
Frontiers in Neuroscience www.frontiersin.org May 2011 | Volume 5 | Article 68 | 1

FOCUSED REVIEW
published: 11 May 2011

doi: 10.3389/fnins.2011.00068

Spike correlations – what can they tell about 
synchrony?
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Sensory and cognitive processing relies on the concerted activity of large populations of neurons. 
The advent of modern experimental techniques like two-photon population calcium imaging 
makes it possible to monitor the spiking activity of multiple neurons as they are participating in 
specific cognitive tasks. The development of appropriate theoretical tools to quantify and interpret 
the spiking activity of multiple neurons, however, is still in its infancy. One of the simplest and 
widely used measures of correlated activity is the pairwise correlation coefficient. While spike 
correlation coefficients are easy to compute using the available numerical toolboxes, it has 
remained largely an open question whether they are indeed a reliable measure of synchrony. 
Surprisingly, despite the intense use of correlation coefficients in the design of synthetic spike 
trains, the construction of population models and the assessment of the synchrony level in live 
neuronal networks very little was known about their computational properties. We showed that 
many features of pairwise spike correlations can be studied analytically in a tractable threshold 
model. Importantly, we demonstrated that under some circumstances the correlation coefficients 
can vanish, even though input and also pairwise spike cross correlations are present. This finding 
suggests that the most popular and frequently used measures can, by design, fail to capture 
the neuronal synchrony.
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1 Functional importance oF spike 
correlations
The first observations of spiking activity in groups 
of neurons in the 1960s and 1970s established 
that the spiking activity is correlated across neu-
rons (Gerstein and Clark, 1964; Perkel et al., 1967; 
Moore et al., 1970; Eggermont, 1990). Subsequent 
studies have shown that these spike correlations 
of N neurons can depend on the similarity of pre-
ferred stimuli, distance between neurons, motion 
direction of a stimulus and may even change dur-
ing the performance of cognitive tasks (Michalski 

et al., 1983; Krüger and Aiple, 1988; Kreiter and 
Singer, 1996). Recent studies exploiting a tour 
de force technique of dual intracellular record-
ings during visual stimulation demonstrated that 
correlations of membrane potential fluctuations, 
which reflect the cells’ input, can be stimulus-
dependent too (Lampl et al., 1999; Yu and Ferster, 
2010). These studies suggest that correlated activ-
ity may not just be an epiphenomenon but can 
carry crucial sensory information. Indeed, con-
siderably more information about visual stimuli 
could be extracted from the  activity of pairs of 
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LGN cells if correlations between their spikes are 
taken into account (Dan et al., 1998). Similarly, 
decoding strategies that exploit the inter-neuron 
spike dependencies in the primate retina are capa-
ble of extracting 20% more information about the 
visual scene than decoding under the assumption 
of independence, and also preserve 40% more 
visual information than optimal linear decoding 
(Pillow et al., 2008). Pairwise correlations have 
been shown to predict multineuronal firing pat-
terns in the vertebrate retina (Schneidman et al., 
2006) and across larger distances in the cortex 
(Ohiorhenuan et al., 2010). Recently, Tkacik et al. 
(2010) have shown that a change in pairwise cor-
relations can help to establish an optimal balance 
between efficient consumption of finite neural 
bandwidth and the necessary redundancy to miti-
gate noise. Figure 1 schematically illustrates how 
neuronal activity represents sensory information. 
The sensory stimulus, here schematically repre-
sented by the image of a sunflower, is encoded 
in the firing of a neuronal population. The total 
number of spikes, their timing, and particularly 
correlations between two or more neurons all 
carry important sensory information. Therefore 
decoding strategies can benefit from any of these 
sources.

What is the origin of pairwise spike 
 correlations? In physical systems the occurrence 
of synchronous events can emerge from a variety 
of mechanisms (Pikovsky et al., 2002). In neuro-
nal networks, signal-evoked and intrinsic noise 
spike correlations both originate in the intricate 
connectivity of a neuronal network. Each cortical 
neuron receives inputs from approximately 104 
other neurons and sends out signals via its synapses 
to about 104 others (Abeles, 1991; Braitenberg and 
Schüz, 1998). In such a  neuronal network, spiking 

cross correlations in the activity of two neurons 
can emerge from direct synaptic connections or 
shared presynaptic partners. Because neurons are 
highly interconnected, it is almost unavoidable 
that two neurons in a network share some of their 
inputs (Figure 2 left, third from top). Apart from 
direct and shared connections, neurons can inter-
act in any other complex multi-neuronal pattern, 
see for example Figure 2 (top left). The statistical 
structure of current and spike cross correlations 
in a pair of neurons can depend not only on the 
anatomical connections but also on the synaptic 
time constants. For example, synaptic connec-
tions mediated by glutamatergic AMPA channels 
contribute current fluctuations with a short time 
constant, while current fluctuations mediated by 
the NMDA channels lead to fluctuations with 
longer time constants (Stern et al., 1992; Hestrin, 
1993). Experimental assessment of pairwise sub-
threshold and spike correlations in vivo generally 
reveals a wide variety of pairwise spike correlation 
functions (Ts’o et al., 1986; Lampl et al., 1999; Yu 
and Ferster, 2010), which depend on a multitude 
of parameters, e.g., the distance of cells in corti-
cal space, receptive fields, or intrinsic properties 
of the cell membranes. Attempts to relate a par-
ticular spike correlation form to the underlying 
synaptic architecture, have so far proven difficult. 
Broad temporally symmetric pairwise spike and 
input correlations are thought to originate from 
non-specific common synaptic inputs (Krüger 
and Aiple, 1988; Abeles, 1991). On the other hand, 
systematic spiking delays of one neuron relative 
to the other and accompanying asymmetric spike 
cross correlations are traditionally interpreted as 
signatures of dominant direct monosynaptic con-
nections from one cell to the other (Ts’o et al., 
1986; Krüger and Aiple, 1988; Aertsen et al., 1989; 

Figure 1 | Sensory stimuli are represented in the spiking activity of 
cortical neurons. A sensory stimulus (left) is encoded, albeit with potential 
information loss, in the activity of an interconnected cortical population (middle). 
Colored circles and black arrows depict neurons and their connections. The spike 
times of each neuron (right, same color code as in the middle scheme) are 

depicted as dots. A black square highlights the spike train tij of neuron j and the 
red squares highlight examples of synchronous spikes. Sensory information is 
contained in the total number of spikes, their timing and the spike cross 
correlations between two or more neurons. Potential decoding strategies can 
benefit from any of these sources.

Spike correlations in N neurons
Interdependencies in the spiking of 
multiple neurons. Pairwise spike 
correlations are correlations between 
the spike trains of two neurons, 
quantified by the spike (cross) 
correlation function. Higher order 
correlations include three-neuron, 
four-neuron, and the general N-neuron 
correlations, where the joint occurrence 
of N − 1 spiking events influence the 
Nth spiking event.

Correlation between two signals
Is a measure of interdependence 
between two signals. A pairwise (cross) 
correlation function quantifies their 
similarity at any two time points. It 
reaches its lowest negative values if the 
two points are each other’s opposites, is 
positive if the two points are on average 
similar, and it is 0 if they are 
uncorrelated. It measures only linear 
interdependencies and therefore a lack 
of pairwise cross correlations does not 
imply statistical independence.

Pairwise spike correlations
The spike cross or auto correlation 
functions in a pair of neurons. Spike 
auto correlations quantify the temporal 
structure within a spike train, and cross 
correlations quantify the temporal 
coordination of spikes across the two 
spike trains.
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probability to emit a spike as a function of time 
elapsed from the previous spike (Moore et al., 
1966; Tchumatchenko et al., 2010a). Alternative 
measures are the distribution of time intervals 
between adjacent spikes (Moore et al., 1966; 
Lindner, 2004; Verechtchaguina et al., 2007) and 
higher order spike interval dependencies (Moore 
et al., 1966). The spike cross correlations of two 
simultaneously recorded spike trains s

1
(t) and 

s
2
(t) can be quantified using the crosscorrelo-

gram, which describes the probability of observ-
ing a spike in one spike train as a function of time 
before or after a spike in the other spike train 
(Moore et al., 1966). Its rate normalized analog 
is the conditional firing rate function ν

cond,12
(τ) 

(Binder and Powers, 2001; Burak et al., 2009; 
Tchumatchenko et al., 2010a,b):

n n ncond, ( ) ( ) ( ) / .12 1 2 1 2τ τ= 〈 + 〉s t s t  (1)

Here ν
1
 and ν

2
 are the mean firing rates of neurons 

1 and 2, respectively. 〈·〉 denotes the average over 
all spikes of the reference neuron 1 and subse-
quently averaged over multiple realizations of the 
same experimental condition. Because the tempo-
ral spike resolution can be limited, it is often ben-
eficial to consider instead the number of spikes 
emitted in a given time period T. A frequently 
used measure based on spike count correlations 
is the pairwise correlation coefficient r

12
 (Perkel 

et al., 1967; de la Rocha et al., 2007; Shea-Brown 
et al., 2008; Greenberg et al., 2008). It is defined 
as the covariance of spike counts normalized by 
the variances of individual neurons:

r12
1 2

1 1 2 2

=
⋅

Cov

Var Var

( ( ), ( ))

( ( ), ( )) ( ( ), ( ))
,

n T n T

n T n T n T n T  
(2)

Abeles, 1991; Ostojic et al., 2009). However, exper-
imental reports of asymmetric spike cross cor-
relations with little anatomic evidence of direct 
synaptic connections (Lampl et al., 1999) point 
to a more complex relation between spike corre-
lation function and the underlying architecture. 
Just as multiple synaptic interaction structures 
can potentially give rise to the same pairwise 
correlations, a particular functional form of the 
spike correlation function may not be a unique 
signature of interneuronal interactions. While the 
transformation of the network interactions to the 
correlated input currents, changes of membrane 
potential and then correlated firing of neurons 
have a defined solution, the inverse problem of 
assigning a circuitry to spike cross correlations 
does not have a unique solution, and a given form 
of spike cross correlations could emerge in a mul-
tiple neuronal circuit.

2 QuantiFication oF correlated 
neuronal activity
The first step toward deciphering the informa-
tion encoded in the spike trains of neurons is to 
simultaneously record the spike times of multiple 
neurons. Multiple electrodes implanted into the 
cortical tissue (Gerstein and Clark, 1964; Krüger 
and Aiple, 1988; Eggermont, 1992) or two-pho-
ton calcium imaging (Greenberg et al., 2008) can 
provide the necessary single neuron resolution. 
Since the spikes are all-or-none events, the spike 
train s(t) emitted by the neuron j is completely 
described by the sequence of spike times tij. The 
temporal structure of the spike train can be char-
acterized using several measures. One is the spike 
auto correlation function, which describes the 

Figure 2 | The correlation transfer from input currents 
to spikes. Cross correlations in the net somatic currents of 
neurons 1 and 2 can originate from a multitude of synaptic 
interactions: direct or recurrent synaptic connections, 
common inputs or their combination. The presence of 

current cross correlations results in pairwise correlations in 
the spikes of neurons 1 and 2. Currently few neuronal 
models can offer tractable solutions describing how the 
pairwise input correlations translate to spike cross 
correlations.

Pairwise spike count correlation 
coefficient r

12

If the spike trains are identical then this 
commonly used figure of merit is equal 
to one, if they are independent of each 
other then the coefficient is 0. The 
inverse route is less straight forward; 
the interpretation of a correlation 
coefficient in terms of input correlation 
strength is not possible without prior 
knowledge of relevant time scales, firing 
rates and bin size.
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Over the last two decades numerous authors 
have shed light on the spike statistics of integrate 
and fire neurons. Burkitt (2006) summarizes their 
contributions in an excellent review. Here, we 
would like to spotlight some of those findings. For 
a single LIF neuron driven by correlated noise, the 
firing rate was first obtained by Brunel and Sergi 
(1998). Spike autocorrelation and the Fano factor 
were provided by Moreno-Bote and Parga (2006). 
The case of two correlated neurons has proven to 
be particularly challenging, because the Fokker–
Planck equations are analytically tractable only in 
the linear regime of correlation strengths (r ≈ 0) 
and only for a limited set of current correlation 
functions. Some analytical results for the spike 
cross correlation function have been obtained using 
advanced approximation techniques for the prob-
ability density and expressed as an infinite sum of 
implicit functions (Moreno-Bote and Parga, 2004, 
2006). Similarly, the correlation coefficient of two 
weakly correlated LIF neurons has been obtained 
for identical neurons in the limit of large time bins 
(Moreno-Bote and Parga, 2004; de la Rocha et al., 
2007) and studied in specific limits in rate-inho-
mogeneous pairs (Shea-Brown et al., 2008). These 
studies revealed a firing rate dependent increase of 
correlation coefficients in the LIF model and con-
firmed it in pyramidal neurons (de la Rocha et al., 
2007; Shea-Brown et al., 2008). Building on these 
findings, Ostojic et al. (2009) examined how the 
amplitude and time course of the conditional firing 
rate depend on the synaptic parameters, surround-
ing network activity and local connectivity in the LIF 
and exponential integrate and fire model models. 
Using linear response theory Ostojic and colleagues 
identified the conditional firing rate in response to 
weak common input, direct and reciprocal synaptic 
connections in neuronal pairs with different fir-
ing statistics. They found that the amplitude and 
shape of functional interactions varied depending 
on the synaptic properties and background synaptic 
inputs to the post-synaptic neuron(s), i.e., the activ-
ity of the surrounding network.

4 key open challenges
A key challenge for a viable theoretical framework 
is to quantify the impact of the input current cor-
relations on pairwise spike correlations. A subtle 
change in the amount of synchrony can make a 
large difference for many cellular processes, such 
as synaptic plasticity or synaptogenesis. It can also 
strongly affect the information content conveyed 
by the spike trains. Therefore, it is crucial to under-
stand the extent to which a change in input correla-
tions affects spike synchrony. To achieve this goal, 
it is particularly important to obtain spike corre-
lations while taking into account a broad range 

where n
1
(T) and n

2
(T) are spike counts of neu-

ron 1 and 2 measured in synchronous time bins 
of width T. This correlation coefficient is often 
taken as a measure of spike correlation strength. 
The correlation coefficient is equal to one if the 
spike trains are identical, and it is 0 if the spike 
trains are independent. Inversely, values of cor-
relation coefficients close to one are interpreted as 
perfect synchrony, while low values or those indis-
tinguishable from 0 are commonly interpreted as 
weak or 0 spike cross correlations.

3 spike correlations in integrate and 
Fire models
The leaky integrate and fire (LIF) model has long 
served as the preferred neuron model for address-
ing the computational properties of spike cross 
correlations (Moreno-Bote and Parga, 2004; de 
la Rocha et al., 2007). The fluctuating current 
driving the neuron is modeled as a stationary 
Gaussian process (Destexhe et al., 2003). To study 
spike cross correlations in two LIF neurons which 
result from a common noise component, the 
input current is typically split into two statisti-
cally independent parts, one of which (n

C
(t)) is 

common to both neurons:

I t rn t rn t

I t rn t rn t

C

C

1 1

2 2

1

1

( ) ( ) ( ),

( ) ( ) ( ),

= − +

= − +
 (3)

The mixing ratio is determined by the correlation 
strength r. Typically, the dynamics of components 
n

C
(t), n

1
(t), and n

2
(t) are assumed to be filtered 

white noise with a correlation time t
I
 (Moreno-

Bote and Parga, 2006; de la Rocha et al., 2007; 
Ostojic et al., 2009). The voltage dynamics of these 
two neurons can then be described by two dif-
ferential equations:

t m s t

t m s t

M M

M M

dV

dt
V t I t

dV

dt
V t I t

1
1 1

2
2 2

= − + +

= − + +

( ) ( ),

( ) ( ).
 (4)

Upon reaching the threshold value c
0
 a spike is 

emitted and the voltage is reset to a subthreshold 
value. To obtain the firing rate, spike auto and 
cross correlations coupled Fokker–Planck dif-
ferential equations for the probability densities 
of I

1
(t), I

2
(t), V

1
(t), and V

2
(t) need to be solved. 

In related classes of models such as exponential 
or quadratic integrate and fire models, the lin-
ear membrane filter in Eq. 4 is substituted by an 
exponential or a quadratic term and the corre-
sponding Fokker–Planck equation for the voltage 
probability density is employed (Naundorf et al., 
2005, 2006; Marella and Ermentrout, 2008; Vilela 
and Lindner, 2009; Barreiro et al., 2010).

Synchrony
Coincident events in the activity of 
multiple neurons. Synchronous spiking 
activity across neurons is characterized 
by a high degree of temporal fidelity in 
the emission of spikes. Figure 1 (right) 
schematically illustrates synchronous 
spikes in a population of neurons. The 
synchrony level can be quantified by the 
spike correlation function between two 
or more neurons.
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tractable expressions for the pairwise correlation 
coefficients (Tchumatchenko et al., 2010a), char-
acterized the computational properties of spike 
correlations in number of important limits and 
confirmed all basic predictions of this model in 
in vitro cortical neurons (Tchumatchenko et al., 
2010b).

In this model framework, the somatic voltage 
fluctuations of cortical neurons are approximated 
by a stationary, temporally correlated Gaussian 
process. Starting from a stationary Gaussian 
potential V(t) with a correlation function best 
suited for a particular experimental observa-
tion, spikes are included as positive crossings of 
a fixed threshold. We took the positive threshold 
crossings, to remain close to the integrate and fire 
models. An important difference to the integrate 
and fire models is the lack of a reset, because 
the continuity of the potential already imposes 
a spike-free period after the last spike. To keep 
the model’s complexity at bay we assumed a fixed 
spiking threshold, however, the framework can be 
easily modified to incorporate specific threshold 
adaptation mechanisms, e.g., history-dependent 
threshold adaptation (Naundorf et al., 2006). The 
spike train s(t) of a neuron is then given by:

s t V t V t V t( ) ( ( ) )| ( )| ( ( )),= −d c u0
� �  (5)

where d(·) and u(·) are the Dirac delta and Heaviside 
theta functions, respectively. To implement corre-
lations between two neurons, we assumed a volt-
age cross correlation between the voltages of the 
two neurons: 〈 + 〉 =V t V t r cV V1 2 1 2

( ) ( ) ( )t s s t� . Here, 
r is the assumed correlation strength, �c( )t  is the 
temporal voltage correlation function of each 
neuron and sVi

 is the standard deviation of the 
potential fluctuations at neuron i. This approach 
is equivalent to Eq. 3 and is consistent with the 
symmetrical voltage cross correlation function in 
cortical neurons in vivo (Lampl et al., 1999). Now, 
all that is needed to explicitly compute pairwise 
spike conditional firing rate n

cond
(t) in Eq. 2 is 

the Gaussian probability density featuring covari-
ances between the voltages and their derivatives. 
This approach is analytically much more tracta-
ble than the Fokker–Planck formalism associated 
with the coupled differential equations in Eq. 4.

Figure 3 spotlights three analytical results 
obtained in the threshold framework and pre-
sented in more detail in Tchumatchenko et al. 
(2010a):

•	 Firing	rate	as	a	function	of	mean	current	in	
Figure 3 (bottom left)

n
c t t s t

p t t
=

− − +( )exp ( ) ( )/( )I I M I I

I M

0 0
2 22

2

of correlation strengths and  functional forms of 
input correlations that can occur under physiologi-
cal conditions. While the integrate and fire frame-
work provided first glimpses at how correlations 
in the currents are reflected in the spikes, several 
key points remained open:

•	 Do	 correlation	 coefficients	 depend	 linearly	
on the input correlation strength? For exam-
ple, are experimentally recorded weak spike 
correlation coefficients truly indicative of 
weak spike and input correlations?

•	 Do	vanishing	correlation	coefficients	reliably	
indicate independent or uncorrelated spike 
trains and justify correlation-free decoding 
strategies?

•	 How	does	one	best	compare	correlation	coef-
ficients obtained under different experimen-
tal conditions?

In the following, we address these questions in a 
novel threshold framework.

5 novel threshold model Framework
As discussed above, even the most simple and pop-
ular integrate and fire models have severe restric-
tions on the type of accessible input correlations. 
However, neuronal dynamics might not always 
unfold within these artificial limits. Therefore, 
alternative methods with a broader analytically 
accessible range of correlation strengths and tem-
poral forms of pairwise input correlations are 
needed. One of the main points contributing to 
the analytical complexity of the integrate and fire 
framework is the reset after each spike. Therefore, 
several reset-free threshold models have been pro-
posed in the last few years. Using a specific tempo-
ral structure of Gaussian voltage fluctuations Jung 
calculated the spike autocorrelation function of a 
single neuron in a threshold model without reset 
(Jung, 1995). Dorn and Ringach, (2003) later sug-
gested a similar Gaussian approach, but assumed 
that the spikes occur not specifically at the thresh-
old crossings but at any voltage above threshold. 
Svirskis and Hounsgaard (2003) also introduced 
a reset-free model based on the positive thresh-
old crossings of a Gaussian process and obtained 
a series expansion of the conditional firing rate 
of two neurons but did not provide closed-form 
expressions. Recently, two independent studies by 
Burak et al. (2009), and ourselves simultaneously 
proposed a model based on positive threshold 
crossings of correlated Gaussian potentials and 
provided analytical expressions for the firing rate, 
conditional firing rate of a single neuron and two 
correlated neurons (Tchumatchenko et al., 2008). 
Using this framework, we obtained a number of 

Pairwise input correlations
Pairwise input correlations are the 
temporal auto and cross correlation 
functions of the net somatic input 
currents in two neurons. They 
determine the strength and temporal 
structure of pairwise voltage auto and 
cross correlations and ultimately give 
rise to pairwise cross correlations in two 
spike trains.
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de la Rocha et al., 2007; Ostojic et al., 2009). The 
second result provides, to the best of our knowl-
edge, the first analytical description of the sub-
linear dependence of spike cross correlations on 
the input correlation strength which was reported 
in vitro by Binder and Powers (2001) and de la 
Rocha et al. (2007). The third result describes ana-
lytically the prominent firing rate dependence of 
weak spike cross correlations reported for LIF neu-
rons (Moreno-Bote and Parga, 2006; de la Rocha 
et al., 2007; Shea-Brown et al., 2008), in vitro and 
in vivo (de la Rocha et al., 2007; Greenberg et al., 
2008). The last two results are particularly remark-
able because (1) they provide the first closed-form 
analytical description for spike cross correlations in 
a pair of neurons driven by a large class of tempo-
ral current structures and (2) they show that spike 
cross correlations progressively lose their firing rate 
dependence as the correlation strength increases.

This framework also allows us to go one step 
further and explore a previously inaccessible 
territory: the influence of a broad range of cor-
relation strengths and temporal form of spike 
correlations on various measures of spike syn-
chrony. Studying the effect of the temporal form 
of input correlations on the correlation coefficient 
in (Tchumatchenko et al., 2010a) we found that 
the class of spike  correlation functions fulfilling 

•	 Pairwise	spike	cross	correlations	as	a	function	
of input strength in Figure 3 (bottom mid-
dle, n = 6 Hz, t

s
 = 10 ms)
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•	 Weak	 pairwise	 spike	 cross	 correlations	 as	 a	
function of rate dependence in Figure 3 (bot-
tom right, t

s 
= 10 ms)

n n
n
p n ptcond log, ( ) | ( |)12 0

2
4 2− = +( )r

s
.

As a reminder n is the firing rate, c
0 
the spiking 

threshold, t
I
 current correlation time, t

s
 voltage 

correlation time, t
M

 membrane time constant, r 
input correlation strength, s

I
 and s

V
 the stand-

ard deviation of current and voltage fluctuations, 
respectively. The first result in Figure 3 describ-
ing the influence of the mean depolarization 
and current noise variance on the firing rates is 
consistent with previous observations in the inte-
grate and fire framework (Brunel and Sergi, 1998; 

Looks like here
spike correlations are

analytically much more tractable
than in the LIF...
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Figure 3 | Pairwise spike correlations in the novel 
threshold model framework. The spike times neurons 
t1 − t3 and the corresponding spike trains s1(t) and s2(t) 
represented by rectangles in red (top) or blue (center) are 
modeled in the threshold framework by positive threshold 
crossings (black dashed line) of a fluctuating potential V1(t) 
or V2(t), respectively. The correlations between neurons are 

incorporated as symmetric voltage cross correlations. 
Tractable analytical results can be obtained for the 
dependence of firing rate on the mean driving current I0 
(bottom left), correlation coefficient r12 as a function of 
correlation strength r (bottom center) and the weak 
pairwise spike correlation νcond,12(0) − n as a function of 
firing rate n (bottom right).
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its main limits is its restriction to the fluctuation-
driven regime and Gaussian voltage statistics. Yet, 
these specific regimes are supported by growing 
experimental evidence showing that the fluc-
tuation rather than mean depolarization driven 
regime is the primary operation scheme in cor-
tical neurons. The first lines of evidence are the 
exceptionally low firing rates <1 Hz (Margrie et al., 
2002; Greenberg et al., 2008). The second line of 
evidence is the remarkable cortical balance of exci-
tation and inhibition such that neuronal firing is 
driven by fluctuations that transiently escape this 
cancellation (Shadlen and Newsome, 1994; Okun 
and Lampl, 2008). While mean and fluctuation 
driven regimes can differ significantly in their 
spike train regularity, yet they seem to exhibit 
very similar spike cross correlation (de la Rocha 
et al., 2007) and dynamical response properties 
(Koendgen et al., 2008). Therefore, numerous fea-
tures of pairwise spike correlations can be under-
stood by studying the fluctuation-driven regime. 
Even though skewed current distributions that 
violate the Gaussian assumption can be of interest 
in specific cases, experimental evidence suggests 
that the Gaussian distribution can be an excellent 
match for in vivo background fluctuations in the 
dominant cortical cell type of pyramidal neurons, 
e.g., see Box 1 (top) in Destexhe et al. (2003). Other 
neuron models with more involved spike genera-
tion mechanisms such as quadratic or exponential 
integrate and fire indicate the possibility that spike 
cross correlations in a pair of neurons can depend 
on the model specifics (Ostojic et al., 2009; Vilela 
and Lindner, 2009). Yet, realizing how remarkably 
accurate many cortical spike synchrony features 
can be modeled by a clearly barebone-threshold 
model, we are convinced that this model will find 
its place alongside the classical integrate and fire 
models.

n t tcond( )d =
−∞

∞

∫ 0  leads to vanishing correlation 
coefficients in the limit of large time bins. In the 
threshold model, this class of cross spike correla-
tion functions can be obtained from the class of 
voltage correlation functions with C d( ) .t t =

−∞

∞

∫ 0  
As schematically demonstrated in Figure 4, a pop-
ular measure of synchrony, the spike correlation 
coefficient, can fail to indicate the presence of 
pairwise spike cross correlations. Particular care 
needs to be devoted to the time bin size to ensure 
that it is below the typical time scale of the spike 
cross correlation function. This finding is particu-
larly important, because it directly demonstrates 
for the first time that vanishing correlation coeffi-
cients do not imply uncorrelated spike trains and 
therefore they do not readily justify correlation-
free decoding strategies. In summary, we showed 
in Tchumatchenko et al. (2010a) that

•	 the	 firing	 rate,	 bin	 size,	 and	 temporal	 form	
of the voltage cross correlations play a crucial 
role for spike cross correlations. Importantly, 
weak spike correlation coefficients do not 
necessarily imply weak input correlations, 
because the conversion from inputs to spikes 
is in general substantially sub-linear.

•	 spike	output	correlations	can	vanish	despite	
finite input cross correlations. In particular, 
spike count correlations on long time sca-
les can vanish even if count correlations on 
shorter time scales do not.

•	 Relating	a	change	 in	correlation	coefficients	
to a change of input synchrony is best achie-
ved in two pairs of equal firing rates and 
intrinsic time constants, where the coeffi-
cients are computed for small bin sizes.

With all the benefits and insights provided by 
the threshold model, what are its limits? One of 

Lack of pairwise spike 
correla�ons correla�on coefficient  12

Vanishing spike count

12 =0

12 =0

<s1(t)s2(t)>=<s1(t)><s2(t)>

<s1(t)s2(t)>=<s1(t)><s2(t)>

correla�on coefficient  12

Vanishing spike countDoes not imply lack of pairwise  
spike correla�ons

for bin sizes larger 
than intrinsic  
�me scales T/ s

Figure 4 | Vanishing spike count correlations do not 
imply uncorrelated spike trains. While a lack of spike 
cross correlations implies 0 correlation coefficients, the 
opposite does not always hold. We have shown that 
count correlation coefficient r12 can vanish in pairs of 

cross correlated neurons. This effect can be expected if 
r12 is computed for large time bins in neuronal pairs 
where the integral over the spike cross correlation 
function vanishes ∫ =

−∞

∞

n t tcond( )d 0 (Tchumatchenko et al., 
2010a).
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6 conclusions
Correlated activity has been shown to play an 
important role in sensory encoding and cogni-
tive functions. Yet, understanding its properties 
has been difficult with the prevalent theoretical 
methods. In particular many questions regarding 
the implications of measured spike correlations 
remained open. Are weak correlation coefficients 
indicative of weak input correlations? Does a van-
ishing spike correlation coefficient in a pair of 
neurons imply that they are uncorrelated? Can 
spike synchrony across experimental conditions 
be compared simply by comparing correlation 
coefficients? Many of these basic questions were 
neglected in the quest for an easy-to-use measure 
of spike synchrony. To address such fundamen-
tal questions, there are two possible approaches 
to choose from. One approach is to resort to 
advanced simulations of specific neuronal mor-
phology and ion channel composition, studying 
numerically the properties of spike correlation 
measures in various parameter regimes. Another 
approach is to take a minimal model, which can 
replicate the essential properties of spike correla-
tions in real neurons, yet which is simple enough 
to deal with analytically. We took the second 
route and found that a minimal model based on 
the threshold crossings of correlated Gaussian 
potentials can do just that – replicate essential 
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