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In vivo monitoring of adult neurogenesis in health and disease
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Adult neurogenesis, i.e., the generation of new neurons in the adult brain, presents an enormous 
potential for regenerative therapies of the central nervous system. While 5-bromo-2′-deoxyuridine 
labeling and subsequent histology or immunohistochemistry for cell-type-specific markers is 
still the gold standard in studies of neurogenesis, novel techniques, and tools for in vivo imaging 
of neurogenesis have been recently developed and successfully applied. Here, we review 
the latest progress on these developments, in particular in the area of magnetic resonance 
imaging (MRI) and optical imaging. In vivo in situ labeling of neural progenitor cells (NPCs) with 
micron-sized iron oxide particles enables longitudinal visualization of endogenous progenitor 
cell migration by MRI. The possibility of genetic labeling for cellular MRI was demonstrated by 
using the iron storage protein ferritin as the MR reporter-gene. However, reliable and consistent 
results using ferritin imaging for monitoring endogenous progenitor cell migration have not 
yet been reported. In contrast, genetic labeling of NPCs with a fluorescent or bioluminescent 
reporter has led to the development of some powerful tools for in vivo imaging of neurogenesis. 
Here, two strategies, i.e., viral labeling of stem/progenitor cells and transgenic approaches, 
have been used. In addition, the use of specific promoters for neuronal progenitor cells such 
as doublecortin increases the neurogenesis-specificity of the labeling. Naturally, the ultimate 
challenge will be to develop neurogenesis imaging methods applicable in humans. Therefore, 
we certainly need to consider other modalities such as positron emission tomography and 
proton magnetic resonance spectroscopy (1H-MRS), which have already been implemented for 
both animals and humans. Further improvements of sensitivity and neurogenesis-specificity 
are nevertheless required for all imaging techniques currently available.
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Clinical and preclinical studies have shown that adult neurogen-
esis is altered in response to brain insults with neuronal death. For 
example, ischemic lesions stimulate cell proliferation in the SVZ 
and the SGZ (Parent et al., 1997; Liu et al., 1998; Jin et al., 2001; 
Zhang et al., 2001; Arvidsson et al., 2002). Furthermore, it has been 
reported that new neurons migrate to non-neurogenic regions lin-
ing the ischemic lesion sites (Magavi et al., 2000; Arvidsson et al., 
2002; Parent et al., 2002).

Postmortem studies on patients suffering from Huntington’s 
disease (HD) demonstrated increased cell proliferation in the neu-
rogenic regions (Curtis et al., 2003, 2005). Nonetheless, failure of 
the reparative process has been observed in animal models of HD 
(Lazic et al., 2004; Gil et al., 2005; Kohl et al., 2007; Kandasamy et 
al., 2010). Impaired neurogenesis was also found in several other 
neurodegenerative disorder models, such as models of Parkinson’s 
disease and Alzheimer’s disease (Haughey et al., 2002; Hoglinger 
et al., 2004; Wen et al., 2004; Donovan et al., 2006; Winner et al., 
2008). In addition to modulating cell proliferation, pathological 
conditions might severely compromise the survival capacity of 
newly generated neurons. Recent studies have indicated a decrease 
of the long-term survival chance of newborn neurons by more 
than 80% (Winner et al., 2004, 2008; Kohl et al., 2007; Marxreiter 
et al., 2009; Kandasamy et al., 2010). These observations under-
score the incapacity of the endogenous  mechanisms to achieve 

IntroductIon
The existence of adult neurogenesis in the mammalian brain has 
been demonstrated almost half of a century ago (Altman and Das, 
1965), nevertheless, broad attention to this process only arose after 
the discovery of pools of neural stem-like cells residing in discrete 
brain regions (Reynolds and Weiss, 1992). In most adult mammals, 
proliferating neural stem cells can be detected in two neurogenic 
niches, the subventricular zone (SVZ) of the lateral ventricle wall 
and the subgranular zone (SGZ) of the hippocampal dentate gyrus 
(see Ma et al., 2009 for a recent review). The SVZ constitutes the 
most active site of neurogenesis (Conover and Allen, 2002). Young 
neural progenitor cells (NPCs), also known as neuroblasts, are 
generated throughout the entire SVZ and subsequently migrate 
along the rostral migratory stream (RMS) into the olfactory bulb 
(OB) where they differentiate into new interneurons (Lois and 
Alvarez-Buylla, 1994). In the SGZ, neurogenesis occurs at a lower 
rate compared to the SVZ (Altman and Das, 1965; Cameron et al., 
1993) and, in contrast to the SVZ-derived neuroblasts, new neurons 
of the SGZ migrate only short distances into the overlying granule 
cell layer (Stanfield and Trice, 1988; Markakis and Gage, 1999). 
Great hope followed the discovery that active populations of neu-
ral stem cells also generate new neurons within the adult human 
brain (Eriksson et al., 1998). Endogenous stem cell-based therapy 
for neuroregeneration after brain injury appeared suddenly nearer.
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The oscillation of this net magnetic vector about the main magnetic 
field will induce an electromotive force in the radio frequent (RF) 
antenna, i.e., the MR signal. Depending on the applied MRI pulse 
sequence, a specific MRI parameter will dominate the contrast in 
the images (i.e., contrast weighting). For most clinical examina-
tions both T

1
-weighted and T

2
-weighted images are acquired for 

observation of white and gray matter brain structures. Other types 
of MRI contrast correlate with the diffusion of water molecules (i.e., 
Brownian motion) in biological tissues (Le Bihan et al., 1986) and 
are quite valuable in studying neuropathology related changes in 
intra/extracellular water balance and subcellular structural changes 
(Gass et al., 2001).

Magnetic resonance imaging contrast can be improved by apply-
ing contrast agents based on relaxivity (e.g., gadolinium chelates) 
or magnetic susceptibility (e.g., iron oxide particles, iron contain-
ing proteins). When placed in a magnetic field, iron oxide parti-
cles have been shown to induce local field inhomogeneities. These 
inhomogeneities shorten the T

2
 relaxation time of protons within 

a large perimeter, which results in hypointense (dark) signals in 
conventional T

2
/T

2
*-weighted imaging and therefore iron oxide 

particles are referred to as MRI-negative contrast agents (Norman 
et al., 1992; Bulte et al., 1999).

dIrect labelIng usIng Iron oxIde partIcles
In order to enable cellular MRI, cells of interest have to be labeled 
with MR contrast agents. One of the options is the use of exogenous 
contrast agents. Numerous reports have demonstrated that iron 
oxide particles (from nanometer to micrometer size range) could 
be readily engulfed in vitro by cells of various origins, including 
neural stem and progenitor cells (for excellent reviews see Bulte 
et al., 2002; Bulte and Kraitchman, 2004; Frank et al., 2004; Modo 
et al., 2005). This approach constitutes an efficient strategy to label 
cells for detection as negative contrast. Results from agar phantoms 
containing iron oxide particle-labeled cells at various densities sug-
gested that detection down to a single cell might be possible using 
high-resolution MRI (Kustermann et al., 2008). Previous studies 

brain repair after injuries of the central nervous system. Our 
understanding of neurogenesis and its potential for functional 
brain repair still remain rudimentary.

A significant fraction of our knowledge of adult neurogenesis 
has been gained so far from static analyses. For example, the most 
prevailing technique to assess neurogenesis consists in injecting the 
thymidine analog 5-bromo-2′-deoxyuridine (BrdU), which inte-
grate in newly synthesized DNA of proliferating cells. As further 
immunohistological analyses are required for the detection and 
phenotyping of cells labeled with BrdU, neurogenesis measure-
ments are restricted to a single time point per individual. In order 
to understand the functional relevance of neurogenesis modulation 
and its potential role in the etiology of neurological and psychiat-
ric disorders, it is required to assess neurogenesis repeatedly in a 
fashion as minimally invasive as possible. Consequently, over the 
past years sustained effort has been dedicated to develop imaging 
techniques to monitor adult neurogenesis in vivo.

From a clinical perspective, it would be advantageous to develop 
imaging procedures based on the use of currently available equipment, 
i.e., magnetic resonance imaging (MRI) and positron emission tom-
ography (PET), as it could be more readily implanted in the clinics. 
Yet, for preclinical research, the exorbitant costs associated with these 
imaging devices limit their accessibility. The development of optical 
imaging procedures and devices partially filled the needs for low-
cost imaging alternatives. This review summarizes the recent progress 
made in the field of in vivo imaging of neurogenesis and points to the 
strengths and weaknesses of the various strategies (Table 1).

In vIvo ImagIng of neurogenesIs wIth magnetIc 
resonance ImagIng and spectroscopy
The main advantage of MRI is its high spatial resolution that results 
in clear anatomical information. MRI uses a high magnetic field to 
align the nuclear magnetization of hydrogen atoms, or protons, of 
water in the body. Submitting a radio frequency pulse at the reso-
nance frequency of these protons will cause the net magnetic vector 
to turn over into the plane perpendicular with the magnetic field. 

Table 1 | Comparison of various imaging methods for in vivo monitoring of adult neurogenesis.

Technique Optical Imaging PET MRI

Resolution Low Low High

Sensitivity Limited depth 

penetration

High High

Human applicability No Yes Yes

Method Fluorescence-

based imaging

Bioluminescence-

based imaging

Isotope-labeled 

molecules

Iron oxide particles MR reporter-genes MR 

spectroscopy

Technique Genetic labeling Genetic labeling Direct labeling Direct labeling Genetic labeling /

Neurogenesis-

specificity

High with use of 

specific promoters

High with use of 

specific promoters

Low Low High with use of 

specific promoters

Low

Toxicity No No ? Yes ? No

Cell-viability Yes Yes Yes No Yes Yes

Limitations Signal scatter, 

background 

fluorescence

Signal scatter Exposure to 

radiation

Inhomogeneity artifact, 

contrast dilution upon 

cell division

Low detection-

sensitivity

Partial volume 

artifact

? = remains to be determined; / = no labeling required.
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along white matter tracts. It was suggested that the small size of 
the MLs intrinsically limits their potential for in situ labeling of 
NPCs (Vreys et al., 2011).

Another limitation of particle-based cell labeling is the progres-
sive dilution of the contrast medium with cell division. Cellular 
uptake of iron oxide particles occurs through endocytosis, which 
results in the accumulation of particles in the cytoplasm. As a result, 
the concentration of iron oxide particles halves with every cell divi-
sion, leading to a progressive decrease in sensitivity to detect labeled 
cells (Magnitsky et al., 2005). While the use of micron-sized iron 
oxide particles (MPIOs) allows visualization of cells containing 
a single particle (Shapiro et al., 2006b), cell progeny after further 
proliferation of the cells will not be labeled with contrast particles. 
This dilution effect upon cell division is a major drawback for the 
longitudinal follow-up of highly proliferating cells.

In case of direct in situ labeling, the labeling efficiency is quite 
low and only a small fraction of targeted cells will be labeled with 
the contrast agent (Sumner et al., 2009; Nieman et al., 2010). In 
addition, the engulfment of iron oxide particles is rather unspe-
cific. For example, immunohistochemistry and electron microscopy 
showed that after direct injection of MPIOs in the lateral ventricle, 
contrast particles were not only located inside the targeted cell-
type, i.e., neural stem and progenitor cells, but also in ependymal 
cells, microglia, and oligodendrocyte progenitor cells (Shapiro 
et al., 2006a; Sumner et al., 2009). Careful analysis of the nature of 
labeled cells suggests that the site of injection is defining the sub-
population of cells labeled with the contrast particles (Nieman 
et al., 2010). The fact that the phenotype of cells internalizing the 
particles can only be determined a posteriori by histological analy-
sis, is particularly troublesome for longitudinal studies, taken that 
labeled neural stem and progenitor cells are multipotent and may 
undergo extensive differentiation processes comprising multiple 
transient maturation stages.

Currently, the use of in situ labeling of endogenous neural stem 
and progenitor cells is restricted to the neurogenic niche of the 
SVZ. The reason for this restriction is that the amount of iron 
oxide particles required for in situ labeling generates substantial 

have also shown that MRI is a useful tool to follow labeled, trans-
planted cell migration in the brain (Hoehn et al., 2002; Jendelova 
et al., 2003; Ben-Hur et al., 2007; Cohen et al., 2010).

Based on the observations that neural stem and progenitor cells 
could be loaded with iron oxide particles in vitro, various groups 
intended to label these cell populations by injecting iron oxide 
particles directly into the lateral ventricles (Shapiro et al., 2006a; 
Panizzo et al., 2009; Sumner et al., 2009; Vreys et al., 2010) or in 
the subventricular regions (Nieman et al., 2010; Vreys et al., 2010). 
This in situ labeling strategy proved to be successful, as a fraction 
of the injected particles were taken up by neuroblasts and carried 
away toward the OB (Figure 1). Hence permitting to follow neu-
ronal migration along the RMS and into the OB as a read-out for 
neurogenesis and/or cell survival and migration.

Despite the valuable information on cell localization and 
migration dynamics, studies based on iron oxide labeled cells 
have several intrinsic limitations, with the most relevant one being 
the fact that iron oxide particles are passive contrast agents. The 
detected contrast on MR images refers only to the particle, and 
does not give any information on the cell-type or viability of the 
labeled cells, which leads to the possibility of non-specific find-
ings (Slotkin et al., 2007; Schafer, 2010). Considering that more 
than half of the newly generated neurons die as they fail to inte-
grate in their target regions (Winner et al., 2002; Kempermann 
et al., 2003), the extensive release of confounding particles arising 
from this cellular pruning would be far from incidental. Following 
death of the former carrier-cells, intracellular contrast particles 
will simply get deposited extracellular. These particles could be 
taken up by surrounding cells, such as microglia, and be car-
ried away in an absolutely neurogenesis-independent fashion. 
Moreover, extracellular particles can be transported on cell sur-
faces and thereby migrate away from the injection site. Vreys et al. 
(2011) investigated the ability of magnetoliposomes (MLs) to 
label endogenous NPCs after direct injection into the adult mouse 
brain. Whereas MRI revealed contrast relocation toward the OB, 
the relocation was found to be independent of the migration of 
endogenous NPCs and represented background migration of MLs 

FIguRE 1 | Magnetic resonance imaging of in situ labeled neural precursor 
cell migration. (A) In vivo MRI of a mouse injected with micron-sized iron oxide 
particles in the lateral ventricle at 3 weeks post-injection. (B) Ex vivo MRI of the 
same mouse at 3 weeks post-injection. (C) Ex vivo MRI of a mouse injected 

with micron-sized iron oxide particles in the lateral ventricle at 8 weeks 
post-injection. Arrows indicate corresponding hypointense contrast on the 
in vivo and ex vivo MRI of the same mouse (Adapted and reproduced from Vreys 
et al., 2010).
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viral vector systems used as delivery systems themselves can elicit 
ferritin-like hypointense contrast on MR images (Vande Velde 
et al., 2011). Enhancement of the sensitivity of MR reporter sys-
tems will remain a challenge and future studies should focus not 
only on optimization of the vector constructs for the delivery 
of MR reporter-genes, but also on improving the sensitivity to 
detect reporter-gene based contrast both at the acquisition and 
at the post-processing level.

Another MRI reporter candidate is magA, a gene known to be 
involved with iron transport in magnetotactic bacteria. Zurkiya 
et al. (2008) and Goldhawk et al. (2009) demonstrated that magA 
transfected mammalian cells formed in vivo magnetic iron oxide 
nanoparticles which allowed subsequent visualization of the cells 
with MRI (Zurkiya et al., 2008; Goldhawk et al., 2009). Whether 
magA is an appropriate MRI reporter-gene for endogenous stem 
cell labeling needs to be further investigated.

Although these approaches are attractive in that they combine 
the cell specificity of the transgenic system with the high-resolution 
of MR imaging, possible toxicity associated with the accumulation 
of iron in the cytoplasm must be carefully evaluated. Evidence for 
toxicity has been provided by recent reports demonstrating that 
in a transgenic model, long-term expression of elevated ferritin 
levels in neurons may lead to age-associated neurodegeneration 
(Kaur et al., 2007, 2009).

magnetIc resonance spectroscopy
Magnetic resonance spectroscopy (MRS) is an MR technique 
that can measure brain biochemistry. In this way, it adds nicely 
to other MRI applications as it provides metabolic information 
in addition to anatomical, physiological, functional, or molecular 
imaging information. Localized 1H-MRS currently allows for the 
quantification of more than 18 1H containing metabolites in vivo 
(Pfeuffer et al., 1999). The complexity of an MR spectrum can 
be appreciated in Figure 2 in which a region of an MR spectrum 

image distortion, i.e., susceptibility inhomogeneity, at the site of 
injection (Shapiro et al., 2006a; Vreys et al., 2010). As neuroblasts 
from the SGZ migrate into the directly overlying granule cell layer, 
the susceptibility inhomogeneity would hamper the visualization 
of the labeled cell migration.

Cell labeling using non-degradable iron oxide particles, such 
as MPIOs, is permanent, and careful evaluation of long-term tox-
icity caused by labeling compounds becomes critical. Although 
limited toxicity has been demonstrated following in vitro labeling 
(Crabbe et al., 2010), studies on in vivo application of iron oxide 
particles have recently revealed decreased cell proliferation and 
migration, as well as signs of inflammation (Schafer, 2010; Vreys 
et al., 2010). Unfortunately, in most reports the assessments of the 
impact of iron oxide particles on gene expression and cell fate have 
remained cursory.

The majority of studies on MR imaging of endogenous neural 
stem and progenitor cells are performed so far in naive and healthy 
animals. A recent study showed that in situ labeling of endogenous 
neural stem and progenitors cells with MPIOs could reveal altered 
cell migration toward an hypoxic–ischemic insult using in vivo 
MRI (Yang et al., 2009). The proof-of-principle should now be 
extended to various disease models. Undoubtedly, the feasibility of 
iron oxide particle labeling for long-term imaging of neurogenesis 
in clinically relevant applications should be fully investigated. It 
is expected that the modified cell composition of the neurogenic 
niche (e.g., presence of reactive gliosis, macrophage infiltrations, 
etc.) as observed in pathological conditions as well as the possibility 
of reduced survival of new neurons induced by the pathological 
conditions, as mentioned earlier, would complicate neurogenesis-
specific labeling and its intended imaging.

genetIc labelIng usIng mrI reporter-genes
In order to overcome the disadvantages of iron oxide particle labe-
ling, a new approach using MRI reporter-genes has recently been 
developed. Genetic reporters can be incorporated in gene delivery 
systems like viral vectors or in transgenic animals. This labeling 
approach solves the problem of contrast agent dilution and subse-
quent signal loss upon cell division. In addition, vector-mediated 
reporter-gene delivery holds the potential for specific labeling of 
neuroblasts by the use of specific promoters. Another advantage 
is that the transgene construct can be coupled with an additional 
transgene, for example a therapeutic one, or with other reporter-
genes for multimodality imaging.

A promising reporter for MRI is ferritin, a ubiquitously 
expressed metalloprotein, assembled out of 24 light and heavy 
subunits (Cohen et al., 2005; Genove et al., 2005). Ferritin seques-
ters endogenous iron from the organism and stores it in a hydrated 
iron oxide (ferrihydrite) core that significantly affects the T

2
 relax-

ation times of protons (Gossuin et al., 2004). The corresponding 
changes in contrast on T

2
- and T

2
*-weighted MR images could 

be a quantitative read-out for both neuronal proliferation and 
recruitment to the target region. Furthermore, the absence of 
image distortion (such as seen at the iron oxide particle injection 
area) would allow targeting the dentate gyrus of the hippocampus 
as well as the SVZ. To date, however, the low detection-sensitivity 
limits the use of current transgenic systems in cell tracking appli-
cations (Vande Velde et al., 2011). It was also reported that the 

FIguRE 2 | Region of an MR spectrum generated from mouse fetal neural 
progenitor cells in culture. MRS reveals to complexity of metabolites found 
in these cells. Abundant molecules leading to strong signals, such as choline 
or lactate, can readily be identified.

http://www.frontiersin.org/neurogenesis/
http://www.frontiersin.org/neurogenesis/archive


www.frontiersin.org May 2011 | Volume 5 | Article 67 | 5

Couillard-Despres et al. In vivo imaging of neurogenesis

isotope-labeled molecules designed to bind to or concentrate them-
selves at the specified target sites. Positron-emitting radionuclides, 
such as [18F] or [11C], are selected for labeling since upon annihi-
lation of a positron with an electron from the body, two gamma 
photons with an energy of 511 keV are emitted in diametrically 
opposite directions. Registration of these so-called coincident pho-
tons, i.e., pairs of photons reaching quasi simultaneously the sensi-
tive photodetectors ringing the subject, allows for the computation 
of position and intensity of the emission source(s).

Rueger et al. (2010) recently reported the in vivo detection of cell 
proliferation within the rat neurogenic niches based on 3′-deoxy-3′-
[18F]fluoro-L-thymidine ([18F]-FLT) signals (Figure 3). [18F]-FLT is 
a thymidine analog and can be regarded as a PET equivalent to BrdU 
used in histological analysis. Even though Rueger et al. (2010) also 
reported that modulated proliferation rates following pharmaco-
logical or surgical interventions could be detected, [18F]-FLT signal 
intensities emanating from the SVZ and SGZ appeared similar to 
each other although it is known that the magnitude of proliferation 
in the SVZ is from one to two orders higher than in the SGZ. Hence, 
these findings suggest that binding of [18F]-FLT is determined by 
additional parameters than solely neural stem and progenitor cell 
proliferation. Thus, great care should be taken when comparing 
signals from different sources.

Furthermore, some other issues remain to be resolved before 
PET can be reliably used to monitor neurogenesis in vivo. For 
example, the identity of cells at the origin of the [18F]-FLT signals 
cannot be inferred by this technique. This precludes the use of 
[18F]-FLT for neurogenesis imaging under pathological conditions, 
since proliferation associated with reactive gliosis or immune cell 
infiltrations would be indistinguishable from neural stem/progeni-
tor cell proliferation. Nonetheless, the work of Rueger et al. (2010) 
constitutes a valuable proof-of-principle that PET could be used 
for in vivo imaging of neurogenesis in the future. The development 
of neurogenesis-specific labeling compounds currently constitutes 
an important limiting step for this achievement.

In vIvo ImagIng of neurogenesIs wIth optIcal 
ImagIng
Over the last decade, optical imaging techniques became widespread 
in numerous preclinical research fields, including the study of neu-
rogenesis. The possibility to combine several labels simultaneously, 
as well as the broad availability of current transgenic technologies, 
made optical imaging a very attractive method. Optical imaging 
can be based on the detection of fluorescent or bioluminescent 
signals, both bearing their strengths and limitations.

fluorescence-based ImagIng of neurogenesIs
The simplicity of fluorescence-based imaging and the minimal 
requirement in equipment explain the extensive usage of this tech-
nique. The method is based on the capacity of some fluorescent 
molecules to reflect specific incident wavelengths with a red shift. 
The incident and reflected light can be separated using an appro-
priate sets of passfilters. Components for fluorescence imaging 
are frequently coupled with microscopes, resulting in an imaging 
resolution at the level of the cell and even subcellular elements 
(Figure 4). This high-resolution is an advantage for the study of 
neurogenesis, since not only the position and amount of cells, but 

measured on mouse fetal neural stem and progenitor cells is repre-
sented. Localized MRS techniques allow assessment of metabolites 
comprised in a well-defined volume/voxel within the brain and can 
return single-volume, or multi-volume information with microliter 
resolution. This constitutes an attractive strategy to appreciate the 
rate of neurogenesis in a non-invasive fashion. If there would be 
a molecule specific or enriched in the neurogenic niche, it would 
be theoretically possible to detect a spectroscopic signature proper 
to this molecule in voxels located within neurogenic regions. The 
intensity of the neurogenesis-associated peak would reveal the 
“concentration of neural stem or progenitor cells” within the voxel.

Manganas et al. (2007) reported the identification of an MRS 
peak, detected on the spectrum at 1.28 ppm, which seemed to corre-
late with the presence of neural stem/progenitor cells in the dentate 
gyrus of both humans and rats. In vitro, this peak was particularly 
abundant in undifferentiated neural stem cells, and appeared to 
be absent or weak in neurons, astrocytes, and oligodendrocytes. 
Interestingly, it was possible to detect and localize in vivo implanted 
neural stem cells in the cortex of rats, based on the 1.28-ppm peak. 
In addition, Manganas et al. (2007) demonstrated that in agreement 
with the expected age-related decrease of neurogenesis the inten-
sity of the 1.28-ppm peak measured within the hippocampus was 
undergoing a dramatic decrease when comparing recordings per-
formed in 8 to 10-year-old children with those of 30 to 35-year-old 
adults. Although the report from Manganas et al. (2007) promptly 
put MRS back into the limelight, several researchers question the 
specificity of the 1.28-ppm, as well as the capacity to detect the 
stem and progenitor cells using the equipment currently available 
(Friedman, 2008; Hoch et al., 2008; Jansen et al., 2008; Dong et al., 
2009; Ramm et al., 2009). A recent study, which aimed to identify 
the origin of the 1.28-ppm peak, demonstrated that this spectro-
scopic signal correlates with the presence of mobile lipid droplets 
within cells (Ramm et al., 2009), a phenomenon observed during 
cell proliferation and apoptosis regardless of the cell-type (e.g., 
neural stem cells, COS7 cells, etc.). This may turn the 1.28-ppm 
signal into a correlated peak of the neurogenic niches rather than 
as a specific marker for neurogenesis per se.

The greatest advantage of MRS is the complete non-invasive 
nature of the protocol. For measurements in the SVZ, however, its 
close lining to the ventricles filled with cerebrospinal fluid consti-
tutes an extra challenge. When an MRS voxel contains a mixture of 
tissue types the spectroscopic signal will also consist of signals from 
different tissues (i.e., a partial volume artifact). Since large voxel 
sizes are currently required to acquire sufficient signal-to-noise 
ratios, performing a reliable measurement of the SVZ is a difficult 
task. Further technical developments are warranted to reduce the 
voxel size targeted during spectroscopic analysis and to increase the 
sensitivity with the main objective to focus exclusively on neuro-
genic regions and thereby to increase the “stem cell concentration” 
and detectability.

In vIvo ImagIng of neurogenesIs wIth posItron 
emIssIon tomography
Positron emission tomography might not have the resolution of 
MRI, however, it shows an extraordinary sensitivity, which is a pow-
erful advantage considering the relatively scarceness of stem cells 
in the adult brain. PET relies on the administration of  radioactive 
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The use of fluorescent protein expression, such as the green fluo-
rescent protein (GFP), was a breakthrough for in vivo imaging of 
biological processes (Heim et al., 1994). Fluorescent reporters have 
the advantage that once encoding transgenes have been introduced 
within the genome, fluorescent signals are generated throughout 
life without further need for additional labeling. Transgenic mouse 
and rat models for the analysis of neurogenesis have been generated 
over the last years using cell-type-specific promoters to control the 
expression of various fluorescent proteins. For example, transgenic 
models have been developed using the nestin and the doublecortin 

also the morphology and the integration of newly generated neu-
rons are highly relevant. However, high-resolution fluorescence 
imaging can only be performed on relatively thin samples. As a 
result, neurogenesis is generally analyzed on acute brain slices, 
which can be maintained alive in vitro for only a few hours. In 
case of whole body in vivo imaging, where animals are placed in a 
dark chamber equipped with an illumination source and a sensitive 
photodetector system, the spatial resolution is rather low because 
the light reflected from deep structures is scattered before it reaches 
the body surface.

FIguRE 3 | Positron emission tomography imaging of neural stem cell proliferation ([18F]-FLT–PET matched on MRI-atlas of rat brain). (A) Increased [18F]-FLT 
signal was detected in the SVZ. (B) Location of BrdU-labeled proliferating cells in the SVZ corresponds well with the elevated [18F]-FLT signal in the SVZ (A) (Adapted 
from Rueger et al., 2010).

FIguRE 4 | Fluorescence-based imaging of neurogenesis using transgenic expression of DsRed under the control of the doublecortin promoter. (A) A large 
number of neuronal precursors (red) are generated in the SVZ and migrate in toward the olfactory bulb along the RMS; (B) once neuroblasts (red) reach the granular 
cell layer of the olfactory bulb, they start to functionally integrate and have a more complex cellular morphology. Nuclei appear in blue. Scale bar = 10 μm.
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coelenterazine concentration (Pichler et al., 2004). Therefore, the 
firefly’s luciferase is currently the most broadly used enzyme for 
in vivo bioluminescence imaging in mice and rats.

During in vivo bioluminescence imaging, animals are placed in a 
dark chamber equipped with an extremely sensitive photodetector 
system. In contrast to fluorescent imaging, the appropriate substrate 
(e.g., d-luciferin in the case of the firefly luciferase) needs to be 
injected shortly before recording in order to achieve a detectable 
bioluminescent signal. Since each organ or body compartment is 
supplied differently, the regional distribution, catalysis, and elimi-
nation kinetics of the substrate must be taken into account in the 
design and execution of the work (Lee et al., 2003).

The use of bioluminescence for imaging of neurogenesis resolves 
some problems discussed previously with the use of iron oxide 
particles in MRI. For example, bioluminescence recording guaran-
ties viability of cells at the origin of the reporter signal since the 
generation of photons resulting from the catalysis of d-luciferin 
is ATP-dependent. In addition, there have been so far no reports 
on toxicity or inflammation elicited by the firefly’s luciferase or 
its substrate d-luciferin. As a result, the impact on neurogenesis 
is assumed to be minimal. Nonetheless, this topic requires further 
investigation in order to fully verify this assumption.

Although the spatial resolution of bioluminescence imaging is 
similar to that of fluorescence imaging due to signal scatter from deep 
brain regions, it has one solid advantage over fluorescence-based imag-
ing. The virtual absence of bioluminescence background from tissues 
allows for a greater sensitivity of detection, as required for neural stem 
and progenitor cells. Both grafting of transgenic neural stem cells 
and in situ retroviral labeling of endogenous neural stem cells in wild 
type mice have been shown to result in a very high signal/noise ratio 
(Couillard-Despres et al., 2008a; Reumers et al., 2008). The fate of a 
small group of transgenic neural stem cells implanted in the subven-
tricular region of a wild type mouse could be followed over several days 
during their journey toward the OB (Figure 5). Moreover, the use of 
a neuronal precursor-specific promoter to drive luciferase expression, 
such as a doublecortin promoter, guarantees that the bioluminescence 
is neurogenesis-specific (Couillard-Despres et al., 2008a).

Even though the use of specific promoters can selectively target 
specific cell populations, such transgenic systems remain confined 
to preclinical research. Furthermore, given the large size of the 

promoters to detect neural stem and progenitor cells respectively 
(Yamaguchi et al., 2000; Karl et al., 2005; Couillard-Despres et al., 
2006, 2008b; Ladewig et al., 2008). Besides the transgenic models, 
the delivery of retroviral vectors encoding fluorescent proteins to 
neurogenic regions has also been fruitfully exploited (Carleton 
et al., 2003; van Praag et al., 2005; Toni et al., 2008). Taking advan-
tage of the proliferation capacity of neural stem and progenitor 
cells, it is possible to label a sub-population of these cells perma-
nently and rather selectively using retroviral vectors. Moreover, 
using the fluorescent signal to target recording electrodes, synap-
tic integration of newly generated neurons can be investigated by 
electrophysiology (Carleton et al., 2003; Couillard-Despres et al., 
2006; Toni et al., 2008).

One general concern for in vivo fluorescent imaging is the auto-
fluorescence of biological tissues. In addition, the shallow tissue 
penetration at which high quality imaging is currently achievable 
by in vivo fluorescence imaging constitutes a major hindrance to 
the analysis of neurogenesis. Even in relatively small animals such 
as mice, the hippocampus and subventricular regions are too deep 
within the brain for conventional microscopy. Significant improve-
ment has already been obtained using multiphoton confocal 
microscopy, which expands the observation window to a depth of 
approximately 500 μm (Fuhrmann et al., 2007), yet this is barely 
enough for the analysis of the mouse cerebral cortex. Furthermore, 
signal scattering will always be a limiting factor for accurate record-
ing, especially when light is reflected from regions lying deep in tis-
sues. Thus the cellular resolution of fluorescence imaging obtained 
in vitro using conventional microscopy is beyond the limits of cur-
rent whole body in vivo imaging. Optical tomography, might signif-
icantly improve the quality and precision of fluorescence imaging, 
in a fashion similar to PET acquisitions (Garofalakis et al., 2007). 
To improve the detectability of fluorescent reporters, bright red-
shifted fluorescent proteins, such as tdTomato, mCherry, mPlum, or 
Katushka have been developed over the last years to take advantage 
of a good light transmission window in the far-red region of the 
visible light spectrum, from approximately 600 to 850 nm (Shaner 
et al., 2004; Deliolanis et al., 2008).

bIolumInescence-based ImagIng of neurogenesIs
The use of various luciferase reporter-genes for bioluminescent 
optical imaging is another technique that has recently gained inter-
est. Enzymes of the luciferase family are not evolutionary related, 
but they all cause photons to be emitted upon catalysis of their 
respective substrates. These photons can be acquired and proc-
essed for imaging purposes. The luciferase isolated from the firefly 
(Photinus pyralis) and the sea pansy (Renilla reniformis) are the 
most widely distributed among the various luciferases identified 
and cloned so far. However, the substrate catalyzed by the Renilla 
luciferase, i.e., coelenterazine, presents an imidazopyrazine struc-
ture that can promptly auto-oxidize. This auto-degradation process 
is further enhanced by the presence of albumin (Zhao et al., 2004). 
Thus, the structural instability of coelenterazine could lead to ele-
vated background signals during in vivo imaging of weak reporter 
activities. In addition, coelenterazine can be re-transported out 
of cells by the multidrug resistance MDR1 P-glycoprotein (Pgp), 
which could generate unforeseen variability in signal intensities 
between various cell populations exposed to the same extracellular 

FIguRE 5 | Bioluminescence-based imaging of neurogenesis using grafted 
neural stem cells encoding a luciferase transgene under the control of the 
doublecortin promoter. Eight days after grafting in the SVZ of a wild type 
mouse, neuronal differentiation of implanted cells resulted into a strong 
bioluminescent signal. The latter partially spread from the site of graft toward the 
olfactory bulb as the transgenic neuroblasts migrated to their target.
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regarding sensitivity, tissue penetration, etc. Nonetheless, the 
different approaches available are rather to be considered as 
complementary.

Similar to the use of BrdU or tritiated-thymidine in the earlier 
neurogenesis studies, assessment of cell proliferation does not con-
stitute a valid measurement of neurogenesis. At this time, improve-
ment of the detection using direct or indirect labeling of neuronal 
precursors and young neurons, which reflects the rates of neuro-
genesis, constitutes the next challenge (Couillard-Despres et al., 
2005). Finally, although preclinical settings offer the possibility to 
use transgenic reporter systems, which are powerful tools for the 
understanding of neurogenesis under physiological and pathologi-
cal contexts, the development of neurogenesis imaging techniques 
applicable to human remains the ultimate goal.
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human brain, it is unlikely that optical techniques will be suited 
for in vivo imaging of human neurogenesis. Nevertheless, optical 
imaging remains a powerful and valuable method in preclinical 
research for the in vivo imaging of neurogenesis.

conclusIon
Over the last decade, tremendous progress has been made in the 
development of strategies for in vivo imaging of neurogenesis. 
With the exception of MRS, all imaging modalities discussed in 
this review rely on either direct labeling (e.g., iron oxide particles, 
[18F]-FLT) or indirect labeling (i.e., the use of reporter-genes) to 
achieve visualization of cells contributing to neurogenesis. Although 
both labeling strategies have shown their potentials for in vivo imag-
ing, the major challenges to achieve are neurogenesis-specificity and 
detection-sensitivity for direct and indirect labeling respectively. 
Beside these challenges one must always carefully evaluate safety 
requirements. Therefore, the toxicity and interference associated 
with labels applied or genes expressed should be addressed with 
great care. Moreover, in cases of direct labeling, labels must not 
only be non-toxic, but in view of future clinical applications, should 
preferentially be biodegradable as well.

Although MRS does not encounter the problems related 
with cell labeling, proof of specific visualization of neurogen-
esis by this modality has still to be provided. Briefly, none of the 
imaging strategies has so far been able to fulfill all needs and 
expectations; they all have their advantages and  disadvantages 
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