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Background: With the advent of the GeneChip Exon Arrays, it is now possible to extract “exon-
level” expression estimates, allowing for detection of alternative splicing events, one of the 
primary mechanisms of transcript diversity. In the context of (1) a complex trait use case and (2) 
a human cerebellum vs. heart comparison on previously validated data, we present a transcript-
based statistical model and validation framework to allow detection of alternative exon usage 
(AEU) between different groups. To illustrate the approach, we detect and confirm differences 
in exon usage in the two of the most widely studied mouse genetic models (the C57BL/6J 
and DBA/2J inbred strains) and in a human dataset. Results: We developed a computational 
framework that consists of probe level annotation mapping and statistical modeling to detect 
putative AEU events, as well as visualization and alignment with known splice events. We show 
a dramatic improvement (∼25 fold) in the ability to detect these events using the appropriate 
annotation and statistical model which is actually specified at the transcript level, as compared 
with the transcript cluster/gene-level annotation used on the array. An additional component of 
this workflow is a probe index that allows ranking AEU candidates for validation and can aid in 
identification of false positives due to single nucleotide polymorphisms. Discussion: Our work 
highlights the importance of concordance between the functional unit interrogated (e.g., gene, 
transcripts) and the entity (e.g., exon, probeset) within the statistical model. The framework 
we present is broadly applicable to other platforms (including RNAseq).
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et al., 2006; Clark et al., 2007) allowing for the detection of 
AEU events. Utilizing these data, we developed a computational 
framework to identify and prioritize AEU events. We high-
light the importance of concordance among the functional unit 
interrogated (i.e., gene, transcripts) with the statistical model. 
This work is presented in the context of two use cases: (1) A 
complex trait use case, where we wish to detect “differential 
exon usage” between two of the most commonly used inbred 
mouse strains, and (2) human tissue data, detecting differential 
exon usage between a brain region and the heart on previously 
validated data.

Results
The framework consists of probe level annotation mapping 
and statistical modeling to detect putative AEU events, as 
well as visualization and alignment with known splice events 
(Figure 2). We first present the analysis based on an Ensembl 
transcript mapping of the probes and then compare this with 
the Affymetrix gene aggregate model. The results reported here 
refer only to the “core” probe sets (supported by either RefSeq 
or GenBank transcripts with complete CDS information), which 
are approximately 1/6 of the probesets on the GeneChip Mouse 
Exon 1.0 ST Array. 

BackgRound
Alternative splicing is viewed as one of the major sources of tran-
script diversity with estimated rates of alternative splicing ranging 
between 92 and 94% for all human genes (Modrek and Lee, 2002; 
Wang et al., 2008) and 74% for multi-exon human genes (Johnson 
et al., 2003). Kim et al. (2004) calculated that there are on average 
3.5 alternative transcripts per human gene and approximately 2.5 
alternative transcripts per mouse gene. Additionally, it has been 
shown that alternate exon usage (AEU) events are especially high 
in the brain (Ramsköld et al., 2009). Alternative transcripts are 
often classified by the form of alternative splice event. These events 
include AEU, retained introns and alternative splicing in conjunc-
tion with the use of alternative promoters (McKeown, 1992). AEU 
can be further subdivided into cassette exons (discrete exons that 
can be independently included or excluded) and mutually exclusive 
splicing (which involves the selection of only one from a group 
of two or more exon variants; Figure 1). In addition, there may 
be “exon modifications” due to competing 5′ and 3′ splice sites. 
Clark and Thanaraj (2002) found 60% of alternative splicing events 
involve cassette and mutually exclusive exons.

Exon Arrays (e.g., the Affymetrix GeneChip Mouse Exon 
1.0 ST Array used in the present studies) make it possible to 
interrogate the exon structure of the entire transcript (Gardina 
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(strain-specific alternative splicing/expression). Applying this anal-
ysis to all transcripts that have more than one exon (Ensembl tran-
script annotation), 4614 transcripts were significantly (q < 0.05) 
differentially expressed between the two strains. Among these, 493 
transcripts demonstrated significant exon by strain interactions 
(Table S1 in Supplementary Material). Additionally, a large number 
of transcripts had significant differences in exon usage that were 
not strain specific. This pattern likely reflects AEU common to 
both strains as well as probeset performance differences across a 
gene/transcript. Finally, 58 single-mapped exon transcripts (that 
is, transcripts that were only mapped to one exon using on our 
mapping based on Ensembl annotation within the core probesets) 
were detected as significantly differentially expressed (q < 0.05). 

Effect size can be dampened when the sample source is heteroge-
neous (such as with mouse whole brain) because alternative splice 
variation may be context or location specific. One strategy to adjust for 
this is to specify a probeset model with no exon aggregation to detect 
expression differences within exons. This avoids aggregating across 
exons where probes within the exon may exhibit different expression 
distributions (due to different sources such as brain regions), poten-
tially canceling out differences due to the actual treatment or group 
factor of interest. This model is highly sensitive, as it looks for any 
probeset-level expression difference between the two strains for each 
transcript and is advised in a scenario where one wants to minimize the 
false non-discovery rate (FnDR). At a q-value of 0.05, 16,732 transcripts 
were found to have differential expression at the probeset level between 
the two strains (Table S2 in Supplementary Material). Additionally 
for the validation of candidates, we filtered by effect size, choosing 
only transcripts that had a maximum probeset delta (log expression 
difference) greater than 1 and no B6/D2 SNPs (see section Use Case 
1: Index assessment of putative AEU events), further reducing the set 
to 1295 transcripts, which mapped to 687 unique genes.

use case 1: Visualization of stRain-specific exon usage and 
∆exon
Interaction plots were utilized to visualize strain-specific exon usage. For 
those transcripts with a significant exon by strain interaction (q < 0.05), 
the range of differences between strains in individual exons (∆exon) 
ranged from 0.329 to 7.055 (on a log

2
 scale) for the exon-level model. 

For 33% of the significant exon-level transcripts, the location of the exon 
with the maximal difference between the strains was the first or last exon. 

use case 1: impact of tRanscRipt definition and annotation
We compared the results of our statistical modeling for probe map-
ping based on the Ensembl transcript definition vs. probe mapping 
based on the Affymetrix Transcript Cluster definition (Figure 3). 
Affymetrix defines a Transcript cluster as being the aggregate of the 
multiple transcripts that belong to a gene, so using Transcript cluster 
as a functional unit corresponds to modeling at the gene level for 
every potential exon. In contrast, the entity in Ensembl is truly at the 
single transcript level, and so modeling at the transcript level allows 
for comparison of individual transcript differences. Biologically, 
this model is the most realistic as any subsequent validation would 
involve primers designed at the transcript, not gene, or cluster level. 

Strikingly, there was approximately a 25-fold difference in the 
number of putative alternative transcripts detected. Only 20 AEU 
events were detected based on the transcript cluster annotation 

use case 1: applying the diffeRential exon usage model on 
mouse BRain data
In our first illustration, we apply the framework to mouse whole-
brain samples to detect strain-specific AEUs. A linear model was 
fit per transcript to the Mouse Exon Array data; the observed tran-
script level expression values were viewed as being comprised of 
strain and exon main effects. The interaction between strain and 
exon allowed us to identify strain-specific  differential exon usage 

FiguRe 1 | Types of Aeu events. In detecting AEU events, one can identify 
both (A) cassette exon events and (B) mutually exclusive exon events. The 
dashed line indicates the transcript structure.

FiguRe 2 | Computational Framework for Aeu Detection.Prior to 
statistical analysis, the probe level data is mapped to a single transcript 
annotation. After statistical modeling, putative candidates are identified, which 
can be visualized via interaction plots and alignment with entries of known 
AEU/splice events from a source such as the alternative splicing and transcript 
diversity database (ASTD)1.

1http://www.ebi.ac.uk/astd/
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entirely removed or have from 1 to 3 probes remaining. A simple 
probe index was created to easily identify those cases where a puta-
tive AEU event was based on only 1 probe and therefore could be 
considered a lower confidence expression estimate. In these cases 
the putative AEU event is particularly vulnerable to the effects of 
cryptic (unknown) SNPs. Consider Psmb6, which had a putative 
AEU event detected between the two strains. Upon examination, 
it was determined that the exon with maximal difference had a 
probe index of 1 (Figure 5). Sequencing confirmed the presence 
of a cryptic SNP that was impacting the remaining probe. In these 
cases, the model correctly detected an exon difference in expression 
intensity between the two strains but the cause is not exon usage 
differences but the underlying sequence differences impacting the 
array. The probe index provides an important annotation to aid in 
ranking and prioritizing candidates for validation.

Validation of aeu in use case 1 using Real-time  
quantitatiVe pcR
Three candidates were selected from the probeset-level model 
results for quantitative PCR (qPCR) validation: Atp1a2, Kcnj9, 
and Adam33 (Figure 6; Figures A2 and A3 in Appendix). All three 
candidates showed differential exon expression between the B6 and 
D2 strains for probesets that showed potential exon expression 
differences in the interaction plot compared to other probesets in 
the transcript that did not. It should be noted that Kcnj9 (Figure 
6) is an interesting case that did not show up as DE with the exon-
level model, due to four probesets (4879943, 5079913, 4465532, 
and 4583369) that were not DE, but one that is (4485754). As 
discussed above, the actual expression difference can be washed 
out by aggregating at the exon level when the source material is 
heterogeneous. This reiterates the importance of specifying the 
model carefully.

use case 2: Validation of aeu in humans
In our second use case, we examine tissue-specific differences that 
generally have much larger effect sizes. We utilized our model to 
assess tissue-specific AEU using a Human Tissue dataset using the 
GeneChip Human Exon 1.0 ST Array3. This dataset consists of exon 
expression data for 11 brain regions and peripheral organ tissues. 
Clark et al. (2007) identified brain-specific AEU events by comparing 
six brain regions to nine other organ systems in the body. However, 
in the publicly available dataset, only the cerebellum samples were 
made available to compare with the other organ tissues. In order 
to identify brain-specific AEU events, we compared cerebellum tis-
sue to heart tissue as the closest match to the original comparison 

FiguRe 3 | Annotation strategies for exon array probes. The schematic 
indicates the relationship of gene, transcript and exon structure annotation to 
probes. Golden regions are exons whereas the gray regions represent introns that 
are removed during splicing. The short dashes underneath the exon regions for 
the exon array probe selection region (PSR) indicate individual probes representing 
that PSR. The default Affymetrix transcript cluster annotation (A) was compared 
with a mapping of the probes to Ensembl at the individual transcript (B) level. 
Figure is modified from Affymetrix technical report (Affymetrix).

(Table A1 in Appendix). In the Affymetrix Transcript cluster defini-
tion, the modeling must be done at the gene level, which can obscure 
individual transcript differences (Figure 3). Another important consid-
eration is that the Affymetrix annotation is derived from multiple data 
sources, which can lead to confusion over exon boundaries. Further, 
there is no notion of exon, only of exon cluster defined from multiple 
data sources. As a result, numerous examples exist of single exon genes 
with two exon clusters (Figure A1 in Appendix). Such ambiguities 
and errors can adversely affect analyses such as those we present here. 

use case 1: In sIlIco Validation of exon-leVel model Results 
using the eBi astd dataBase
We used in silico validation of our results utilizing the EBI alterna-
tive splicing and transcript diversity (ASTD) database2. Of the 493 
Ensembl transcripts detected with strain-specific exon usage, 366 
(74.2%) had associated splicing events (Table 1). Alignment of the 
ASTD entries with the interaction plots for each AEU event allows 
visualization and assessment of concordance (Figure 4).

use case 1: index assessment of putatiVe aeu eVents
All data entered in to the analyses were preprocessed such that any 
probes impacted by known SNPs between the two strains were 
removed to avoid spurious hybridization artifacts and the probeset 
was resummarized with the remaining probes (Walter et al., 2007). 
As a result of the SNP mask process, an impacted probeset could be 

2http://www.ebi.ac.uk/astd/

Table 1 | Concordance of putative Aeu of probeset model with public 

domain data from ASTD.

No of strain-specific alternative exon usage transcripts  

mapped to Ensembl (qStrain–exon < 0.05) 493

No of those transcripts represented in ASTD 491 (99.6%)

No of those entries with more than one associated  

ASTD transcript  444 (90.1%)

No with known associated splicing events in ASTD 366 (74.2%)

3http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx
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and the xmapcore Bioconductor package and database (Yates et al., 
2008). We recognize that the results will not be identical to that in 
the original paper as (1) it is based on a subset of the total dataset 
(i.e., three heart and three cerebellum samples from the total dataset 
of 18 brain and 27 other organ samples), leading to decreased power 
and (2) the comparison of cerebellum to heart is not representative 
of all possible AEU events between brain tissue and other organ tis-
sues. Using our algorithm on the reduced dataset, we detected 7442 
potential AEU events. Thirty six events were previously confirmed as 
differentially expressed between brain tissue and other organ tissue by 
RT-PCR in Clark et al. (2007). Our method, despite the incomplete 
comparison, confirmed possible AEU events (significant strain by 
tissue interaction) in the heart/cerebellum comparison for 16/36 
(44%) of these confirms. Further examination of the interaction 
plots shows a large expression difference at the RT-PCR confirmed 
cassette exon events, showing the utility of our model to detect AEU 
events in tissue comparisons (Figure 7).

discussion
We have presented a computational framework that allows for sta-
tistical modeling at the transcript level in order to examine exon-
level differences in expression between groups of interest, as well as a 
confidence index to aid in validation. Importantly, it is open source 
and integrated into the R libraries for greater functionality, and we 
explicitly incorporate the annotation mapping and transcript struc-
ture into the package and the model. This extends the excellent work 
of Su et al. (2008) in which they modeled both strain and gender 
differences. An important difference to point out between the two 
models is that we incorporate the exon structure explicitly in ours to 
allow detection of strain-specific alternative exon usage using data 
from the entire transcript. In the Su et al. (2008) paper, they fit the gene 

FiguRe 5 | Assessment of putative Aeus for cryptic SNPs. The probe 
index is simply the number of probes remaining in the probeset after the 
application of the SNP mask. In this example, there was a known SNP in Exon 
5 of Psmb6, which was found in three of the four probes within the probeset. 
The single remaining probe showed the maximal exon usage difference 
between strains which in turn led to a significant exon x strain interaction. 
Sequencing revealed an unknown SNP (cryptic) within the probe.

4http://xmap.picr.man.ac.uk/download/

FiguRe 4 | Visualization and concordance of putative alternative splice candidates. Data for putative alternative splice candidates can be visualized via interaction 
plots with the log2 intensity on the Y axis and Ensembl exons on the X axis. The plots can then be aligned with entries from ASTD to determine if there is concordance 
between putative alternative exon usage from the computational detection framework and known splice events (such as the cassette exon in this example).

of brain tissue vs. other organ tissue using the Splicing Index. We 
utilized the Xmap Exon Array/Ensembl database4 mapping in mod-
eling transcript behavior by building a bridge between our package 
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fers from our model in at least two respects. First of all, identification 
of candidate genes is done on a per-sample level, whereas our model 
allows for the explicit comparison of groups such as tissues or strains 
on both the exon-level and transcript level. Secondly, FIRMAGene 
does not distinguish between residuals that are due to alternative splic-
ing from residuals that are the result of poor probe design, whereas in 
our methodology poor probe design is apparent when comparing the 
expression of exons across groups in the context of the probe index. 

The computational framework provided here allows for detec-
tion of differential AEU events between two groups (such as inbred 
strains or tissues). It is critical to consider how the probe sets 
are mapped to annotation, particularly when one is attempting 
to model transcript level diversity. Different strategies in probe 
annotation and gene vs. transcript structure can lead to dramatic 
differences in detection and can impact the ability to interpret the 
results. In addition, the presence of underlying heterogeneity in the 
source material can guide the choice of exon vs. probeset models. 

Visualization and integration with known splice/alternative 
transcript data can allow assessment of putative strain-specific exon 
usage. Alignment with databases such as ASTD can provide a meas-
ure of in silico validation for AEU events. We note that our approach 
will identify an AEU but is not able to distinguish between different 
types of AEU events. This can be easily incorporated into the model 
framework and is an area of future research. However, given that 
much of the transcript diversity is still not well understood, experi-
mental confirmation is a necessary step for the validation of novel 
events. However, it is important to extract as much information 
from the data as possible with regard to data confidence to guide 
evaluation of putative AEUs. 

It has been noted that the impact of SNPs due to strain differ-
ences from the target sequence can be reduced by SNP masking 
(Walter et al., 2007), and with the recent availability of the complete 

and exon data to the model individually. Another statistical method, 
FIRMAGene, utilizes residuals from probe level modeling from the 
Robust Multichip Analysis normalization as a method of detecting 
AEU events (Purdom et al., 2008). Chains of adjacent residuals that 
deviate from 0 are taken as evidence of AEU events. FIRMAGene dif-

FiguRe 6 | exon array expression at probeset-level and confirmation by qPCR. Exon array probesets indicated in red are the largest exon delta for a transcript 
detected as significant by the algorithm for (q < 0.05) strain by probeset interaction in whole brain. TaqMan (Applied Biosystems, Foster City, CA, USA) qPCR 
probes spanning exons are indicated in blue. Those with p < 0.005 are indicated in red as differentially expressed. The vertical lines indicate exon boundaries and are 
not drawn to scale.

FiguRe 7 | Plot of brain specific Aeu event in human tissue dataset. 
Interaction plot of brain specific AEU event in human tissue dataset. Note that 
expression in exon 14 is large for group 2 (brain) while for heart (group 1), the 
expression is much lower. This cassette exon event has been confirmed by 
RT-PCR in Clark et al.’s (2007) study.
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and labeling, whole-brain total RNA samples were each hybrid-
ized to AffymetrixGeneChip® Mouse Exon 1.0 ST Array (24 arrays 
total). The procedures used follow the Affymetrix Whole Transcript 
Sense Target Labeling Assay, rev3, protocol. Additional details can be 
found at https://www.affymetrix.com/support/downloads/manu-
als/wt_sensetarget_label_manual.pdf (Affymetrix, Inc., 2005).

low leVel analysis
All CEL files were processed in the Affy package (version 
1.12.2) in the statistical programming environment R under the 
Bioconductor package (R version 2.6.06, Bioconductor 2.17). All 
data was RMA [11] background corrected and normalized. Data 
were summarized at the probeset level using the median polish. 
The Mouseexonpmcdf annotation package was utilized for sum-
marization at the probeset-level8. It should be noted that the con-
trol probesets Affymetrix uses for background estimation are not 
included in this mapping.

snp masking
As in Walter et al. (2007), the data were SNP masked at the probe 
level. Prior to the summarization step at the probeset level described 
above, individual probes were masked (expression value replaced by 
NA) if there was a known SNP within the boundaries of the probe. 
The SNP mask was built by comparing the Affymetrix design time 
annotation files (GFF) files (based on NCBI mouse build 36) for 
each chromosome to known SNP locations in DBSNP. A total of 
12,101 probesets were masked to some degree, representing 5.4% of 
the core probesets. As the SNP mask removes probes from analysis, 
a probe index was created to determine how many probes/probesets 
remained in the analysis. The full, masked dataset is available on 
GEO under accession number GSE27282.

data filteRing
The Affymetrix GeneChip® Mouse Exon 1.0 ST Array (Affymetrix, 
Santa Clara, CA, USA) is a single array with over 4.5 million unique 
25-mer oligonucleotide features constituting approximately 
1.2 million probe sets. To avoid signals influenced by non-specific 
hybridization, we based our analysis solely on the probesets with 
unique hybridization targets. Based on recent work by Robinson 
and Speed (2009) the data was further filtered such that only probe 
sets annotated as “core” were included for the exon-level model 
of Use Case 1. Core annotated probesets are supported by either 
RefSeq or GenBank transcripts with complete CDS information. 

annotation mapping
All probes were mapped to transcripts using both the Affymetrix 
transcript cluster annotation and Ensembl transcript annotation. 
The Affymetrix transcript cluster is an aggregate of overlapping tran-
script information from a variety of annotation sources that roughly 
corresponds to the gene level (Affymetrix). For the Ensembl annota-
tion, probes were mapped to an Ensembl transcript ID and Exon 
ID if they had any overlap within the boundaries of these entities. 
Elimination of probesets that were not completely contained within 

B6 vs. D2 SNP list5, the confounding effects of the SNPs can been 
greatly reduced (at the time of this manuscript, the Sanger data was 
still under embargo and not utilized for this analysis). However, 
a reduced probe number per probe set can decrease the power to 
detect events. When using a SNP mask, it is essential to capture 
the number of probes remaining within a probeset that were used 
to detect the exon signal. We utilize this annotation (the probe 
index) to aid in our assessment of putative candidates. Our cur-
rent opinion is that when only 1 probe remains and when apparent 
significant differences in expression are detected, the results should 
be viewed very cautiously. An issue in part related to the application 
of a SNP mask is that not all of the signal estimates are independ-
ent. In smaller exons, probes often overlap, effectively reducing the 
number of independent probes and allowing for a single SNP to 
impact multiple probes. Therefore, all candidate strain-dependent 
AEU events need to be independently confirmed. We note that this 
issue is not unique to mouse but can occur in any population where 
naturally occurring polymorphisms could impact hybridization 
(such as human). In addition to the issue of probe independence, 
probe quality is a potential concern. We detected significant strain 
independent exon effects that could be due to probe quality, exon 
shut-off or annotation issues. Low level analysis is crucial for accu-
rate detection of putative AEU events. Recent work by Kapur et al. 
(2007) utilized a probe selection strategy to identify probes with 
highly correlated intensities across multiple samples to improve 
gene-level expression estimates. 
In addition, Purdom et al. (2008), developed an approach that 
also emphasizes low level analysis to evaluate levels of alternative 
splicing in individual samples without replication at the gene/
transcript cluster level. Similar procedures could be utilized for 
individual transcript level estimates. We recognize that with the 
advent of RNA-seq, probe-based issues will no longer be a concern. 
Our workflow was utilized by Bottomly (2010) to detect alterna-
tive exon usage from RNAseq, highlighting the generalizability of 
our approach.

methods
sample pRepaRation
Naïve, adult, male C57BL/6J (B6; n = 12) and DBA/2J (D2; n = 12) 
strain mice were euthanized by cervical dislocation, the whole brain 
was rapidly removed and flash-frozen in liquid nitrogen. Total RNA 
was isolated using TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) 
in a one-step guanidine isothiocyanate procedure. For microarray 
analyses, the extracted RNA was purified using RNeasy (Qiagen, 
Valencia, CA, USA). RNA samples were evaluated by ultraviolet 
spectroscopy for purity and concentration.

affymetRix exon aRRays
Samples containing at least 10 μg of total RNA were sent to the 
Oregon Health and Science University Gene Microarray Shared 
Resource facility for further quality assessment using an Agilent 2100 
BioAnalyzer and for GeneChip array analysis. Because two samples 
were scanned following a recalibration of the scanner, the dataset 
reported here includes whole-brain samples from 22 individual mice 
(10 B6 and 12 D2). After ribosomal RNA reduction, amplification, 6http://www.r-project.org

7http://www.bioconductor.org
8http://xmap.picr.man.ac.uk/download/5www.sanger.ac.uk/resources/mouse/genomes/
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implementation of softwaRe packages
The statistical modeling routines used above have been integrated 
into two R/Bioconductor software packages: ExonModelStrain, 
which enables users to run this strain-specific exon modeling. The 
visualization of the significant interactions to allow rapid identi-
fication of AEUs of interest (and for comparison with other data-
bases such as ASTD), is in the function PlotExonResults() within 
the ExonModelStrain package. This package is dependent on the 
exon probeset to Ensembl mapping, which is available as a sepa-
rate SQLite based database called mouseexonensembl.db, or the 
exonmap Bioconductor package with a separate XMap install. Both 
of these packages are available at http://www.ohsu.edu/parc/exon/
exon_R_packages.htm and will be contributed to the Bioconductor 
project10.

quantitatiVe Real-time pcR
Quantitative PCR was performed using a standard TaqMan proto-
col on an ABI Prism7500 thermal cycler using 2-Step PCR Master 
Mix (Applied Biosystems, Foster City, CA, USA) as previously 
described in Kozell et al. (2009). Briefly, naïve D2 and B6 mice (adult 
males) were euthanized by cervical dislocation (n = 11 per strain), 
the brains were cut in half sagitally, flash-frozen in liquid nitro-
gen and stored at −80°C. Total RNA was reverse transcribed using 
random hexamers as per protocol (TaqMan Reverse Transcription 
Kit, Applied Biosystems, Foster City, CA, USA).

Because target probe sequence information for TaqMan 
assays is proprietary, amplicon sequences were approximated 
using the Applied Biosystems coordinates, which correspond 
to the amplicon’s center nucleotide and take into account the 
provided amplicon length. All primer and target probe sequences 
were aligned with SNP annotation. For each candidate, rela-
tive expression was measured using validated gene-specific, 
B6/D2 SNP-free TaqMan assays (Kcnj9: Mm01290202; Atp1a2: 
Mm00617899; Adam33: Mm00459691, Mm00459709). Addi-
tionally, a custom TaqMan probe was employed for Kcnj9 (for-
ward primer: GTCATTCTCGAGGGCATGGT, reverse primer: 
CACCAGGTACGAGCTTCGA, reporter sequence: CCACG-
GGAATGACG) and Atp1a2 (forward primer: ATTGAGGTCTC-
CCTGAGTAGGTATC, reverse: CACCTCAGTGCACAGTGTCT, 
reporter: CTGCCCACCACATGCA). The comparative (∆∆C

t
) 

method (Livak and Schmittgen, 2001) was used for relative 
quantification analyses.
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an Ensembl Exon produced minimal effects on the number of sig-
nificant transcripts (Table A3 in Appendix). It should be noted that 
another mapping database for Mouse Exon entities exists: XMap9 
. This mapping was utilized for the probeset-level model, and the 
Human use case, as it maps beyond the core probesets, increasing 
our sensitivity to detecting possible splicing events in the 3′ UTR 
region (Yates et al., 2008). However, the XMap implementation 
also maps intronic regions and is not available as an easily portable 
Bioconductor database package. Our R package is also compatible 
with XMap, extending its utility to Human and Rat Exon arrays in 
addition to Mouse. The Ensembl mapping allowed us to utilize a 
single transcript level structure for the statistical modeling.

data stRatification
It was noted that the transcript structure and probeset distribu-
tion were diverse. Transcripts were therefore classified into one 
of three categories. Category A transcripts were single exon tran-
scripts. Category B transcripts were transcripts with multiple exons 
but only a single probeset per exon. Category C transcripts were 
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Each category was analyzed separately.

statistical modeling
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Yijk j k i j jk ijk= + + + + +µ α β π αβ ε( ) :

Y
ijk

 = response (transcript expression)
μ = average expression of a transcript
α = strain effect (Between subjects factor) where j = 1–2  

different strains
β = exon effect (within subjects factor) where k = 1 … x different 

exons in the transcript
π = individual mouse/subject effect (random subjects factor 

which is nested in strain)
αβ = interaction representing differential expression of exons 

between different strains
ε = error term.
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FiguRe A1 | illustration of Affymetrix transcript structure vs. Ensembl transcript structure. Olfr378 is annotated in Ensembl as a single exon gene on the (−) 
strand. However, Affymetrix specifies two “exon clusters” (148926 and 148927) and two corresponding core probesets, one of which is highly expressed (4865105) 
and one of which is not (5151560). Analyzing the data using this transcriptional structure would be misleadingly interpreted as exon shut-off of second exon cluster.
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FiguRe A3 | Adam33, an additional qPCR confirm. Legend is identical as for Figure 6.
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Table A1 | Putative strain-specific alternative exon usage candidates 

based on gene/transcript-cluster level annotation. There is a 25-fold 

reduction in the number of transcripts identified here as compared with the 

transcript-based model in Table S1 in Supplementary Material.

Transcript gene symbol qStrain/exon Chromosome 

cluster id

6751339 Neu2 0.0427 1

6775762 Stab2 0.0427 10

6791332 A830036E02Rik 0.0371 11

6791641 Gfap 0.0473 11

6800890 Eapp 0.0068 12

6803223 Serpina1a 0.0261 12

6848737 Rps6ka2 0.0006 17

6881735 Snrpb2 0.0000 2

6891690 Rbbp9 0.0427 2

6904367 EG381438 0.0030 3

6921058 Cntfr 0.0247 4

6921120 BC049635 0.0286 4

6941294 Cox6a1 0.0005 5

6950504 BC049715 0.0010 6

6969735 Rps3 0.0000 7

6977083 2510049I19Rik 0.0005 8

6977778 Prdx2 0.0000 8

6992133 Pik3r4 0.0427 9

6855158 EG667977 0.0006 17

6940361 Coq2 0.0369 5
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