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the motor-plan in the periphery potentially strengthening sen-
sorimotor connections throughout the central and peripheral 
pathways.

Activity-dependent motor relearning is thought to occur through 
Hebbian mechanisms, which are strongly affected by the intensity 
and relative timing of activity in the pre- and post-synaptic neurons. 
Studies have shown that two key aspects of timing effect synaptic 
plasticity. First, “causal” timing (where the pre-synaptic neuron 
fires before the post-synaptic neuron) results in an increase in the 
strength of a synapse whereas “anti-causal” timing (post-fires before 
pre) reduces the strength of the synapse (Kandel, 2000; Bi and 
Poo, 2001). Triggering a movement-assist device with attempted-
movements extracted from electroencephalograms (EEGs) would 
re-establish a causal link between cortical and peripheral neural 
activation.

Second, in Hebbian plasticity, the increase or decrease in syn-
aptic strength is highly dependent on how closely in time the 
pre- and post-synaptic neurons fire. The closer in time the two 
neurons fire, the greater the effect this firing has on changing 
the strength of the synapse (Kandel, 2000; Bi and Poo, 2001). 
However, there are often delays when using an assistive device 
to generate movement. Extra processing time is needed for the 

Introduction
Each year, approximately 800,000 Americans experience a new 
or recurrent stroke. The middle cerebral artery stroke is the most 
common non-hemorrhagic stroke, which preferentially affects 
the upper limb (Dobkin, 2004). In spite of available rehabilitation 
therapies, many individuals are left with chronic hand paralysis 
even after the rest of the limb has regained significant function.

Neuromuscular stimulation systems and motorized exoskel-
etons are being developed that could restore function to individu-
als with chronic hand paralysis. However, these movement-assist 
devices need some command signal that tells the device what hand 
action the person is trying to make. If attempted hand movements 
could be detected directly from the brain, then a device could be 
designed to open/close the paralyzed hand based on the cortical 
signals produced naturally when the person attempts to move.

Using brain activity to trigger a movement-assist device may 
have some additional therapeutic benefits beyond simply restor-
ing function. Repetitive, voluntary movements are thought to 
promote motor recovery through use-dependent plasticity. Using 
brain activity to control a movement-assist device would provide 
practice in generating motor-plans in the cortex. It also would 
re-link motor-planning activity in the cortex with execution of 
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device to interpret what the person wants to do and then imple-
ment the functions that will eventually generate the desired move-
ment. Minimizing delays between motor-planning in the cortex 
and execution of that plan by a movement-assist device may be 
important for strengthening the relevant neural connections. In 
able-bodied individuals, characteristic changes in brain activity 
are seen prior to movement-onset throughout the parietal, sup-
plementary motor, premotor, and primary motor cortices as the 
motor-plan is formed and then implemented (Pfurtscheller et al., 
1997; Pfurtscheller and Silva, 1999). If the intended movement 
can be detected from these early phases of motor-plan formation, 
delays in activating an assistive device will be minimized thus 
potentially increasing therapeutic benefit.

This study evaluates the feasibility of using scalp EEGs to detect 
attempts to open the hand in people with complete chronic hand 
paralysis following stroke. While studies have already shown hand 
movement information can be gleaned from EEGs in individuals with 
partial hand paralysis (our own study; manuscript under review) or 
from the magnetoencephalograms (MEGs; Buch et al., 2008) and 
EEGs (Daly et al., 2009) of individuals with complete finger-extensor 
paralysis following stroke, this study specifically examines the feasibil-
ity of detecting attempted-finger-extension from the motor-planning 
phase prior to when movement would have normally started. For indi-
viduals with complete hand paralysis, being able to detect attempted-
movement at any time point could be useful since other options for 
triggering a movement-assist device are limited. However, we chose 
to optimize our decoding methods in this study for early detection 
because of the potential therapeutic importance of minimizing the 
delay between motor-plan formation in the cortex and execution of 
that plan in the periphery by a movement-assist device.

Materials and Methods
Experimental Design
Four individuals were enrolled in this study after having a sub-
cortical ischemic stroke one or more years prior. All partici-
pants had chronic paralysis in one hand leaving them unable 
to generate any voluntary finger-extension. Table  1 indicates 
the time since the stroke, the hemisphere in which the stroke 
occurred, the number of testing sessions in which the person 
participated, and the scores of the wrist and finger portion of 
the Fugl-Meyer Motor Assessment, which assesses isolated and 
synergistic voluntary motor function (Gladstone et al., 2002). 
All participants were right-hand dominant prior to their stroke. 
Participants came in approximately once a week for up to 

4 weeks to repeat the testing sessions. The study protocol was 
approved by MetroHealth Medical Center’s Institutional Review 
Board. Informed consent was obtained from all participants 
prior to the study.

Participants were seated in front of a computer screen with both 
forearms resting comfortably on a padded table. Visual cues to open 
or relax either the affected or unaffected hand were presented on 
the computer screen. Participants were instructed to attempt to 
extend the fingers of the affected hand throughout the hand-open 
cues even though they were unable to generate any physical motion. 
Each trial consisted of relaxing both hands for 5 s followed by a 
cue to continuously hold either their right or left hand-open for 
5 s. Cues to open/relax the affected or the unaffected hand were 
presented in random order in blocks of up to 20 movement trials 
followed by a break.

The analysis reported here focused only on detecting the 
transition from the relaxed to the attempted-movement state. 
Complementary analysis is also needed for detecting the transition 
back from the attempted-movement to the relaxed state. However, 
those data are not reported here due to space limitations and due 
to complications in the data resulting from some participants fre-
quently relaxing before they received the relax cue.

Data collection for this study was combined with data collection 
for a separate study evaluating the effect of different types of visual 
cues in stroke therapy. Therefore, the visual cue to extend or relax 
the fingers took two different forms – a simple static cue or one that 
required visual tracking (visual cue study is still ongoing; results 
are not reported here). Data from each type of cue was analyzed 
separately to ensure that potential differences in reaction times 
between cue types did not confound classifier results. Therefore, 
each testing session contributed two sets of outcome measures to 
the summary results reported below.

Data collection
Thirty-two gold cup EEG electrodes spanning the sensorimotor 
areas were attached to the scalp with conductive paste (locations 
approximately corresponding to a rectangular grid spanning F3 
through CP4 in the 10-5 system; Oostenveld and Praamstra, 2001). 
EEGs were recorded with a Pentusa RX5 system (Tucker Davis 
Technologies, FL, USA). These data were collected at 610 Hz and 
band-pass filtered to 2–150 Hz with an additional notch filter at 
60 Hz. Data were down sampled to 305 Hz for further process-
ing. Power was calculated via fast Fourier transforms (FFT) every 
100 ms using overlapping windows of data (window length was 
varied as part of the optimization process described below). Bend 
sensors on the index finger and/or electromyographic (EMG) sen-
sors over extensor muscles on the unaffected limb where also col-
lected and used to determine a “normal” time-to-movement-onset 
for each person.

Data analysis
Classifiers for early detection of attempted-finger-extension were 
developed in two phases. The goal of the first phase was to identify 
combinations of specific EEG features that modulate the most with 
finger-extension. The goal of the second phase was to maximize 
early detection of movement-onset during motor-planning using 

Table 1 | Study participant demographics.

Fugl-Meyer 

score

Subject 

no.

Time post-stroke Hemisphere Wrist Hand No. of 

sessions

1 2 years, 9 months Right 4 4 4

2 7 years, 2 months Right 0 1 2

3 1 year, 11 months Left 1 2 4

4 1 year, 9 months Right 1 1 4
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Figure 1 | Spectrogram from one channel of EEG showing epochs used in 
the different stages of analysis (red = higher power; blue = lower power). 
Triangles indicate initial presentation of the hand-open cue and an estimated 
movement-onset time (median time-to-movement-onset in the unaffected 
hand). The two gray boxes spanning the spectrogram indicate the two 1-s time 
segments used in Phase-I of the analysis [i.e., the relaxed (0) and 

attempted‑finger-extension (1) epochs]. Analysis in Phase-II emphasized early 
detection of attempted-finger-extension during the “movement-preparation” 
epoch. The lower part of the figure shows how the assigned rest/attempted-
finger-extension transition point (0-to-1) was systematically shifted across the 
movement-preparation epoch in Phase-II as part of the classifier 
optimization process.

Phase-II analysis: optimizing early detection
In phase-II, three key signal processing parameters were optimized 
using the best combinations of features identified in Phase-I. These 
key parameters were:

(1)	 the window size used to calculate the FFT: 100, 300, 500, 700, 
and 900 ms tested1,

(2)	 the number of previously calculated power samples (updated 
every 100 ms) used to predict present hand state: 0 (current power 
calculations only), 2, 4, or 6 preceding power samples included,

(3)	 the presumed transition point between the relaxed (0) and 
attempted-finger-extension state (1) used for training the 
classifier (see bottom of Figure 1 showing state labels transi-
tioning from 0 to 1 at all possible time points in the motor-
planning epoch).

 Although data used to train the classifiers extended into the 
attempted-finger-extension epoch, classifiers were optimized, and 
assessed based on how well they detected attempted-movement 

the best set of EEG features identified in phase one. These two phases 
used two distinct epochs of data as described below and illustrated 
in Figure 1.

Phase-I analysis: EEG feature identification
Phase-I analysis used data that were in either the relaxed epoch or 
the assumed attempted-finger-extension epoch to first identify which 
EEG features were significantly modulated (see Figure 1). EEG fea-
tures were first evaluated individually using linear regression in a 
10 × 10-fold cross-validation process. Features were identified that 
had significant modulation with the finger-extension vs. rest epochs 
at the 95% confidence level. EEG features tested included power bands 
in the 2-to-29-Hz range calculated from common-average referenced 
EEGs as well as from other linear combinations of the EEG channels 
determined by common spatial pattern analysis (Wang et al., 2004). 
To ensure EEG modulation was not due to inadvertent scalp EMGs, 
we verified that all EEG power data used for movement prediction 
had the expected decrease in power with attempted-finger-extension 
and increase in power with relaxation (and not the other way around).

After this initial screening, backward feature elimination (Guyon 
et al., 2002; Schroder et al., 2005) with linear regression and five-
fold cross-validation was used to identify a subset of significant 
features that together convey the most robust information about 
the relaxed vs. attempted-finger-extension epochs.

1Fast Fourier transforms (FFTs) were still calculated every 100 ms using overlap-
ping windows of data to maintain a consistent time resolution for decoding. FFTs 
of different window lengths were zero-padded as needed to ensure that the useful 
frequency bands identified in phase-I were the same as those estimated in phase-II.
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state. To evaluate this option, a second analysis was performed 
where the previously optimized classifier output was reanalyzed 
requiring between two and five consecutive-time samples to be 
classified as finger-extension in order to trigger a hypothetical 
movement-assist device.

While the performance measures in the previous analysis 
consisted of true- or false-positive “rates” (i.e., the percentage of 
time samples during movement planning vs. rest classified as a 
finger-extension state), a rate or “per-time-sample” performance 
measure is no longer appropriate when multiple consecutive finger-
extension classifications are required to activate a single trigger. 
Therefore, the device-trigger-event resulting from multiple con-
secutive-classifications was considered an all-or-nothing event that 
either happened or did not happen during a given epoch within 
each trial. Only one trigger per epoch per trial was needed to deem 
that epoch as having a false trigger (rest epoch) or a true trigger 
(motor-planning epoch) in that trial.

The performance measures for this test were the fraction of 
trials with a true trigger in the motor-planning epoch compared 
with the fraction of trials with a false trigger in the rest epoch. For 
fair comparison of whether or not an all-or-nothing trigger event 
occurred in either phase of each trial, the length of the time window 
during rest over which a false trigger could occur was matched to the 
length of the time window in the motor-planning epoch in which a 
true trigger could occur. If the number of consecutive-classification 
events required to activate a hypothetical device exceeded the dura-
tion of the motor-planning phase in a given session, no true or false 
triggers were assigned.

Results
The specific frequency bands that were modulated with attempted-
movements spanned the typical alpha and beta ranges in each 
person. However, unlike typical able-bodied EEG patterns, useful 
EEG features came from electrode locations on both hemispheres 
in approximately equal proportions. In almost 70% of the cases, 
optimization of the FFT window length resulted in 900 ms FFT 
calculation windows being used for classification. These longer 
overlapping FFT windows had the effect of both smoothing the 
power features over time and maintaining a high resolution in the 
frequency domain.

Figure 2A shows the adjusted true-positive rate (true-positive 
rate minus false-positive rate) at the default threshold and when 
the threshold was adjusted to achieve the different predefined false-
positive rates. By design, the default threshold setting determined 
by linear-discriminant analysis maximizes the difference between 
the two classification states. However, the default threshold gen-
erally resulted in relatively high false-positive rates (22  ±  9%). 
Adjusting the classification thresholds to achieve a lower false-
positive rate typically reduced the difference between the true- and 
false-positive rates. While each participant had a significant differ-
ence between their true- and the false-positive rate each day when 
the default threshold was used (P-values ranged from 8 × 10−6 to 
4  ×  10−13), shifting the classifier threshold to achieve the lower 
false-positive rates in some cases reduced the difference between 
the true- and false-positive rates to a non-significant level. Note 
in Figure 2, false-positive rates have already been subtracted out 
making the chance level zero in all cases. The increase in adjusted 

strictly during the motor-planning epoch. The motor-planning 
epoch spanned the first time sample after initial cue presentation 
(to allow 100 ms for some minimum visual processing time) to the 
time sample before the typical movement-onset time estimated 
from the unaffected hand.

Performance Assessment
Performance was assessed in a pseudo-real-time manner for each trial 
during a leave-one-trial-out cross-validation process. Performance 
was measured in terms of the false-positive rates (calculated as per-
centage of rest samples classified as finger-extensions) and true-pos-
itive rates (calculated as the percentage of motor-planning samples 
classified as finger-extensions). A one-sided Wilcoxon signed rank 
sum test was performed using true- and false-positive rates calcu-
lated from each trial to determine if the true-positive rates were 
significantly higher than the false-positive rates.

Controlling false-positive rates
Standard linear-discriminant analysis sets the threshold for clas-
sification in a way that maximizes the number of correctly classi-
fied time points. However, the default “optimal” classifier threshold 
may result in a higher false-positive rate than is appropriate for 
some device applications. Therefore, the classifier thresholds were 
adjusted for each session to produce controlled false-positive rates 
of 1, 5, 10, or 20% false-positive samples during the rest epochs 
prior to cue presentation. The corresponding true-positive rates 
were calculated at each new classification threshold.

Extending the analysis time window
In our previous study with stroke survivors who had some limited 
remaining hand function, movements were measured in both the 
affected and unaffected hand. The median time-to-movement-onset 
was up to 450 ms longer for the affected hand than the unaffected 
hand (manuscript under review). With the more severely paralyzed 
individuals in this study, the time needed to form and initiate a 
motor-plan will also likely take longer when attempting to move 
the paralyzed hand vs. when moving the unaffected hand. Since it 
is likely that the actual movement planning epoch took longer than 
the duration calculated from the unaffected hand, the above classi-
fier optimization, and performance assessments were repeated with 
the estimated movement-onset time extended by an additional 0, 
200, 400, and 600 ms. By expanding the assumed motor-planning 
epochs by 200, 400, or 600 ms, it is probable that some performance 
assessments included data samples from what would have been after 
the start of motor-execution had the person still been able to move. 
However, a clearly defined boundary between the motor-planning 
and the motor-execution phase of an attempted-movement cannot 
be accurately identified in this population because the movements 
cannot actually be measured. Therefore, the analysis done with no 
extension to the pre-movement analysis window serves as a con-
trol showing prediction accuracy prior to movement-onset without 
assumptions of longer motor-planning times for the affected hand.

Improving accuracy with consecutive-event triggers
One potential way to reduce unintended activation of a movement-
assist device is to only trigger a device after a fixed number of con-
secutive data samples are classified as being in the finger-extension 
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EEGs could potentially be used to trigger a movement-assist device 
to restore functional use of the hand. More importantly, attempts 
to open the hand could be detected during the motor-planning 
phase of movement before a movement would have typically started. 
This early detection could be used to rapidly trigger a movement-
assist device, potentially restoring close-to-normal timing between 
motor-plan formation in the cortex and initiation of that plan in the 
periphery. Restoring tight causal timing throughout the central and 
peripheral sensorimotor pathways may promote Hebbian plasticity 
and help rebuild more-normal sensorimotor patterns.

At the default classifier threshold, significant prediction of 
attempted-finger-extension was seen prior to the assumed move-
ment-onset time, which was initially estimated using the median 
movement-onset time of the unaffected hand. As expected, the 
likelihood of triggering a movement-assist device increased as 
the assumed movement-onset time was extended by 200, 400, 
or 600 ms to account for likely longer motor-planning times in 
the stroke-damaged cortex. In people with no ability to gener-
ate physical hand movement, the exact transition point between 
motor-planning and the start of what normally would be motor-
execution is unclear. Therefore, it is unknown how much of 
that performance increase is due to the inclusion of additional 
motor-planning activity and how much is due to the inclusion of 
activity associated with attempted motor-execution. Regardless, 
these results suggest that, in trials where movement failed to be 
detected during early motor-planning, the device still has a good 
chance of be triggered during delayed motor-planning or initial 
attempted execution. Activating a movement-assist device with 
a 200-to-600-ms delay could still provide functional benefit in 
this population. However, the therapeutic benefits of the delayed 
movement attempts may not be as strong as those attempts that 
result in more rapid device activation.

The default classifier threshold from linear-discriminant analy-
sis is designed to maximize classification accuracy and, therefore, 
resulted in the biggest differences between true- and false-positive 
classification rates. However, the default threshold also resulted in a 
fairly high false-positive rate. False-positives could be problematic 
in systems designed to fully open the hand as soon as the classifier 

true-positive rates at higher false-positive thresholds indicating 
that allowing some false-positives can pay off by disproportion-
ately increasing the adjusted true-positive rate.

More accurate classification could be achieved by expanding 
the duration of the estimated motor-planning window when both 
training and evaluating the classifiers. In Figure 2B the presumed 
time-to-movement-onset was extended by 0, 200, 400, or 600 ms 
depending on which resulted in the best adjusted true-positive 
rate for each individual session. Figure  3 shows how extending 
the presumed duration of the motor-planning phase on average 
increased the difference between the true- and false-positive rates 
even though a handful of individual sessions were optimized at 
time extensions less than 600 ms.

Figure 4 shows the effects of applying an additional requirement 
of detecting multiple consecutive finger-extension classification 
events before triggering a hypothetical movement-assist device. 
The X coordinate indicates the fraction of trials that had a false 
trigger during the relaxed epoch. The Y coordinate indicates the 
fraction of trials that had a true trigger during the motor-planning 
epoch. Color indicates the number of consecutive-events needed to 
trigger a device (2 = blue, 3 = green, 4 = red, and 5 = pink). Each 
data point within each color represents performance in a different 
session. Perfect performance would be in the upper left corner of 
each plot. Nearly all sessions and testing conditions had more trials 
with true triggers than false triggers.

The solid diagonal line in each plot in Figure  4 shows the 
original ratio of the mean true- vs. false-positive rates for each 
condition when consecutive triggers were not required (ratio cal-
culated from same rate data used to make Figure 2; ratio scaled 
to match the different values along the axes). Dots above and to 
the left of the solid line indicate that requiring consecutive trig-
gers resulted in an improvement in the overall ratio of true- vs. 
false-positive events.

Discussion
This study showed that attempted-finger-extension could be 
extracted from the EEGs of individuals with complete hand paralysis 
one or more years after a subcortical ischemic stroke. These decoded 

Figure 2 | Adjusted true-positive rate as a function of false-positive rate. 
Adjusted true-positive rate was calculated as the true-positive rates 
during the motor-planning epoch minus the false-positive rate during the 
relaxed epoch. Boxes indicate 25, 50, and 75% quartiles respectively. 

(A) Duration of the motor-planning epoch was estimated using the median 
time‑to‑movement‑onset of the unaffected hand. (B) Estimate of the duration 
of the motor-planning epoch was expanded by 200, 400, or 600 ms (results for 
optimal expansion plotted).
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decrease the stimulation current. In this scenario, using classifier 
thresholds with the highest overall accuracy would produce the 
most appropriate hand responses. Misclassifications in any indi-
vidual time sample would only have a small incremental effect and 
would be quickly overwritten by the larger number of correctly 
classified time samples.

False detections of attempted-finger-extension during rest 
would be more problematic for devices designed to completely 
open the hand in an all-or-nothing manner as soon as a single 
time sample is classified as a finger-extension event. With these 
devices, inappropriate hand opening could be avoided by shifting 
the threshold to reduce false triggers as well as by requiring mul-
tiple consecutive-time samples to be classified as finger-extension 
events. Figure 4 shows many combinations of threshold settings 
and consecutive-classification requirements where there were no 
false triggers during rest in any trial but a potentially useful number 
of attempted-movements that were successfully triggered (i.e., dots 
located along the Y axes in Figure 4). For example, in the no-time-
extension condition (upper row in Figure 4), setting the threshold 
for a 1 or 5% false-positive rate and requiring two or three consecu-
tive triggers resulted in many sessions where there were no trials 
with false triggers and up to half of the trials had true triggers (see 
green and blue dots along the Y axis).

The number of successful movement attempts substantially 
increased when the time window allowed for classification was 
expanded by up to 600 ms (bottom row of Figure 4). For example, 
setting a threshold to reduce the false-classification rate to 1%, 
and requiring between three and five consecutive triggers resulted 
in no false triggers and a large range of correctly triggered trials 
including some sessions with up to 100% correct triggers (see green, 
red, and pink dots along the Y axis in bottom left plot in Figure 4). 

detects attempted-finger-extension. This problem could be resolved 
by shifting the threshold to reduce unintentional device activation, 
but doing so also reduced the difference between the true- and 
false-positive rates.

For some “graded” device applications, preventing false-
positives may not be as important as maximizing classification 
accuracy. For example, a neuromuscular stimulation system could 
be set up so that each time sample classified as finger-extension 
would incrementally increase the current to the extensor mus-
cles, and each time sample classified as rest would incrementally 

Figure 4 | Fraction of trials with a false trigger in the rest epoch (X axis) vs. 
a true trigger in the motor-planning epoch (Y axis) when different numbers 
of consecutive-time samples must be classified as finger-extension before 
a hypothetical device would be activated (2 = blue, 3 = green, 4 = red, and 
5 = pink). Original classification thresholds were set to achieve the false-
positive rates indicated at the bottom of the figure. In the top row, the duration 

of the motor-planning phase was calculated using the median 
time‑to‑movement-onset calculated from the unaffected hand (no extension). 
In the bottom row, the assumed motor-planning phase was extended 
by 600 ms. Solid diagonal line in each plot indicates the ratio of the 
mean true- and false-positive rates calculated without regard to 
consecutive triggers.

Figure 3 | Mean adjusted true-positive rate as a function of the 
assumed duration of the motor-planning phase used for training/
assessing the classifiers. Different lines indicate results when different 
threshold settings are used to generate the predefined false-positive rates 
shown. The false-positive rates have already been subtracted out from the 
actual true-positive rates to get the adjusted true-positive rates plotted here.
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tical patterns required to trigger the device could also be gradually 
shaped over time to require the user to make more-normal EEG 
patterns as they progress with their therapy.

 This study shows that early detection of attempted-movements 
is possible in individuals with complete paralysis of finger-extensor 
muscles after stroke. These detectable modulations can provide 
a starting point from which to develop a therapeutic retraining 
paradigm using EEG-triggered assisted movements. Again, online 
studies are now needed to fully explore how best to utilize EEG-
triggered assisted movements in stroke rehabilitation.
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Even at the default classification threshold (LDA) which resulted in 
the highest false-positive rates, false triggers could be completely 
eliminated in many cases by requiring four or five consecutive-
classification events (see red and pink dots along the upper half of 
the Y axis in the bottom right plot of Figure 4).

Requiring multiple consecutive-classification events to trigger 
a device fairly consistently improved the ratio of true events to 
false events as can be seen by the majority of the dots in Figure 4 
being above and to the left of the solid diagonal line. However, 
device activation will inevitably be slower as more consecutive-time 
points are used to build certainty about triggering a device. Online 
tests are needed to determine the relative importance of speed vs. 
reliability for promoting therapeutic benefits.

 High detection reliability may not be essential for therapeutic 
benefit. During actual online use of an EEG-triggered movement-
assist device, the user will receive immediate feedback of the suc-
cess or failure of each attempted-movement. This feedback from 
failed attempts could help the user learn to generate stronger, 
more-consistent cortical activation patterns with practice. The cor-
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