using tools 
from MATLAB’s 7.4 (R2007a) Bioinformatics Toolbox and con-
verted to an UAG by transforming its adjacency matrix, in order 
to measure absolute distances between DAG nodes. The visualiza-
tion of GO terms relationships is achieved by a combination of 
MATLAB routines and the graphViz library2. The whole applica-
tion is built upon a Linux server, running Apache, MySQL, and 
PHP platforms. At present, and in order to promote the concept of 
pervasive, distributed computing, a Java programmed StRAnGER 
web service is currently under development (WSDL representa-
tion), to provide availability and access to its functionality, by being 
incorporated in third party analysis workflows, through the use 
of appropriate workflow managers like the Taverna Workbench 
(Hull et al., 2006).

2http://www.graphviz.org/
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cellular physiology in a broader molecular context, while KEGG path-
way analysis maps the alterations observed at the -omic experiments, 
at detailed biochemical cellular reaction networks. Coupled to the 
interesting cancer-related processes, which were highlighted by GO 
analysis, and imply perturbation of cell cycle (“negative regulation of 
cell proliferation,” “DNA replication initiation,” “cell cycle,” “cell divi-
sion”), KEGG analysis (Table 2) corroborates GO-analysis, regard-
ing glutathione and fatty acid metabolism, DNA-related procedures 
(purine and pyrimidine metabolism), whereas it gives also emphasis 

other genes, E2f7, Nod1, and Hmox1, were validated by RT-PCR 
analysis in all time points of the experiment, presenting overall 
good correlation with the microarray analysis profile of differential 
expression.

Besides GO analysis, the algorithm of StRAnGER was applied in 
terms of the KEGG Ontology (KO), which emphasize in a detailed 
description of various aspects of cellular metabolism (KEGG 
Pathways) across different species. Both approaches are complemen-
tary since GO-analysis retrieves functional information concerning 

Figure 2 | Two graphical outputs from StrAnger applications. (A) A tree view presenting the relationships among the 10 top GO terms from Table 1. The 
ancestor depth has been set at 2. The significance of each GO term is depicted by the accent of the fill color in the respective nodes (here red), that has been 
selected to map each dataset. (B) Illustration of KEGG pathway “Fatty acid metabolism” from Table 2, with colored components.
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accompanied by the individual significant molecular players linked 
to these terms, and useful information about their expression, consti-
tutes a case-specific valuable pool of scalable, biological information 
that can be integrated at a controlled pace.

In order to evaluate the performance of StRAnGER compared 
to other state of the art GO analysis tools, a simple comparison of 
the results of StRAnGER with those of, GOEAST (Zheng and Wang, 
2008) and GOstat (Beissbarth and Speed, 2004) was performed. The 
data of Moulos et al. (2009) were used for statistical GO analysis 
through GOEAST and GOstat, applying two different statistical 
configurations: (i) no multiple-testing correction (ii) Benjamini–
Yekutieli correction of FDR under-dependencies. The number of 
the resulting GO terms for a p-value cutoff of 0.05 was measured 
and the results are presented in Figure 4. The default StRAnGER 
algorithm, with a p-value cutoff of 0.05 and a 90th percentile cutoff 
to its element distribution, results in 63 GO terms while GOEAST 

to xenobiotic metabolism due to the combined alterations observed 
in these molecular pathways. Overall, it can be said that the physi-
ological information captured through both analyses, epitomized 
in the functional description of these terms, reflects a consistent, 
combined overview of the cancerous physiology, revealing however 
crucial functional parameters that may aid the expert in gaining 
insight into the intricacies of its manifestation. Glutathione metabo-
lism for instance is tightly related to the manifestation of antioxidant 
action and could thus provide missing links for the explanation of 
the apparent anti-tumorigenic activity of mastic oil. On the other 
hand, as mastic oil is a plant derived mixture of terpenes, it induces a 
systemic cellular response, demonstrated by the activation of xenobi-
otic metabolic pathways. Albeit these findings represent suggestions 
for further investigation, it is obvious that StRAnGER facilitates the 
design of targeted experiments, for validation of new hypotheses, 
as was the case in (Moulos et al., 2009). Yet, the ranked list of terms, 

Figure 3 | instance of the StrAnger application web interface depicting various parameters of the StrAnger algorithm and the tree visualization.
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Table 1 | A list of significantly enriched GO terms derived from the data in (Moulos et al., 2009) after the application of StRAnGER.

GO term Definition Set p-value Enrichment

GO:0005634 Nucleus C 1.55E–10 194/6236

GO:0016740 Transferase activity F 6.62E–08 86/2383

GO:0000166 Nucleotide binding F 8.81E–08 99/2891

GO:0016787 Hydrolase activity F 1.16E–06 78/2246

GO:0019900 Kinase binding F 1.34E–06 4/11

GO:0004402 Histone acetyltransferase activity F 1.74E–06 6/30

GO:0003676 Nucleic acid binding F 1.79E–06 72/2045

GO:0003723 RNA binding F 1.89E–06 42/978

GO:0046872 Metal ion binding F 2.92E–06 109/3528

GO:0005622 Intracellular C 3.59E–06 88/2704

GO:0005515 Protein binding F 5.37E–06 198/7381

GO:0004364 Glutathione transferase activity F 6.41E–06 6/36

GO:0030509 BMP signaling pathway P 8.16E–06 4/15

GO:0003824 Catalytic activity F 8.86E–06 35/805

GO:0043433 Negative regulation of transcription factor activity P 1.06E–05 3/8

GO:0005524 ATP binding F 1.07E–05 77/2348

GO:0016491 Oxidoreductase activity F 1.18E–05 41/1019

GO:0006270 DNA replication initiation P 2.95E–05 4/19

GO:0008415 Acyltransferase activity F 5.38E–05 14/224

GO:0008270 Zinc ion binding F 5.47E–05 93/3114

GO:0000287 Magnesium ion binding F 6.96E–05 25/554

GO:0005739 Mitochondrion C 0.00011592 45/1275

GO:0016874 Ligase activity F 0.00015613 21/454

GO:0003954 NADH dehydrogenase activity F 0.000236 5/44

GO:0008285 Negative regulation of cell proliferation P 0.00026588 10/152

GO:0030855 Epithelial cell differentiation P 0.00030166 4/30

GO:0008137 NADH dehydrogenase (ubiquinone) activity F 0.00030269 5/46

GO:0030529 Ribonucleoprotein complex C 0.00034927 20/449

GO:0006412 Translation P 0.00037692 21/484

GO:0007049 Cell cycle P 0.00045196 27/694

GO:0005762 Mitochondrial large ribosomal subunit C 0.00047806 4/33

GO:0042157 Lipoprotein metabolic process P 0.00049001 3/19

GO:0006464 Protein modification process P 0.00052038 14/276

GO:0008152 Metabolic process P 0.00054429 32/881

GO:0008134 Transcription factor binding F 0.000618 9/142

GO:0016301 Kinase activity F 0.00062479 45/1378

GO:0003735 Structural constituent of ribosome F 0.00069785 14/284

GO:0006869 Lipid transport P 0.00071252 7/96

GO:0006260 DNA replication P 0.00071381 11/198

GO:0006749 Glutathione metabolic process P 0.0010504 3/23

GO:0006631 Fatty acid metabolic process P 0.0011307 7/103

GO:0008092 Cytoskeletal protein binding F 0.001226 6/81

GO:0006470 Protein amino acid dephosphorylation P 0.0012779 12/241

GO:0045177 Apical part of cell C 0.0016441 4/43

GO:0006446 Regulation of translational initiation P 0.0016908 3/26

GO:0006350 Transcription P 0.0018383 64/2230

GO:0005737 Cytoplasm C 0.0018487 66/2314

GO:0043123 Positive regulation of I-kappaB kinase/NF-kappaB cascade P 0.0019357 5/65

GO:0004721 Phosphoprotein phosphatase activity F 0.0021059 12/255

GO:0005840 Ribosome C 0.0021789 12/256

GO:0000184 mRNA catabolic process, nonsense-mediated decay P 0.0022434 3/28

GO:0006917 Induction of apoptosis P 0.0022511 8/141

(Continued)
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GO:0003677 DNA binding F 0.0022689 82/3014

GO:0051301 Cell division P 0.0023318 14/321

GO:0045944 Positive regulation of transcription from RNA polymerase II promoter P 0.0024536 11/229

GO:0005783 Endoplasmic reticulum C 0.0025159 34/1045

GO:0030528 Transcription regulator activity F 0.0026217 14/325

GO:0009117 Nucleotide metabolic process P 0.0029513 4/49

GO:0006118 Electron transport P 0.0031794 23/645

GO:0003713 Transcription coactivator activity F 0.0032915 7/122

GO:0004842 Ubiquitin–protein ligase activity F 0.0034684 11/239

GO:0005802 Trans-Golgi network C 0.0034872 5/73

GO:0016481 Negative regulation of transcription P 0.0035622 8/151

The list of 925 significantly modulated genes from Moulos et al. (2009) was submitted to StRAnGER for GO-based meta-analysis, elucidating over-represented, and 
significantly enriched GO terms. p-value represents the hypergeometric test p-value score for each GO term and enrichment represents the ratio of the number of 
times a GO term occurs in the significant gene list to the number of times this GO term exists in the list of the entire microarray or the respective background.

Table 1 | Continued

GO term Definition Set p-value Enrichment

Table 2 | A list of significantly enriched KEGG pathways derived from the data in Moulos et al. (2009) after the application of StRAnGER.

KEGG ID KEGG pathway Class p-value Enrichment

00603 Glycosphingolipid biosynthesis – globo series Metabolism; glycan biosynthesis and metabolism 2.01E–11 1/1

00670 One carbon pool by folate Metabolism; metabolism of cofactors and vitamins 1.32E–05 5/27

00480 Glutathione metabolism Metabolism; metabolism of other amino acids 2.28E–05 7/59

00920 Sulfur metabolism Metabolism; energy metabolism 3.07E–05 3/10

00450 Selenoamino acid metabolism Metabolism; metabolism of other amino acids 3.17E–05 2/4

00230 Purine metabolism Metabolism; nucleotide metabolism 3.59E–05 12/167

00240 Pyrimidine metabolism Metabolism; nucleotide metabolism 8.76E–05 5/37

04130 SNARE interactions in vesicular transport Genetic information processing; folding, sorting and degradation 0.000294 6/64

00780 Biotin metabolism Metabolism; metabolism of cofactors and vitamins 0.000402 1/2

00450 Selenoamino acid metabolism Metabolism; metabolism of other amino acids 0.000429 5/49

00071 Fatty acid metabolism Metabolism; lipid metabolism 0.000468 6/69

00240 Pyrimidine metabolism Metabolism; nucleotide metabolism 0.000535 8/115

00624 1- and 2-Methylnaphthalene degradation Metabolism; xenobiotics biodegradation and metabolism 0.000822 4/37

00362 Benzoate degradation via hydroxylation Metabolism; xenobiotics biodegradation and metabolism 0.000868 2/10

04720 Long-term potentiation – 0.000869 8/123

00980 Metabolism of xenobiotics by cytochrome P450 Metabolism; xenobiotics biodegradation and metabolism 0.000933 7/100

00643 Styrene degradation Metabolism; xenobiotics biodegradation and metabolism 0.001189 1/3

The list of 925 significantly modulated genes from Soong (2004) was submitted to StRAnGER to derive enriched KEGG pathways based on the algorithms 
described in the text. p-value represents the hypergeometric test p-value score for each KEGG pathway and enrichment represents the ratio of the number 
of times a KEGG pathway occurs in the significant gene list to the number of times this KEGG term exists in the list of the entire microarray or the 
respective background.

results in 721 and 133 terms without and with multiple-testing cor-
rection respectively, and GOstat results in 359 and 37 terms without 
and with multiple-testing correction respectively. The results of all 
executions are provided in Supplementary file 1 online.

A comparison of the results of StRAnGER with both lists derived 
from GOEAST reveals that in both cases, StRAnGER returns fewer 
(Figure A1A in Appendix) and more specific in terms of biological 
function terms, with the prioritization algorithm being able to filter 
out very generic functions such as “cell part” or “binding.” It is to be 
noted that even after multiple-testing correction in GOEAST, such 
terms remain, with some of them representing root nodes in the 
GO hierarchical tree, e.g., “cell.” Regarding the results of GOstat, 

it should be stressed that in the case of the uncorrected GO terms 
list, a plethora of GO terms with enrichment 1/1 are present, which 
constitute “leaves” of the GO tree and are totally uninformative in 
the pathway context, (see Supplementary Material), while in the list 
derived after application of the multiple-testing correction, mainly 
generic nodes such as “membrane-bounded organelle” are qualified, 
even if the total number of returned GO terms is lower than the 
number of terms returned by StRAnGER. This happens because the 
application of the multiple-testing correction is applied solely in the 
distribution of p-values, thus applying a stricter statistical threshold. 
As the classical enrichment tests favor terms enumerating many 
members, this has a clear impact in the resulting list of terms.
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to filter out very specific (leaves of the GO tree) and very generic 
biological functions under a strict, formal, equivalent for all meth-
ods, evaluation framework.

Our presumption, which serves as a performance criterion, is 
that GO terms representing very specific biological functions, iden-
tical in practice with those of one or two genes, lying very low in 
the GO hierarchy (very poor information content in the pathway 
context), should be filtered from an output list of GO terms, despite 
the fact they present an extremely high enrichment. To assess the 
ability of the three packages to filter these hierarchically low terms, 
their observations were counted in the outcome lists. The results are 
shown in Figure 4, both as simple counts (A), as well as normalized 
to the total number of terms for each outcome (B). It should be 
noted that even though this scaling step was not entirely necessary, 
as the algorithm of each program is independent and responsible 
for the noise included in each outcome, it was performed in order 
to avoid possible bias in the scoring scheme, caused by large dif-
ferences in the numbers of enriched GO terms, derived by each 
application. Moreover, in order to standardize the evaluation of 
the three solutions, trivial terms presenting a very low gene content 
(i.e., 1, 2, 3 genes), and at the same time yield a very high enrich-
ment score (p-value < 0.001) were filtered out. It should be noted 
that StRAnGER, by its inner logic, is always capable of eliminating 
these terms, so these terms were excluded from the comparative 
analysis, in order to neutralize the evaluation and avoid favoring its 
results pro StRAnGER. However, still the curve corresponding to 
StRAnGER (solid line with triangle markers) lies constantly below 

Even though the application of multiple-testing correction par-
tially limits the presence of very general biological terms in the 
output lists of GOEAST and GOstat, the final outcome depends 
heavily on the internal structure of the molecular lists, comprising 
the list of significantly differentially expressed molecules, but also 
the list to be used as background. This is due to the finite nature 
of the statistical tests based in the concept of over-representation. 
In addition, the application of classical multiple-testing correction 
in the case of GO-based gene list interpretation has been reported 
controversial (Osier et al., 2004), as it can prove excessively or 
less conservative depending on the correction method applied 
(family wise error rate, FWER; false discovery rate, FDR). Two 
major concerns with these procedures are that: (i) they assume 
general independence among tests, something clearly violated in 
the case of ontological terms (Osier et al., 2004), where strong 
covariance exists for numerous ontological terms as a result of 
the underlying biology and (ii) they do not take into account 
the graph hierarchical structure and the inherent properties of 
GO (Goeman and Mansmann, 2008). Regarding case (i), the FDR 
control under-dependencies (Benjamini and Yekutieli, 2001) is 
often applied, assuming positive regression dependency among 
test. However, this approach may also prove inadequate to explain 
the complex hierarchical properties of GO. Taking into account 
the aforementioned concerns, an evaluation of the outcomes of 
StRAnGER was performed through comparison with the outcomes 
of GOEAST and GOstat without using any multiple-testing cor-
rection procedure, in order to evaluate the ability of StRAnGER 

Figure 4 | Observations of hierarchically low gO terms in the resulting 
list of significantly enriched gO terms, derived from the usage of 
StrAnger and two widely used software packages: gOeAST and gOstat. 
In both panels, numbers in the horizontal axis represent the number of times 
that GO terms, connected to only one or very few genes, describing a very 
specific and limited from the pathway perspective, action, appear in the 
background list that is used (in this case, all annotated probes in the 
microarray), while in the vertical axis a measure of observation of these low 
frequency GO terms is depicted, regarding the significant list of over-
represented ones. The vertical axis in left panel depicts a simple count of low 

frequency GO terms in the significantly over-represented GO terms (how many 
times these terms infiltrate the significant list), resulting from the usage of the 
three packages, while in the right panel, the count of low frequency GO terms 
is normalized to the total number of over-represented GO terms returned by 
each package. In both cases, StRAnGER performs, as its curve shows, better or 
at the same level (in the case of GOEAST for very low frequency terms) with 
the others, implying that its prioritization algorithm manages to filter out noise 
caused by very specific functions, being low at the GO hierarchy, without the 
application of any multiple-testing correction methodology, a strategy reported 
as controversial (see main text).
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AppendIx

Figure A1 | (A). The number of statistically significant GO terms after (light bars) or 
prior (dark bars) the application of multiple testing correction, as derived by the use 
of the 3 software packages described in the main text. StRAnGER’s main algorithm 
does not necessarily require the application of a multiple testing procedure, as the 

bootstrapping applied estimates the GO term distribution cutoffs. (B). Number of 
the resulting, statistically significant GO terms, representing very general biological 
functions (i.e. “protein binding”) yielded by the 3 software packages described in the 
main text. StRAnGER’s main algorithm manages to filter out many of them.
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