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Prediction of decisions from noise in the brain before the 
evidence is provided
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Can decisions be predicted from brain activity? It is frequently difficult in neuroimaging studies 
to determine this, because it is not easy to establish when the decision has been taken. In a 
rigorous approach to this issue, we show that in a neurally plausible integrate-and-fire attractor-
based model of decision-making, the noise generated by the randomness in the spiking times 
of neurons can be used to predict a decision for 0.5 s or more before the decision cues are 
applied. The ongoing noise at the time the decision cues are applied influences which decision 
will be taken. It is possible to predict on a single trial to more than 68% correct which of two 
decisions will be taken. The prediction is made from the spontaneous firing before the decision 
cues are applied in the two populations of neurons that represent the decisions. Thus decisions 
can be partly predicted even before the decision cues are applied, due to noise in the decision-
making process. This analysis has interesting implications for decision-making and free will, 
for it shows that random neuronal firing times can influence a decision before the evidence for 
the decision has been provided.
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was chosen on approximately 50% of the trials, which is the chance 
performance that was expected. We however looked backward in 
time to the period before the decision cues were applied, to inves-
tigate whether the noisy firing (i.e., variable because each neuron 
emitted close to Poisson spike trains) before the decision cues were 
applied in any way was related to which attractor, D1 or D2, won 
on a particular trial.

Materials and Methods
We capitalize on recent advances in theoretical understanding of 
how choice decisions are made using an IF attractor network that 
makes probabilistic decisions from the spontaneous low firing state 
into one of two or more high firing rate stable attractor states each 
implemented by a set of coupled neurons that receives the inputs 
for one of the decisions (Wang, 2002, 2008; Deco and Rolls, 2006; 
Rolls, 2008; Deco et al., 2009; Rolls and Deco, 2010). The choice 
made is probabilistic because of the noise contributed to by the 
almost random spiking times of the neurons for a given firing rate, 
which have close to a Poisson distribution (Rolls, 2008; Rolls and 
Deco, 2010). On a particular trial, the attractor that happens to have 
more spikes in its neurons by chance is more likely to win the com-
petition. Such attractor networks are implemented by excitatory 
connections between cortical pyramidal cells (Rolls, 2008, 2010a), 
and provide a neural architecture not only for decision-making 
but also for short-term memory (Goldman-Rakic, 1995; Amit and 
Brunel, 1997; Rolls, 2008), and memory recall (Rolls, 2008; Rolls 
and Deco, 2010).

The theoretical framework of the model used here was intro-
duced by Wang (2002) and developed further (Deco and Rolls, 
2006; Deco et al., 2007, 2009; Marti et al., 2008; Wang, 2008; Rolls 

introduction
There are fMRI analyses of how early one can predict from neural 
activity what decision will be taken (Haynes and Rees, 2005a,b, 
2006; Pessoa and Padmala, 2005; Lau et al., 2006; Hampton and 
O’Doherty, 2007; Haynes et al., 2007; Rolls et al., 2009). For exam-
ple, in one investigation subjects held in mind which of two tasks, 
addition or subtraction, they intended to perform. It was possible, 
while they held it in mind in a delay period, to decode or predict 
with fMRI (functional magnetic resonance neuroimaging) from 
medial prefrontal cortex activations whether addition or subtrac-
tion would later be performed, with accuracies in the order of 70% 
(where chance was 50%; Haynes et al., 2007). There is also evidence 
that the ongoing variations in neural activity measured for example 
with fMRI may be related to whether a signal is detected and to 
perceptual decisions (Ress et al., 2000; Boly et al., 2007; Hesselmann 
et al., 2008, 2010; Sadaghiani et al., 2010).

A problem with such studies is that it is often not possible to 
know exactly when the decision was taken at the mental level, or 
when preparation for the decision actually started, so it is difficult 
to know whether neural activity that precedes an action or report 
in any way predicts the actual decision that will be taken (Rolls and 
Deco, 2010). In fMRI studies, the temporal precision is also poor. 
In these circumstances, is there anything rigorous that our under-
standing of the neural mechanisms involved in the decision-making 
can provide? It turns out that there is, as we show here using an 
integrate-and-fire (IF) attractor network model of decision-making.

We simulated an attractor network with two possible decision 
states, D1 and D2. After 2 s of spontaneous firing, decision cues 
for D1 and D2 were applied to the network. The decision cues for 
these simulations had equal magnitude, and each decision state 
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the modeled brain area. The latter population regulates the overall 
activity and implements competition in the network by spreading 
a global inhibition signal.

Because we are mainly interested in the non-stationary 
 probabilistic behavior of the network, the proper level of descrip-
tion at the microscopic level is captured by the spiking and synap-
tic dynamics of one-compartment IF neuron models (Deco and 
Rolls, 2005; Rolls and Deco, 2010). An IF neuron integrates the 
afferent current generated by the incoming spikes, and fires when 
the depolarization of the cell membrane crosses a threshold. At 
this level of detail the model allows the use of realistic biophysical 
time constants, latencies, and conductances to model the synap-
tic current, which in turn allows a thorough study of the realistic 
time scales and firing rates involved in the time evolution of the 
neural activity. Consequently, the simulated neuronal dynamics, 
that putatively underlie cognitive processes, can be quantitatively 
compared with experimental data. For this reason, it is very useful 
to include a thorough description of the different time constants 
of the synaptic activity. The IF neurons are modeled as having 
three types of receptor mediating the synaptic currents flowing into 
them: AMPA, NMDA (both activated by glutamate), and GABA 

and Deco, 2010), and the results described here apply generically 
to IF attractor network models of decision-making. In this frame-
work, we model probabilistic decision-making by a network of 
interacting neurons organized into a discrete set of populations, as 
depicted in Figure 1. Populations or pools of neurons are defined 
as groups of excitatory or inhibitory neurons sharing the same 
inputs and connectivities. The network contains N

E
 (excitatory) 

pyramidal cells and N
I
 inhibitory interneurons. In our simula-

tions, we use N
E
 = 400 and N

I
 = 100, and a larger network with 

N
E
 = 3200 and N

I
 = 800, consistent with the neurophysiologically 

observed proportion of 80% pyramidal cells vs 20% interneurons 
(Abeles, 1991; Rolls and Deco, 2002). The neurons are fully con-
nected (with synaptic strengths as specified below). In the model, 
the specific populations D1 (for decision 1) and D2 encode the 
categorical result of the choice between the two stimuli that activate 
each of these populations. Each specific population of excitatory 
cells contains rN

E
 neurons (in our simulations r = 0.1). In addi-

tion there is one non-specific population, named “Non-specific,” 
which groups all other excitatory neurons in the modeled brain 
area not involved in the present task, and one inhibitory popula-
tion, named “Inhibitory,” grouping the local inhibitory neurons in 
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B
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FIguRe 1 | (A) The architecture of the integrate-and-fire attractor network used to 
model decision-making (see text). The evidence for decision 1 is applied via the λ1 
inputs to neuronal population or pool D1, and for decision 2 via the λ2 inputs to pool 
D2. The synaptic weights w ij have been associatively modified during training in the 
presence of λ1 and at a different time of λ2. When λ1 and λ2 are applied, each 
attractor competes through the inhibitory interneurons, until one wins the 
competition, and the network falls into one of the high firing rate attractors that 
represents the decision. The noise in the network caused by the random spiking of 
the neurons means that on some trials, for given inputs, the neurons in the 

decision 1 (D1) attractor are more likely to win, and on other trials the neurons in 
the decision 2 (D2) attractor are more likely to win. This makes the decision-making 
probabilistic, for, as shown in (B), the noise influences when the system will jump 
out of the spontaneous firing stable (low energy) state S, and whether it jumps into 
the high firing state for decision 1 (D1) or decision 2 (D2). (B) A multistable 
“effective energy landscape” for decision-making with stable states shown as low 
“potential” basins. Even when the inputs are being applied to the network, the 
spontaneous firing rate state is stable, and noise provokes transitions into the high 
firing rate decision attractor state D1 or D2 (see Rolls and Deco, 2010).
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specific population D1 is increased by an extra value of λ
1
, and to 

population D2 by λ
2
, as these encode the two stimuli to be compared. 

The absolute difference between the two inputs measures the magni-
tude of the evidence for the decision, and is defined as ∆I = |λ

1
 − λ

2
|.

The simulations were run for 2 s of spontaneous activity, and 
then for a further 2 s while the stimuli were being applied. During 
the spontaneous period, the stimuli applied to each synapse of each 
neuron in D1 and D2 (and to all the other neurons in the network) 
had a value of 3 Hz. During the decision period, the mean input to 
the synapses for λ

1
 and λ

2 
on the D1 and D2 neurons was increased 

to 3.04 Hz per synapse (an extra 32 Hz per neuron). For ∆I = 0, we 
added 32 extra Hertz to the spontaneous and applied this to each 
λ

1
 and λ

2 
synapse in each neuron of both D1 and D2. For ∆I = 16, 

32 + 8 Hz was the extra applied to D1 and corresponds to λ
1
 in 

Figure 1, and 32 – 8 Hz was the extra applied to the synapses for λ
2
 

inputs to D2, etc. The mean firing rates of each of the four popula-
tions of neurons, and the absolute value of the sum of the synaptic 
currents (AMPA, NMDA, and GABA, defined in the Appendix), for 
50 ms time windows were saved every 50 ms for later analysis. The 
criterion for which population won, that is for which decision was 
taken, was a mean rate for the last second of the simulation that 
was 10 Hz greater than that of the other population. (This is in the 
context that the spontaneous rate was 3 spikes/s, and that the win-
ning population typically had a mean firing rate of 35–40 spikes/s, 
as will be shown).

The parameters for the synaptic weights and input currents 
were chosen using the mean-field equivalent of this network 
(Brunel and Wang, 2001; Deco and Rolls, 2006; Rolls and Deco, 
2010) so that in the absence of noise when the input stimuli are 
being applied there were three possible stable states, the sponta-
neous firing rate state (with a mean firing for the pyramidal cells 
of approximately 3 spikes/s), and one of two possible high firing 
rate attractor states (with a mean firing for the pyramidal cells of 
approximately 40 spikes/s), with one neuronal population (D1) 
representing decision 1, and the other population (D2) decision 
2. In particular, w+ was set to 2.1.

The particular model chosen using the mean-field analysis 
(Brunel and Wang, 2001; Deco and Rolls, 2006; Rolls and Deco, 
2010) had three stable states in the absence of the spiking noise, a 
spontaneous state and one for each of two decisions, as this model 
has many interesting decision-making properties, including imple-
menting Weber’s law (∆I/I = k, i.e., the difference of intensity I 
that can be reliably detected divided by the intensity value has a 
linear component; Deco and Rolls, 2006; Deco et al., 2009). With 
operation in this multistable regime, it is the approximately random 
spiking times of the neurons (i.e., approximately Poisson firing at 
a given mean rate) that causes statistical fluctuations that makes 
the network jump from the spontaneous firing state into one of 
the high firing rate attractor (decision) states. The randomness of 
the firing dynamically and probabilistically provokes transitions 
from the spontaneous firing state to one of the high firing rate 
attractor basins that represent a decision when the decision cues 
are applied (see Figure 1B). The parameters of the network made 
it operate in the same place in the state space with multiple stability 
determined by the mean-field analysis as in previous investigations 
(Deco and Rolls, 2006; Loh et al., 2007; Rolls et al., 2008; Rolls and 
Deco, 2010). With these parameters, on a proportion of the trials 

receptors. The excitatory recurrent post-synaptic currents (EPSCs) 
are considered to be mediated by AMPA (fast) and NMDA (slow) 
receptors; external EPSCs imposed onto the network from outside 
are modeled as being driven only by AMPA receptors. Inhibitory 
post-synaptic currents (IPSCs) to both excitatory and inhibitory 
neurons are mediated by GABA receptors. The details of the math-
ematical formulation are summarized in previous papers (Brunel 
and Wang, 2001; Deco and Rolls, 2006), and are provided in the 
Appendix. The simulations of the spiking dynamics of the network 
were integrated numerically using the second order Runge–Kutta 
method with a step size 0.05 ms.

We set the conductance values for the synapses between pairs 
of neurons by connection weights, which can deviate from their 
default value 1. The structure and function of the network are 
achieved by differentially setting the weights within and between 
populations of neurons. We assume that the connections are already 
formed, by for example earlier self-organization mechanisms, as if 
they were established by Hebbian learning, i.e., the coupling will be 
strong if the pair of neurons have correlated activity (i.e., covary-
ing firing rates), and weak if they are activated in an uncorrelated 
way. As a consequence of this, neurons within a specific excitatory 
population (D1 and D2) are mutually coupled with a strong syn-
aptic weight w+, set to 2.1 for the simulations described here. This 
value was chosen based on a consistent mean-field analysis so that 
when the decision cues were being applied, the spontaneous firing 
state as well as the two high firing rate decision states were all stable 
(Deco and Rolls, 2006; Loh et al., 2007; Rolls and Deco, 2010). We 
refer to this as multistability, and in this regime it is noise gener-
ated by the neuronal firing that provokes the transition from the 
spontaneous state into a high firing rate decision state (Deco and 
Rolls, 2006; Loh et al., 2007; Rolls and Deco, 2010). Furthermore, 
the populations encoding these two decisions are likely to have 
anti-correlated activity in this behavioral context, resulting in 
weaker than average connections between the two different popu-
lations. Consequently, for these weights we choose a weaker value 
w− = 1 − r(w+ − 1)/(1 − r), so that the overall recurrent excitatory 
synaptic drive in the spontaneous state remains constant as w+ is 
varied (Brunel and Wang, 2001). Neurons in the inhibitory popu-
lation are mutually connected with an intermediate weight w = 1. 
They are also connected with all excitatory neurons in the same 
layer with the same intermediate weight, which for excitatory-to-
inhibitory connections is w = 1, and for inhibitory-to-excitatory 
connections is denoted by a weight w

I
. Neurons in a specific exci-

tatory population are connected to neurons in the non-selective 
population in the same layer with a feedforward synaptic weight 
w = 1 and a feedback synaptic connection of weight w−.

Each individual population is driven by two different kinds of 
input. First, all neurons in the model network receive spontaneous 
background activity from outside the module through N

ext
 = 800 

external excitatory connections. Each synaptic connection carries 
a Poisson spike train at a spontaneous rate of 3 spikes/s, which is a 
typical spontaneous firing rate value observed in the cerebral cortex. 
This results in a background external input summed over all 800 
synapses of 2400 spikes/s for each neuron. Second, the neurons in 
the two specific populations additionally receive added firing to the 
external inputs that encode the evidence for the decision to be made. 
When stimulating, the rate of the Poisson train to the neurons of the 
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network to on some trials jump out of the spontaneous state.) 
A jump from the spontaneous state occurred on approximately 
290/1000 trials with this size network. We carefully excluded any 
such unstable trials from the analysis of the results in Figure 2 
by excluding all trials on which the firing rate was >5 spikes/s in 
the 0.2-s period before the decision cues were applied. This was 
in a situation in which the parameters had been selected with 
the mean-field analysis to produce an average spontaneous firing 
rate of 3 spikes/s.

Further investigations as follows were performed to confirm that 
the firing rate in each decision pool of neurons had not moved from 
its stable spontaneous firing before the decision cues were applied. 
These further investigations involved greatly increasing the size 
of the network, by eight times so that it contained 4000 neurons, 
with therefore 3200 excitatory neurons each with 3200 recurrent 
collateral synapses from the other excitatory neurons. There were 
now 320 excitatory neurons in each of the two decision pools. As the 
attractor network becomes larger, the finite size fluctuation-related 
noise effect due to the neuronal spiking becomes smaller (and the 
noise is zero when the network has infinite size), as described and 
analyzed for this network by Deco and Rolls (2006), and Rolls 
and Deco (2010). With again the strict criterion for stability of the 
spontaneous state of <5 Hz for the mean firing rate across neurons 
of each of the decision pools in the last 200 ms before the decision 
cues were applied, the number of trials with stable spontaneous 
activity was now 998/1000. Using these 998 trials, so that instability 
could not be an issue, we found the same effects as those described 
in Figure 2. These further results are illustrated in Figure 3, which 
is for ∆I = 0. Of 887 trials with a clear winner using the criteria 
described above, it was possible to predict which pool would win 
the competition on 63.7% of the trials (and with chance = 50%, 
Fisher p << 0.0001) from the firing rates in a 100 ms period 200 ms 
before the decision cues were applied. The mean rate was signifi-
cantly higher in this time window of the spontaneous firing for the 
winning pool (2.78 spikes/s) than for the losing pool (2.44 spikes/s; 
paired t-test, p < 10−14). The prediction from a 50-ms bin just before 
the decision cues were applied was 68% correct. Figure 3B shows 
the percentage correct predictions from 100 ms of firing taken 
at different pre-stimulus times. The * indicates the start of the 
first 100 ms period in which within a 100-ms period a statistically 
significant  prediction could be made (p < 0.03, Fisher test). This 
100 ms period was 750 ms before the decision cues were applied. 
Further evidence that instability of the spontaneous state was not 
contributing to these results is that the decision times on all trials 
were 300 ms or more after the decision cues were applied. Thus with 
4000 neurons in the network and with ∆I = 0 it is still possible to 
predict which pool will make the decision with approximately 68% 
correct from the firing rates of the neurons in each of the attractors 
in the period of spontaneous activity before the decision cues are 
applied. In this large network, the effects of the spiking-related noise 
are smaller in that the spontaneous attractor is almost always stable, 
and with less noise it is more easily possible from the spontaneous 
firing rates in the predecision period to predict which decision 
will be taken. This result from a scaled-up network indicates that 
the processes described here are likely to apply in the neocortex in 
which the number of recurrent collateral connections onto each 
neuron is in the order of thousands.

( typically 290/1000 in the small network specified above) the noise 
from the neuronal spiking provokes a transition from the spontane-
ous firing rate before the decision cues are applied into a high firing 
rate state. We were careful to exclude any such trial from each set 
of 1000 trials, using a criterion for stability of a mean firing rate 
of less than 5 spikes/s in each of the pools in the last 0.2 s before 
the decision cues were applied. This is in the context that the mean 
spontaneous firing rate determined using the mean-field analysis 
and verified in the spiking simulations was 3 spikes/s, and that 
the mean firing rate when in a decision attractor was 40 spikes/s. 
Further investigations to show that instability of the spontaneous 
state of firing does not account for the results are shown in Figure 3.

The stability of an attractor is characterized by the average time in 
which the system stays in the basin of attraction under the influence 
of noise. The noise provokes transitions to other attractor states, 
as shown schematically by the “potential” landscape in Figure 1B. 
(Further details are provided by Rolls and Deco (2010), and at 
the bifurcation point the system is one-dimensional and imple-
ments a non-linear diffusion process; Roxin and Ledberg, 2008.) 
The behavior results from the interplay between the Poissonian 
character of the spike timing and the finite size effect due to the 
limited numbers of neurons in the network (Rolls and Deco, 2010).

results
The results found in simulations in which the firing rate in the 
spontaneous firing period is measured before a particular attractor 
population won or lost the competition or even received any evi-
dence relevant to the decision are illustrated in Figures 2A,B with 
∆I = 0 so that the chance level for each decision pool is 50% correct. 
The firing rate averaged over approximately 650 winning (correct) 
and losing (error) trials for the attractor shows that the firing rate 
when the attractor will win is on average higher than that for when 
the attractor will lose at a time that starts in this case approximately 
300 ms before the decision cues are applied. Statistical analyses show 
that the firing rates were significantly different (p < 0.005, t-test, 2.51 
vs 2.22 spikes/s) by t = 1.7 s, that is at 300 ms before the decision 
cues were applied. An example of the activity of the network on a 
single trial to illustrate the operation of the network is shown in 
Figures 2D,E. It is possible to predict the decision from the firing 
rates before the decision cues are applied, as shown in Figure 2C. 
The prediction became better (53.6% correct from a single 50 ms 
bin) than the chance level of 50% correct 300 ms before the deci-
sion cues were applied, was significant (p < 0.02) at 55.9% correct 
at 250 ms before the decision cues were applied, and reached a 
level of 64.5% correct just before the decision cues were applied at 
t = 2.0 s. The predictions plotted in Figure 2C were made from the 
firing rates of each selective population in 100 ms periods.

The network used for the simulations shown in Figure 2 con-
tained 500 neurons, with 40 neurons in each of the two deci-
sion pools. Because this is quite a small network, the statistical 
fluctuations caused by the close to Poisson spiking times of the 
neurons in the spontaneous period of 0–2 s caused the network 
to sometimes jump out of the spontaneous state into a high firing 
rate state. (The parameters of the network were selected with a 
mean-field analysis so that the spontaneous state was stable, and 
stability would also be the state in an infinite size spiking network. 
The noise just described in the small network is what causes the 
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obtain evidence on this, we computed the autocorrelation function 
for the spontaneous firing rate of the D1 population. The function 
was calculated from the mean firing rates of the population of D1 
neurons calculated and sampled every 50 ms. To obtain 4.5 s of 
data, the decision cues were omitted from these 6 s simulation tri-
als. Data were used from 930 trials in which the spontaneous firing 
rate remained stable and below 5 spikes/s at the end of the 6-s trial 
(and this was all but seven of the trials as the network contained 
4000 neurons and the spontaneous state was quite stable). The data 
were from 50 ms firing rate bins starting 1000 ms after the start 

The time scale over which a decision can be partly predicted is 
of the order of 750 ms in the large simulations described here and 
illustrated in Figure 3. This is a surprisingly long time, given that 
the neuronal and synaptic time constants of the network are in the 
order of tens of millisecond or less (with the NMDA receptor time 
constant somewhat longer at 100 ms). We suggest that the time 
constant of the system is effectively longer than this, because of the 
positive feedback in the recurrent collateral synaptic connections, 
which may encourage statistical fluctuations in the spontaneous 
activity to feed back and build up over longer time periods. To 
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FIguRe 2 | (A) Prediction of a decision before the evidence is applied. In this 
integrate-and-fire simulation of decision-making, the decision cues were turned 
on at t = 2 s, with ∆I = 0. The firing rate averaged over approximately 650 
winning vs losing trials for the attractor shows that the firing rate when the 
attractor will win is on average higher than that for when the attractor will lose at 
a time that starts in this case at 300 ms before the decision cues are applied. (At 
t = 2 s with ∆I = 0 the input firing rate on each of the 800 external input 
synapses onto every neuron of both of the selective attractor populations is 
increased from 3.00 to 3.04 spikes/s, as described in the text.) The error bars in 
this and subsequent Figures show the standard deviation of the firing rate 
calculated across trials for the 50-ms bins to indicate the noisy operation of this 
decision-making system. The large standard deviations in the period after the 
decision cues are applied at 2 s reflect the different decision times of the 
network on different trials. (B) As (A), but with an expanded firing rate axis so 

that the difference in the firing rates of the pool that will win and of the pool that 
will lose can be illustrated. (C) The prediction of which pool will win from 100 ms 
periods of the firing of the two pools at different times before the decision cues 
are applied at t = 2 s. The network size was 500 neurons, with 400 excitatory 
neurons, 400 excitatory recurrent collateral synaptic connections on each 
neuron, and 40 neurons in each of the two decision pools. (D) Example from a 
single trial of the firing rates of the four populations of neurons for a correct 
decision (for which ∆I = 16). From the top right the plot order is: D1 is the firing 
rate of the correct and winning attractor D1. Inh is the inhibitory population that 
uses GABA as a transmitter. NSp is the non-specific population of neurons (see 
Figure 1). D2 is the firing rate of the correctly losing attractor D2. (e). 
Rastergrams for the same trial shown in d to illustrate the probabilistic spiking of 
each neuron. Ten neurons from each of the four pools of neurons are shown. 
Each vertical line is the spike from a neuron.
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700 ms later, which is what has been shown in the results described 
here. The positive period in the autocorrelation function of 700 ms 
matches quite closely that of the period in which predictions that 
are better than chance can be made with this size of network with 
320 neurons in each of pools D1 and D2, which become significant 
750 ms before the decision cues are applied, as shown in Figure 3B.

The results shown in Figures 2 and 3 are for ∆I = 0, that is when 
the input to the D1 attractor was the same as that to the D2 attrac-
tor, and each attractor won on approximately 50% of the trials. 
Analogous effects were found when ∆I was greater than 0, and the 
D1 attractor was biased to win more by the evidence for decision 1. 
But very interestingly, the influence of the noise of the firing rate in 
the spontaneous firing period before the decision cues were applied 
had to be greater on error trials than on correct trials, in order to 
overcome the bias provided by the external decision cues pushing 
the network toward a correct decision. This is illustrated in Figure 5, 
which again is for a network with 4000 neurons so that the sponta-
neous firing state before the decision cues were applied was stable. 
(There were only two unstable trials out of 1000 analyzed, and these 
two were excluded.) The decision cues were turned on at t = 2 s, 
with ∆I = 8 biasing population D1 via λ

1
 to win over D2. Figure 5A 

shows that when the D1 population correctly won there was a little 
more firing (2.58 spikes/s for each neuron in the 150-ms before 
the decision cues were applied) than when in error the D1 popu-
lation lost (2.39 spikes/s, p < 0.003; a difference of 0.19 spikes/s). 
Figure 5B shows that when the D2 population on error trials due to 
the noise won there was markedly more firing (2.96 spikes/s) before 

of the 6-s simulation, and the average autocorrelation function 
computed over the 930 trials is shown in Figure 4. It is clear that 
the autocorrelation function remains positive for lags up to 700 ms, 
which indicates that fluctuations in the firing rates are positively 
correlated with the rates up to 700 ms later. This indicates that 
fluctuations in the firing rates may have effects 700 ms later, and 
the implication in the present context is that statistical fluctuations 
in the spontaneous firing rate due to the spiking-related noise may 
well be expected to have effects on decision-making taking place 
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FIguRe 4 | Autocorrelation function for the spontaneous firing rate of the 
D1 population. The function was calculated from the mean firing rates of the 
population of neurons D1 calculated and sampled every 50 ms. To obtain 4.5 s 
of data, the decision cues were omitted from these simulations. Data were 
used from 930 trials in which the spontaneous firing rate remained stable and 
below 5 spikes/s at the end of the 6-s trial (and this was all but seven of the 
trials as the network contained 4000 neurons and the spontaneous state was 
quite stable). The data were from bins each 50 ms in duration starting 1000 ms 
after the start of the 6-s simulation, and the average autocorrelation function 
computed over the 930 trials is shown. The negative values of the 
autocorrelation function at lags of greater than 700 ms just reflects the setting 
of the average value of the time series to a mean of zero, with the actual 
autocorrelation being zero at lags of greater than 700 ms.
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FIguRe 3 | (A) Prediction of a decision before the evidence is applied. In this 
integrate-and-fire simulation of decision-making, the decision cues were turned 
on at t = 2 s, with ∆I = 0 (as in Figure 2), but the network size was now 4000 
neurons, with 3200 excitatory neurons, 3200 excitatory recurrent collateral 
synaptic connections on each neuron, and 320 neurons in each of the two 
decision pools. The network remained in the state of stable firing at a 
spontaneous firing rate for 998 of the 1000 trials. The firing rate averaged over 
887 of these 998 trials for which there was a clear winner (see Materials and 
Methods) in the 100-ms pre-cue period starting 200 ms before the decision cues 
were applied was 2.78 spikes/s for the pool that would win, and 2.44 spikes/s for 
the pool that would lose (p < 10−14). The firing rate for the winning population 
asymptoted at approximately 36 spikes/s as in the 500-neuron simulation shown 
in Figure 2. (B) The percentage correct predictions from 100 ms of firing taken at 
different pre-stimulus times. The * indicates the start of the first 100 ms period in 
which within a 100-ms period a statistically significant prediction could be made 
(p < 0.03, Fisher test). This 100 ms period was 750 ms before the decision cues 
were applied. The predictions were 68% correct in the last 100 ms before the 
decision cues were applied, and 73% in the last 150 ms. The horizontal line at 
50% shows what would be expected by chance.
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FIguRe 5 | Prediction of a decision before the evidence is applied on 
correct trials and on error trials. The decision cues were turned on at t = 2 s, 
with ∆I = 8 biasing population D1 to win over D2. There were 4000 neurons in 
the simulation. (A) When the D1 population correctly won there was a little more 
firing before the decision cues were applied than when in error the D1 

population lost. (B) When the D2 population on error trials due to the noise won 
there was markedly more firing before the decision cues were applied 
(extending back as much as 1000 ms) than when on correct trials the D2 
population lost (see text). The firing rates are averaged over 898 trials, on 88% of 
which the D1 population correctly won.

the decision cues were applied (extending back as much as 700 ms) 
than when on correct trials the D2  population lost (2.49 spikes/s, 
p < 10>−11; a difference of 0.47 spikes/s). (The firing rates are aver-
aged over 794 trials on which D1 correctly won, and 104 trials on 
which D2 in error won, =88% correct with ∆I = 8.) The cause of 
the greater effect apparent in the spontaneous, predecision, period 
on error trials for the losing population than on correct trials with 
∆I > 0 is described in the Section “Discussion.”

We now suggest that a second mechanism may contribute to 
what are sometimes described as effects of ongoing neural activ-
ity that can influence decisions. Given that the spontaneous state 
of networks in the brain may sometimes be unstable, with the 
spiking-related (and possibly other) noise sometimes provoking 
transitions to a high firing rate state in the absence of stimuli, it 
could be that some instances of what appear to be effects of ongo-
ing neural activity on decisions are in fact just premature decisions 
being made before the decision cues are applied. The decision in 
this second case would reflect a transition across a bifurcation in 
the state space toward a high firing rate decision attractor state 
during the spontaneous period before the decision cues are applied. 
To investigate this, we repeated the simulation shown in Figure 2, 
but did not exclude the 290/1000 trials in which the spontaneous 
state was unstable. The results are shown in Figure 6A, in which, 
due to the transitions to high activity that occur at random times 
in the spontaneous period, the mean spontaneous rate across tri-
als increases throughout the spontaneous period for the pool that 
wins. In a sense, on these unstable trials, the winning pool has taken 
a premature decision before the decision cues are applied. This is 
reflected in the ability to predict the decision far back in time from 
when the decision cues are applied, as shown in Figure 6B.

discussion
What is the mechanism for the prediction of decisions from the 
spontaneous neural activity before the decision cues are applied, 
which in our simulations reached 68% correct? We suggest that 

0 1 2 3 4
0

10

20

30

40

time (s)

F
iri

ng
 r

at
e

Firing rates on winning vs losing trials

 

 

Winner
Loser

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

time (s)

P
er

ce
nt

 c
or

re
ct

Prediction of the decision from the spontaneous firing rate

A

B

FIguRe 6 | Decision-making in the small network of 500 neurons 
illustrated in Figure 2 but now with the 290/1000 unstable spontaneous 
trials included in the analysis (see text). (A) The firing rates averaged over the 
winning and losing trials. (B) The predictions of the decisions made at different 
times in the spontaneous period of 0–2 s. The decision cues were applied at 
t = 2 s. This shows how premature decisions can influence predictions made 
from activity in the period before the decision cues are applied.
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an important advance because it is difficult to make conclusions 
about whether neural activity precedes decisions in studies in which 
there is no precise knowledge of the time at which the decision is 
taken, or in which the time resolution is poor (Haynes et al., 2007; 
Soon et al., 2008). However, we note that when multiple attractor 
networks perhaps in different brain areas interact, the time scale 
of the fluctuations could be longer, and so correspondingly could 
the time period over which predictions of a decision could be made 
from the statistical fluctuation in the preceding period. This is an 
interesting topic for future research.

The time scale over which a decision can be predicted is of 
the order of 700 ms in the simulations described here. This is a 
surprisingly long time, given that the neuronal and synaptic time 
constants of the network are in the order of tens of millisecond 
or less (with the NMDA receptor time constant somewhat longer 
at 100 ms). We suggest that the time constant of the system is 
effectively longer than this, because of the positive feedback in the 
recurrent collateral excitatory connections, which may encourage 
statistical fluctuations in the spontaneous activity to feed back and 
build up over longer time periods, and evidence for this is pro-
vided in Figure 4 which shows the autocorrelation function for the 
spontaneous activity of one of the decision pools does not cross 
0 until a time lag of 700 ms. The underlying mechanisms for the 
effects over quite long periods include the properties of the noise 
(Marti et al., 2008), effects introduced by the positive feedback 
in the recurrent collateral synaptic connections (Mattia and Del 
Giudice, 2004), and effects that can be introduced if some of the 
inhibitory neurons in the network have time constants of longer 
than 10 ms (Smerieri et al., 2010).

The instability of the spontaneous state provides a second mech-
anism through which it may seem that decisions can be predicted 
even before the evidence is provided. This mechanism could con-
tribute to the apparent ability to predict decisions from the fMRI 
BOLD signal before the decision is apparently made, or reported. 
The same mechanism may also contribute to many real-life situ-
ations in which for example a runner starts a race before the gun 
sounds. The process is illustrated in Figure 6, and is a result of the 
spiking-related noise. Instability of the spontaneous state has been 
noted also by others (Salinas, 2003). It could thus be that some 
instances of what appear to be effects of ongoing activity on deci-
sions are in fact just premature decisions being made before the 
decision cues are applied. The decision in this second case would 
reflect a transition across a bifurcation in the state space toward a 
high firing rate decision attractor state, and would be clearly differ-
ent from the influence of noise in the pre-cue period that does not 
actually provoke a transition to a high firing rate attractor decision 
state, but influences the decision taken after the decision cues are 
applied. This latter is the first mechanism described in this paper.

A strength of the current approach is that the model  incorporates 
effects from many levels, including the synaptic and biophysical 
levels, and the abstract level of statistical fluctuations in dynamical 
systems, and is able to make predictions all the way from synap-
tic currents, to neuronal activity, to fMRI signals, and to behav-
ioral choice and subjective confidence, and offers a quantitative 
approach to our  understanding at all these levels (Rolls, 2008; Rolls 
and Deco, 2010). It is in this sense a mechanistic approach, which 
takes into account details of the underlying biophysical and network 

the mechanism is as follows. There will be noise, i.e., statistical 
fluctuation, in the approximately Poisson neuronal firing that will 
lead to low, but different, firing rates at different times in the period 
before the decision cues are applied of the two selective popula-
tions of neurons that represent the different decisions. If the firing 
rate of say population D1 (representing decision 1) is higher than 
that of the D2 population at a time just as the decision cues are 
being applied, this firing will add to the effect of the decision cues, 
and make it more likely that the D1 population will win. These 
statistical fluctuations in the spontaneous firing rate will have a 
characteristic time course that will be influenced by the time con-
stants of the synapses etc., in the system, so that if a population has 
somewhat higher firing at say 500 ms before the cues are applied, it 
will be a little more likely to also have higher firing some time later. 
By looking backward in time one can see how long the effects of 
such statistical fluctuations can influence the decision that will be 
reached, and this is shown in Figure 2 to be approximately 300 ms in 
the small network we studied with 500 neurons, and approximately 
750 ms in the larger network we studied with 4000 neurons. We 
emphasize that this gradual increase of firing rate for the attractor 
that will win before the decision cues are applied is an effect found 
by averaging over very many trials, and that the fluctuations found 
on an individual trial (illustrated in Figures 2D,E) do not reveal 
obvious changes of the type illustrated in Figure 2A.

What could be the cause of the larger difference in the firing rate 
on error than on correct trials with ∆I > 0 illustrated in Figure 5? It is 
suggested that the reason is that on the small proportion of trials on 
which there are errors, the noise on error trials to force the incorrect, 
D2, attractor into winning (Figure 5B) will need to be especially 
large to overcome the bias in the network against D2 winning. Thus 
a neurophysiological prediction is that on error trials for the incor-
rectly winning attractor (D2) neurons, there will on average be a 
larger noise contribution to the decision than on the many correct 
trials for the correct, D1, neurons. In the latter case, small amounts 
of noise in either direction will not force the D1 attractor away from 
the correct decision, and will average out to small mean effects when 
many trials are averaged together (Figure 5A).

Thus we have a rigorous and definite answer and understanding 
of one way in which decisions that will be taken later are influenced 
by and can be probabilistically predicted from the prior state of 
the network. It is possible to make a probabilistic prediction of 
which decision will be taken from the prior activity of the system, 
before the decision cues are applied. This conclusion emerges from 
a fundamental understanding of how noise in the brain produces 
statistical fluctuations that can influence neural processes (Rolls 
and Deco, 2010). The noise in the simulations arises from the ran-
domness in the firing times of the neurons (for a given mean firing 
rate), which approximate a Poisson process (Rolls and Deco, 2010).

It would be difficult to obtain evidence for this from fMRI 
 studies, because of the long time course of the hemodynamic 
response. But we make the prediction that if neuronal activity is 
recorded in a  decision-making task from the neurons involved in 
the choice process, there will be neuronal firing rate changes that 
influence the decision and that can be measured before the decision 
cues are applied. Part of the value of the present approach is that we 
have a well-defined system, and know when the decision cues are 
applied, and when the decision is taken. The present finding makes 
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neurons, synapses, and cortical architecture, and captures some of 
the brain processes involved in decision-making in a biologically 
plausible way. In particular, our aim has been to show that with 
the natural source of internal noise in the brain, the approximately 
Poisson spike timing of the neurons, and the way in which decisions 
are taken in biologically realistically large attractor networks with 
several thousand neurons and with IF neurons with biologically 
realistic parameters for the synaptic and neuronal time constants, 
decisions can be predicted well above chance (68% correct) on a 
single trial in advance of the evidence being provided to the neuro-
nal network. (It is important to model a system with large numbers 
of neurons because the noise arises from statistical fluctuations 
due to the spike timing in a system of finite size; Wang, 2002; Deco 
and Rolls, 2006; Rolls and Deco, 2010, and therefore systems with 
biologically realistic numbers of synapses onto each neuron and 
numbers of neurons in the system were modeled here).

These findings raise interesting issues about free will, a topic of 
interest in modern neuroscience (Koch, 2009), and the influence 
of spike timing-related noise on decision-making (Rolls, 2010b; 
Rolls and Deco, 2010). First, we can note that in so far as the brain 
operates with some degree of randomness due to the statistical fluc-
tuations produced by the random spiking times of neurons, brain 
function is to some extent non-deterministic, as defined in terms 
of these statistical fluctuations. That is, the behavior of the system, 
and of the individual, can vary from trial to trial based on these 
statistical fluctuations (Rolls and Deco, 2010). Indeed, given that 
each neuron has this randomness; that there are sufficiently small 
numbers of synapses on the neurons in each network (between 
a few thousand and 20,000) that these statistical fluctuations are 
not smoothed out; that there are a number of different networks 
involved in typical thoughts and actions each one of which may 
behave probabilistically; and with 1011 neurons in the brain each 
within the order of 104 synapses, the system has so many degrees of 
freedom that it operates effectively as a non-deterministic system. 
(Philosophers may wish to argue about different senses of the term 
deterministic, but it is being used here in a precise and quantitative 
way, which has been defined within the framework of stochastic 
neurodynamics; Rolls and Deco, 2010.) These effects of internal 
noise are especially evident when the evidence for a particular deci-
sion is weak, that is when ∆I is close to zero, and as ∆I increases, 
the choice increases toward 100% for one of the stimuli, and the 
choice variability and the influence of the noise decreases (Rolls 
and Deco, 2010). Second, the findings described here indicate that 
internal noise in the brain, due for example to random neuronal 
firing times for a given mean firing rate, can place the system into 
a state that influences the decision that will be taken before the 
evidence is even made available, and this may appear surprising 
in relation to feelings we have about free will and how we take 
decisions (Rolls, 2010b).
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 mechanisms in the brain, and then can account for behavioral, as 
well as neurophysiological and fMRI data. Moreover, the approach 
generalizes to other processes implemented by attractor networks 
in the brain including memory recall (Rolls, 2008; Rolls and Deco, 
2010). Indeed, the model described here is different in a number 
of ways (Wang, 2002; Deco et al., 2009; Rolls and Deco, 2010) 
from accumulator, counter, or race models of decision-making 
in which the evidence for different choices accumulates, which 
may include a noise term, and which undergo a random walk in 
real time, which is a diffusion process (Vickers, 1979; Vickers and 
Packer, 1982; Ratcliff et al., 1999; Smith and Ratcliff, 2004). First, 
in most accumulator models, a mechanism for computing the dif-
ference between the stimuli is not described, whereas in the current 
attractor model this is achieved by the feedback inhibition. (Some 
more recent accumulator models do suggest a process for calculat-
ing the difference; Usher and McClelland, 2001; Ditterich, 2006.) 
Second, in the attractor network model the decision corresponds 
to high firing rates in one of the attractors, and there is no arbi-
trary threshold that must be reached, or arbitrary stopping time. 
In the network there are of course neuronal thresholds, but these 
are biologically realistic with the operating points of the network 
(in particular w+ and w

Inh
) selected using the mean-field analysis to 

produce when the decision cues are applied a stable low firing rate 
state of 3 spikes/s, and a high firing rate attractor state for one of 
the attractors with a rate of approximately 40 spikes/s. Third, the 
noise in the attractor model is not arbitrary, but is accounted for 
by finite size noise effects of the spiking dynamics of the individual 
neurons with their Poisson-like spike trains in a system of limited 
size (Deco et al., 2009; Rolls and Deco, 2010). (Simulated Poisson 
noise has been used in some more recent accumulator models; 
Mazurek et al., 2003; Beck et al., 2008; Zhang and Bogacz, 2010.) 
Fourth, the attractor model we describe is biologically plausible 
as a mechanism used in the brain consistent with neuronal fir-
ing during decision-making (Deco et al., 2009; Rolls and Deco, 
2010), and therefore makes testable predictions about the firing 
rates of neurons, the synaptic currents, and the fMRI BOLD signals 
as described elsewhere (Rolls and Deco, 2010). (The predictions 
of the BOLD signals are made by convolving the firing rates or the 
synaptic currents in the simulated network with the hemodynamic 
response function; Rolls et al., 2010a,b.) In contrast, accumulator 
and related models are not neurobiological models, though they 
have been used to make neurobiological predictions (Hanks et al., 
2006; Yang and Shadlen, 2007; Kiani et al., 2008); and of course the 
starting point from which the accumulation starts (which might be 
thought of as an initial noise state) can in this system influence the 
decision (Laming, 1968; Ratcliff and Rouder, 1998). In fact, if one 
assumed that the accumulation process generated some biological 
signal, one might postulate that there would be less such signal in 
accumulator models on easy trials, as the process would stop sooner 
on easier trials. On the other hand, the attractor model predicts 
larger BOLD signals on easy vs difficult trials (Rolls et al., 2010a), 
and on correct than error trials (Rolls et al., 2010b). Moreover, as 
the process is implemented in an attractor network which also 
implements short-term memory, the attractor network mechanism 
also allows the decision choice to be maintained until it is needed, 
which may be after a delay (Rolls and Deco, 2010). In these senses, 
the model described in this paper incorporates realistically modeled 
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appendix
the network Model
We used the mathematical formulation of integrate-and-fire (IF) 
neurons and synaptic currents described by Brunel and Wang 
(2001). Here we provide a brief summary of this framework, which 
we have extended to multiple interacting networks. The dynamics 
of the sub-threshold membrane potential V of a neuron are given 
by the equation:

C
dV t

dt
g V t V I tm m L

( )
( ( ) ) ( )= − − − syn

where C
m
 is the membrane capacitance taken to be 0.5 nF for exci-

tatory neurons and 0.2 nF for inhibitory neurons; g
m
 is the mem-

brane leak conductance taken to be 25 nS for excitatory neurons 
and 20 nS for inhibitory neurons; V

L
 is the resting potential of 

−70 mV and I
syn

 is the synaptic current. The firing threshold is 
taken to be V

thr
 = −50 mV and the reset potential V

reset
 = −55 mV. 

(see McCormick et al., 1985).
The synaptic current is given by a sum of glutamatergic, AMPA 

(I
AMPA,rec

), and NMDA (I
NMDA,rec

) mediated, recurrent excitatory cur-
rents, one AMPA (I

AMPA,ext
) mediated external excitatory current and 

one inhibitory GABAergic current (I
GABA

):

I t I t I t I t I tsyn AMPA,ext AMPA,rec NMDA.rec GABA( ) ( ) ( ) ( ) ( ).= + + +

The synaptic currents are defined by:

I t g V t V s t

I
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where V
E
 = 0 mV, V

I
 = −70 mV, w

j
 are the synaptic weights, each 

receptor has its own fraction s
j
 of open channels, and its own syn-

aptic conductance g. The NMDA synaptic current is dependent 
on the potential and controlled by the extracellular concentra-
tion of magnesium [(Mg++) = 1 mM] (Jahr and Stevens 1990). 
The values for the synaptic conductances for excitatory neurons 
are g

AMPA,ext
 = 2.08 nS, g

AMPA,rec
 = 0.208 nS, g

NMDA
 = 0.654 nS, and 

g
GABA

 = 2.5 nS; and for inhibitory neurons g
AMPA,ext

 = 1.62 nS, 
g

AMPA,rec
 = 0.162 nS, g

NMDA
 = 0.516 nS, and g

GABA
 = 1.946 nS. These 

values are obtained from the ones used in Brunel and Wang (2001) 
by multiplication by a factor which corrects for the difference in 
number of neurons used in our and Brunel and Wang’s model. In 
their work the conductances were calculated so that in an unstruc-
tured network the excitatory neurons have a spontaneous spiking 
rate of 3 Hz and the inhibitory neuron0073 a spontaneous rate 
of 9 Hz.

The fractions of open channels are described by:
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where the rise time constant for NMDA synapses is τ
NMDA,rise

 = 2 ms 
(Hestrin et al., 1990; Spruston et al., 1995), the rise time con-
stants for AMPA and GABA are neglected because they are smaller 
than 1 ms, and α = 0.5 ms−1. All synapses have a delay of 0.5 ms. 
The decay time constant for the AMPA synapses is τ

AMPA
 = 2 ms 

(Hestrin et al., 1990; Spruston et al., 1995), for NMDA synapses 
is τ

NMDA,decay
 = 100 ms (Hestrin et al., 1990; Spruston et al., 1995), 

and for GABA synapses τ
GABA

 = 10 ms (Salin and Prince 1996; 
Xiang et al., 1998). The sums over k represent a sum over spikes 
formulated as δ-Peaks [δ(t)] emitted by presynaptic neuron j at 
time t j

k .
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