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Brain–computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram 
and trains of action potentials as inputs to analyze brain activity for communication purposes 
and/or the control of external devices. Thus far it is not known whether a BCI system can be 
developed that utilizes the states of brain structures that are situated well below the cortical 
surface, such as the hippocampus. In order to address this question we used the activity of 
hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike 
activity was recorded from the hippocampus during foraging and analyzed off-line to optimize 
the spike sorting and position reconstruction algorithm of rats. Then the spike activity was 
recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its 
locomotor movement was captured with a video tracking system. Data were acquired to 
calculate the rat’s trajectories and to identify place fields. Then a Bayesian classifier was 
trained to predict the position of the rat given its neural activity. This information was used 
in subsequent trials to predict the rat’s position in real-time. The real-time experiments were 
successfully performed and yielded an error between 12.2 and 17.4% using 5–6 neurons. 
It must be noted here that the encoding step was done with data recorded before the real-
time experiment and comparable accuracies between off-line (mean error of 15.9% for three 
rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows 
proof of principle that position reconstruction can be done in real-time, that PCs were stable 
and spike sorting was robust enough to generalize from the training run to the real-time 
reconstruction phase of the experiment. Real-time reconstruction may be used for a variety 
of purposes, including creating behavioral–neuronal feedback loops or for implementing 
neuroprosthetic control.
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the cortical surface. In order to address this question we used the 
activity of hippocampal place cells (PCs) to predict the position 
of an animal (rat) in real-time.

Neural cells with spatially modulated firing have been found 
in almost all areas of the hippocampus and in some surround-
ing areas, such as medial entorhinal cortex (Hafting et al., 2005). 
Hippocampal PCs may provide a representation of an animal’s 
position in its environment and recent data suggests also time-
dependent episodic coding (Leutgeb et al., 2005; Pastalkova et al., 
2008; Rennó-Costa et al., 2010). Their background firing rate is 
low, but when an animal enters the receptive field of the neuron, its 
firing rate rapidly increases (to a maximum between 5 and 30 Hz; 
O’Keefe and Dostrovsky, 1971). This specific location is called the 
place field (PF) of that particular neuron.

Animals use different cues to navigate and to build cognitive 
environmental representations which can be divided into idi-
othetic (self-motion) and external landmarks (Knierim et al., 1998). 

IntroductIon
Brain–computer interfaces (BCI) are using the electroencephalo-
gram (EEG), the electrocorticogram (ECoG), and trains of action 
potentials as inputs to analyze brain activity for communication 
purposes and/or the control of external devices (McFarland et al., 
2008; Schalk et al., 2008; Velliste et al., 2008). The major difference 
between the three types of measures is their spatial resolution. In 
humans, scalp EEG provides a spatial resolution of several centim-
eter, ECoG of several millimeter and spikes of several micrometer. 
EEG and ECoG based BCI systems use mostly motor imagery and 
evoked potentials (Wolpaw et al., 2003; McFarland et al., 2008; 
Guger et al., 2009; Pfurtscheller et al., 2010). BCI systems based on 
spikes have thus far used action potentials from the primary motor 
area that allow monkeys or humans to control robotic devices or 
computer systems (Hochberg et al., 2006; Velliste et al., 2008). Thus 
far it is not known whether a BCI system can be developed that 
utilizes the states of central brain structures located well below 
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off-lIne posItIon reconstructIon
For off-line position reconstruction the following tasks have to be 
performed (see Figure 1):

(1) Data acquisition: first training data has to be acquired of a 
rat moving around in a two-dimensional space. Therefore 
the x- and y-positions of the rat have to be acquired with 
sufficient time resolution to capture the movements of the 
animal accurately. Implanted electrodes connected to an 
amplifier are used to record action potentials from the hip-
pocampus together with the rat’s position information. The 
recording must last long enough to ensure that the rat visits 
each position of the arena. The tracking data must be availa-
ble continuously throughout the whole recording and spike 
amplitudes have to be checked for artifacts.

(2) Encoding step: manual spike sorting is performed to assign 
to each spike a certain neuron number, to be able to distin-
guish activity of different neurons and to remove noise. This 
results in spike templates for automatic spike sorting and 
allows to calculate firing rate maps in order to identify PFs of 
the recorded cells. The firing rate maps and tracking infor-
mation are used as training data for a position reconstruc-
tion algorithm.

(3) Decoding step: in this step spiking activity, recorded from a 
different time segment than in (2), but from the same rat and 
the same session, is used as input into the position recon-
struction algorithm to reconstruct (decode) the trajectories 
of the rat’s movements occurring during the period that very 
same spike trains were recorded.

(4) Accuracy calculation: the reconstructed position based on 
spikes is compared with the animal’s real position acqui-
red with the tracking system to calculate the accuracy of the 
procedure.

off-lIne experIments and recordIng setup
For the off-line experiments action potential data were recorded 
from three rats from CA1 or subiculum at IDIBAPS (Barcelona) 
and the Institute of Cognitive Neuroscience (University College 
London, UCL). Recording details are given in Table 1. The rats were 
chronically implanted with a microdrive and tetrodes were used 
for the recordings. The electrodes were connected to the record-
ing system (sampling rate 48 Hz, bandpass: 300 Hz–6 kHz) via a 
headstage amplifier. For tracking the rat’s position, small infrared 
light-emitting diodes (LEDs) were attached to the rat’s head and 
a video camera was mounted above the experimental arena. The 
sampling frequency for the position-tracking signal was 48 Hz 
(IDIBAPS) and 46.875 Hz (UCL). Animals were food-deprived 
up to 80% of their original weight after which recordings com-
menced. Grains of sweetened rice were thrown in the enclosed 
environment every 20 s at random locations within the open field, 
keeping the animal in continuous locomotion, thereby allowing a 
complete sampling of the environment. IDIBAPS rats were cared 
for and treated in accordance with Spanish regulatory laws (BOE 
256; October 25, 1990) which comply with the EU guidelines on 
protection of vertebrates used for experimentation (Strasbourg 
March 18, 1986). The animal care facility is registered with the 
number B9900020 and is regulated by the Real Decreto (Español) 

Rodents use landmarks to guide them to specific locations and they 
find the way back without landmarks by using self-motion cues 
known as path integration (O’Keefe and Conway, 1980; Etienne, 
1992). In blind rats, Save et al. (1998) showed that self-motion (idi-
othetic) information in conjunction with stimulus recognition is 
sufficient for normal firing of PCs. However, path integration tends 
to accumulate errors over time and therefore a re-calibration by 
fixed external landmarks is required (Poucet et al., 2003).

Both cells in the hippocampus proper (CA1) and subiculum 
show location related firing patterns. CA1 cells provide a spatial 
representation of the environment, and can even show multiple 
maps for one environment when environmental cues are changed 
(Leutgeb et al., 2005; Rennó-Costa et al., 2010). In contrast, sub-
icular cells provide a representation of the geometric relationships 
between different locations in an environment (Sharp, 1997, 1999). 
Parasubicular and subicular PCs tend to show higher levels of back-
ground activity and have larger PFs than hippocampal PCs (CA1; 
Taube, 1995).

Place cells were used to reconstruct the path of rats by inves-
tigating their firing patterns (Wilson and McNaughton, 1993; 
Brown et al., 1998; Zhang et al., 1998; Jensen and Lisman, 2000; 
Barbieri et al., 2005). All of these studies used hippocampal PCs, 
with large numbers of simultaneously recorded neurons, in two 
cases using linear tracks (Zhang et al., 1998; Jensen and Lisman, 
2000), in two other cases circular environments (Brown et al., 
1998; Barbieri et al., 2005), and in one case in a rectangular 
environment (Wilson and McNaughton, 1993). In these studies 
the spike information and position of the rat were recorded first 
before position reconstruction methods were applied off-line. 
For reconstruction Template Matching and Bayesian methods 
were investigated. In general a Bayesian two-step algorithm tak-
ing into account the previous position of the rat performed best 
and was tested by several groups (Brown et al., 1998; Zhang et al., 
1998; Jensen and Lisman, 2000; Barbieri et al., 2005). Importantly, 
data of the same run was used for training and for testing the 
performance.

In this study we test whether the rat’s position can be recon-
structed in real-time using training data acquired before the actual 
experiment. For this task it is important that all steps including 
data acquisition, visualization of spikes, storage, spike sorting, 
and position reconstruction are done in real-time without delay. 
In this way, PC firing can be used to provide on-line feedback 
to the rat to manipulate its behavior and possibly manipulate 
underlying cognitive processes. First we investigate three differ-
ent rats foraging in a rectangular environment. For the position 
reconstruction a Bayesian two-step algorithm was implemented 
and tested to identify the important parameters of the algorithm. 
We tested how neurons of CA1 and neurons with larger PFs than 
those found in CA1, such as subicular neurons, perform in this 
environment. Then we implemented a spike sorting algorithm 
that works also in real-time with high accuracy and speed and 
compared it to manual and automatic spike sorting results (done 
off-line). Based on these results we started the real-time posi-
tion reconstruction experiments with one rat to test reconstruc-
tion accuracy using previously recorded training data and to test 
whether all analysis tasks could be performed fast enough to sup-
port real-time reconstruction.
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FIgure 1 | Spikes and tracking information were acquired and the first 
50% of the data were used for the encoding step, the last 50% were used 
for the decoding. Then in the encoding step first the data were manually sorted 
and firing rate maps and spike templates were calculated from the spike trains. 
From the position-tracking data the probability distribution was calculated. In the 
decoding step the spikes are automatically sorted with the spike templates 
calculated before. Then the firing rate of each neuron was calculated and passed 

together with the probability distribution of position and with the firing rate maps 
into the Bayesian two-step algorithm. The Bayesian two-step algorithm returns 
the reconstructed position and was compared to the position coming from the 
tracking system to calculate the overall accuracy of the reconstruction 
procedure. In real-time mode instead of splitting the data in 50% parts, one run 
was performed for the encoding and later on another run was performed for the 
real-time decoding step.

Table 1 | recording information of the off-line experiments (three rats) and off-line position reconstruction error relative to arena diagonal for 

manual and automatic spike sorting procedures.

Rat number (one session per rat)  1 2 3 All

No. of cells 7 8 11 

Hippocampal region CA1 CA1 Subiculum 

Field size (m) 0.7 × 0.7 0.5 × 0.5 1 × 1 

Test field shape    

Max. theoretical error (m) 0.99 0.71 1.41 

Recording duration (s) 240 477 1244 

Manual sorting median error (%)/(cm) 11.3/12.8 14.4/10.1 17.4/24.7 14.4 ± 3.1/15.9 ± 7.8

KlustaKwik sorting median error (%)/(cm) 14.4/16.3 15.2/10.7 18.3/25.9 16.0 ± 2.1/17.6 ± 7.7

3σ median error (%)/(cm) 14.3/16.1 13.3/9.4 19.3/27.3 15.6 ± 3.2/17.6 ± 9.0

3σ real-time median error (%)/(cm) 15.8/15.7 14.7/10.4 17.3/24.4 15.9 ± 1.3/16.8 ± 7.1

Smoothing Kernel for rate map 19 × 19 20 × 20 20 × 20 

The optimal reconstruction window was 3 s and the step size 0.5 s for all rats.
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The reconstruction algorithm can be improved off-line by 
tweaking several parameters: (i) length of reconstruction window: 
this defines the degree of averaging the spiking activity over time; 
(ii) step size for shifting the reconstruction window forward after 
each iteration, (iii) smoothing factor of PFs: firing rate and spatial 
occupancy distributions were smoothed using a rectangular filter. 
This reduced the influence of outliers on the reconstruction result. 
(iv) The minimum number of spikes within each reconstruction 
window: if this parameter is set to a value m higher than zero, the 
reconstruction is only performed for windows that include at least 
m spikes. If this condition is not fulfilled the reconstruction for 
this step is skipped and the position is interpolated. Setting m to 
a high value affects the reconstruction accuracy but also reduces 
the number of time points where the reconstruction can be per-
formed at all. (v) The number of PCs. It is important to find a 
parameter combination yielding the best reconstruction result. 
Therefore the reconstruction accuracy was compared for differ-
ent parameter combinations and the optimal was selected (length 
of reconstruction window: 0.5, 1–10 s in steps of 1; step size: 100, 
200, 500, 1000, 2000 ms; smoothing factor: 5 × 5 to 30 × 30 in 
steps of 1 × 1). The datasets were divided into two equally long 
parts. Algorithm training (encoding) was performed on the first 
half of each recording session, while the remaining 50% was used 
for decoding (reconstruction).

off-lIne results
Figure 2 shows the reconstruction results computed with the 
Bayesian two-step algorithm for one recording (rat 2) of 477 s 
length. Data from seconds 0 to 240 were used to train the algo-
rithm and the interval 241–477 was used to test the accuracy of 
the method.

To calculate the reconstruction error, the reconstructed position 
was compared to the position known from the position-tracking 
data. Figure 2 shows that the reconstructed path follows the real 
path for many data points of the recording. In this case the median 
reconstruction error was 9.4 cm or 13.3%. The graph illustrates 
some erratic jumps of the reconstructed path in both x- and y-coor-
dinates (e.g., at seconds 280, 365, 415,…) which were mostly caused 
by a drop in firing rate.

Table 1 compares reconstruction performance for different spike 
sorting methods for all rats. Spikes were sorted (i) manually, (ii) 
with the KlustaKwik (Harris et al., 2000; Redish, 2008) algorithm 
using the energy, amplitude, and first principal component of spike 
waveforms, (iii) with the 3σ method and, (iv) in real-time mode 
with the 3σ real-time method. The 3σ method will be described 
below. For methods i–iii the spike sorting was performed for the 
first 50% of the data of a session to yield training data and for the 
last 50% of the session to have testing data. The firing field was 
calculated only from the training data and the position reconstruc-
tion algorithm was trained only with the training data. For the real-
time operation it is not possible to sort the spikes in advance and 
therefore a real-time sorting algorithm was developed. This means 
that only information from the training data can be used to sort 
the spikes of the testing data and this is tested with the method iv.

The real-time 3σ method uses the manual sorting results 
as input to calculate average spike waveforms for each neuron. 
Additionally the SD of the maximum and the minimum voltages 

1201 October 1, 2005. UCL rats handling and care were conducted 
under Home Office licensing according to the guidelines in the 
Animals (Scientific Procedures) Act of 1986.

The reconstruction was tested in square arenas of different sizes. 
The size of the arenas leads also to the maximum theoretical posi-
tion reconstruction error by calculating the diagonal distance (e.g., 
70 cm*SQRT(2) = 99 cm). The recording duration was between 
240–1244 s.

off-lIne posItIon reconstructIon algorIthm
First, the recorded spike activity was used as input for the manual 
spike sorting procedure to separate neuronal activity picked 
up by the electrodes into single cell activity. To carry out the 
sorting between spikes, amplitudes, shapes, and timing of the 
spikes were compared across different electrodes. Units were 
only included for further analysis if no spike was present in the 
first millisecond of the interspike interval histogram (ISIH). 
In real-time mode the spike sorting must be done automati-
cally. Therefore the resulting templates from the manual sorting 
were used to resort the spike activity to simulate the real-time 
procedure.

Next, firing rate maps were created based on spike and tracking 
information. The arena was divided into subsets of space (64 × 64) 
and a specific class (unique ID) was assigned to each pixel. This 
led to an edge length for each pixel of, e.g., 1.09 cm for rat 1. The 
firing rate for each class was calculated by counting the number of 
spikes within this location. Afterward these firing rate maps were 
spatially smoothed with a window of specific length (Smoothing 
Kernel in Table 1).

For position reconstruction the Bayesian two-step algorithm 
with continuity constraint was implemented (Zhang et al., 1998). 
The probability of being at position x, given the number of spikes 
n of all the cells within the time window is

P x n P x f x f xi
n

i

N

i
i

N
i( | ) ( ) ( ) exp ( )= ⋅ 





⋅ − ⋅




= =

∏ ∑
1 1

∆
 

(1)

where P(x) is the rat’s position distribution, f
i 
(x) is the average 

firing rate of cell i at position x, N is the total number of PCs, ∆ is 
the length of the time window. The most probable position will be 
regarded as the animal’s position:

ˆ arg max ( | ),x P x n
x

Bayes step1− =
 

(2)

A continuity constraint can improve the accuracy of recon-
struction by reducing sudden jumps in the reconstructed path by 
incorporating the reconstructed position from the preceding time 
step and speed information (e.g., Barbieri et al., 2005). This gives 
the Bayesian two-step algorithm:

P x n x P x n P x xt t t t t t t( | , ) ( | ) ( | )− −= ⋅1 1  (3)

The firing rates of all cells within a sliding time window were 
compared with the firing rate vectors of each pixel that were set 
up in the training phase. A pixel number (e.g., 8 out of 64 × 64) 
was returned which identified the reconstructed position. Then 
the time window was shifted to the next reconstruction position.
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(2) Real-time spike sorting: is performed by comparing inco-
ming spikes with templates to assign each spike to a specific 
neuron and to remove noise.

(3) Real-time decoding: the position reconstruction algorithm 
uses the on-line sorted spikes and the firing rate vector as 
inputs to predict the position of the animal.

(4) Accuracy: the video tracking information can be used to 
compare the predicted position with the rat’s position and to 
calculate the accuracy.

For the real-time experiments tetrodes were implanted in 
one rat at IDIBAPS and connected to a lightweight headstage 
amplifier. The headstage amplifier was mounted with a micro-
drive on the head of the rat and was connected with a flexible 
cable to the main biosignal amplifier that sampled the data with 
38.4 kHz. The amplifier used for each channel a 24 Bit analog 
to digital converter and oversampling for high data quality. The 
data were transmitted with a USB interface to a laptop com-
puter running Microsoft Windows. The video based tracking 
system was mounted above the arena of the rat and acquired 
the x- and y-positions of the rat with 50 Hz resolution. For the 
real-time analysis g.USBamp Highspeed On-line Processing for 
Simulink (g.tec medical engineering GmbH, Austria) was used. 
This environment uses hardware interrupt controlled data trans-
fer to operate the Simulink model in real-time. The real-time 
model is shown in Figure 3.

The g.USBamp amplifier device driver reads in the data into 
Simulink and the data are converted to double precision. Then the 
tetrodes (up to four in the model) are re-referenced by performing 
bipolar derivations. Next, the data is bandpass filtered between 
300 Hz and 6 kHz to remove artifacts. The spike threshold Detection 

of spike traces are calculated. Next, these averages were used as 
templates to automatically sort the spikes. In real-time mode, the 
algorithm computes for each newly recorded spike the differences 
to all existing neuron-templates. At each sample point the difference 
is calculated and the results are summed up. The neuron whose 
template has the smallest distance to the new spike is identified 
as the one to which that spike belongs. When noise is recorded 
the algorithm would assign it to the template having the smallest 
distance to it, no matter what the signal looks like. To be able to dis-
tinguish noise from neuronal signals, the SD of the maximum and 
minimum of the waveform templates were considered. Therefore 
a 3σ border of all maxima and minima was calculated to define 
borders for spike acceptance for every lead. Small spikes hidden 
in the background noise were already rejected by the thresholding 
done for spike acceptance.

Table 1 shows that the median position reconstruction error for 
all four spike sorting methods for each rat and an average for all 
recordings. The manual spike sorting reached on average the low-
est error rate of 14.4%, followed by the 3σ methods with 15.6 and 
15.9%. But in general all methods had a very similar performance. 
Of special importance is that the 3σ and 3σ real-time methods gave 
almost the same results.

real-tIme experIments
In real-time mode the following steps must be performed (also 
shown in Figure 1):

(1) Real-time data acquisition: action potentials are recorded 
together with tracking information, but now the tracking 
information is just recorded to evaluate the performance of 
the system afterward.

FIgure 2 | rat’s trajectory reconstruction based on place cell firing in off-line mode. (A,B) Real (red) and reconstructed x- and y-positions (blue). (C) 
Reconstruction error and median error of the whole recording (solid horizontal line). (D) Running speed V.
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then the real-time experiment was started. In session 1 only one 
real-time recording (RT) was done, in session 2 two real-time 
recordings were performed, denoted as 2A and 2B. The median 
error of the training sessions was 13.9% (equal training and test-
ing data) and of the real-time sessions 14.7%. For comparison, the 
best off-line reconstruction result had a relative error of 13.3% 
(eight neurons).

Figure 4 shows the reconstructed trajectory for seconds 200–500 
including error and speed of the session 1, RT.

dIscussIon
We have addressed the question whether the position of an ani-
mal can be reconstructed in real-time from neuronal data. Off-line 
and real-time position reconstruction algorithms for neural spike 
trains were successfully implemented and applied to PC activity. Of 
special importance is that the whole system is able to perform the 
reconstruction in real-time and that previously acquired training 
data can be used for the encoding step. In the experiments the train-
ing data were acquired about 1 h before the real-time experiment. 
Interesting for future experiments will be to investigate how long 
in advance this training data can be acquired as different process 
such as learning and neuronal plasticity might affect unit response 
in subsequent recording sessions.

blocks compare the data to a user controlled threshold. If a spike 
is detected, a 1-ms-wide (200 μs before and 800 μs after the spike) 
segment of all four channels per tetrode is stored and visualized.

After a spike is detected the neuron ID is written into a continu-
ously updating ring-buffer with 500 ms length to calculate the cur-
rent firing rate of all neurons. Spikes detected within a time window 
of, e.g., 3 s are considered for firing rate calculation and therefore 
for the reconstruction. Next, the window was moved forward by 
500 ms. The firing rates calculated in this way are compared with 
the firing rates at all positions of the training (encoding step). The 
position paired with the firing rate most similar to the actual firing 
rate is the predicted position as was computed with the Bayesian 
two-step algorithm (Real-time Reconstruction block).

Finally the reconstructed position can be compared to the real 
position with the X, Y PLOT block and both are stored for later 
off-line analysis.

The real-time tests were performed with one rat and two ses-
sions as shown in Table 2. In session 1 initially 900 s of data and 
in session 2 865 s of data were recorded to perform the encoding 
step. Then the procedure described under the off-line section was 
performed to obtain firing rate maps, probability distribution, 
and spike templates with 100% of the data. All data were used to 
have as much as possible training data. This took about 1 h and 

FIgure 3 | real-time Simulink model performing the reconstruction. The model is reading in the neural data and position with the video tracking system and 
cuts out the spikes. Afterward the spikes are sorted and classified to reconstruct the position. The spikes and positions are stored for off-line analysis.

Table 2 | recording information of the real-time experiments (rT) and real-time position reconstruction error.

Session 1, training 1, rT 2, training 2A, rT 2, training 2B, rT All rT

No. of cells 5  6  6 

Hippocampal region CA1  CA1  CA1 

Field size (m) 0.8 × 0.8 0.8 × 0.8 0.8 × 0.8 

Test field shape     

Max. theoretical error (m) 1.13  1.13  1.13 

Recording duration (s) 900 600 865 500 865 350 

Training median error (%)/(cm) 14.4/15.0  13.4/15.2  13.4/15.2  13.9 ± 0.7/15.1 ± 0.1

Median real-time error (%)/(cm)  12.2/13.8  14.5/16.4  17.4/19.7 14.7 ± 2.6/16.6 ± 3.0

Smoothing Kernel 25 × 25 20 × 20 20 × 20 

For all recordings a reconstruction window of 3 s with a step size of 0.5 s was used. 
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that the spikes of the RT run were never seen before for any train-
ing purposes. In future studies it must be shown how reliable the 
method is for different animals. We have demonstrated that the 
path reconstruction system described works for different sets of 
neurons of different sizes. Rather than depending on the variability 
across animals, the success of the technique may depend on the 
characteristics of the PFs for a given set of neurons. Thus, when 
a given set of neurons has PFs covering a larger area of the maze, 
the reconstruction would be more reliable. If during the recording 
there would be any plasticity of PFs for example because landmarks 
are modified, then the reconstruction would be negatively affected. 
Thus, the path reconstruction will be valid for a particular set of 
neurons with stable PFs, the training of the algorithm being useful 
for that set. It is not to be applied to a different set of neurons or 
to a different animal. In future studies the system can be tested in 
larger numbers of animals and neuronal sets, to further test the 
robustness of the reconstruction.

Theoretically the reconstruction error is inversely proportional 
to the square root of the number of cells as reported in several 
publications (Wilson and McNaughton, 1993; Skaggs et al., 1996; 
Zhang et al., 1998). Wilson reported an error of 33 cm with 10 cells 
and Zhang of 25 or 11 cm for 10 cells. Wilson and McNaughton 
(1993) investigated the amount of cells theoretically needed for 
reaching a tracking error of less than 1 cm and an extrapolation 
yielded 110 cells. Jensen and Lisman (2000) reported that with a 
relatively low number of cells (∼5) accuracies of about 12 cm can 
be reached. In this publication a minimum error of 9.4 cm was 
reached with only eight cells for off-line algorithms and a minimum 
error of 13.8 cm in real-time with only five cells. This shows that 
even with a few cells reconstruction can already be performed. But 
of course the presence, location, and size of PFs play an important 
role. Large errors occur if space is uncovered by lack of spikes and 
lack of cells. It must be noted that for this analysis no time periods 
were neglected like done in other publications (e.g., Fenton and 
Muller, 1998).

Different accuracies in position reconstruction have been 
reported in different studies. Zhang et al. (1998) reached clas-
sification accuracies of about 4–10 cm with 30 and 25 cells in 
two rats. These rats were tested in a figure-8 maze and another 
maze shaped like the upper part of the eight. The width of the 
track was 6.4 cm and the size was 94 cm × 81 cm. Jensen and 
Lisman (2000) reported an accuracy of 3 cm with 38 neurons 
(linear track with 204 cm length and 8 cm width) for one rat by 
using only intervals with more than nine spikes and no food-
stand locations (without large irregular activity, LIAs). If all data 
was used, an error of 15.4 cm was reached with only spike rate 
information and 14.4 cm by using also theta phase information. 
Brown et al. (1998) reported an accuracy of about 7.7 and 8.0 cm 
for two rats with 33 and 34 cells, using an open circular maze of 
70 cm diameter. Barbieri et al. (2005) achieved an error of 5.1 cm 
in a 70-cm diameter circular environment with 44 neurons. In 
a rectangular environment (124 cm × 62 cm) Wilson reported 
an error of about 9 cm with 76 cells. In general it must be noted 
that the intrinsic tracking error, which is defined as the average 
uncertainty in position tracking, due to the size of the LED arrays, 
the elevation of the diodes above the rat’s head and variations 
in posture is about 5 cm (Skaggs et al., 1996). In our study the 
arenas were between 50 cm × 50 cm and 100 cm × 100 cm in size, 
and the rats were foraging in an open square field which required 
reconstruction in both x- and y-dimensions. The open field was 
divided into 64 × 64 bins giving in total 4096 possible positions, 
which is far more than considered, e.g., for linear tracks (e.g., 150 
bins in Jensen and Lisman, 2000). But there were three major 
differences between Jensen’s and our study: (i) no segments were 
excluded and (ii) for the real-time experiment, the training and 
testing data were not from the same run, but from runs contigu-
ous in time, (iii) less cells were used. All three conditions make 
the reconstruction more difficult. Of special importance is also 
that for the real-time experiment only the training data was used 
to obtain templates for the automatic spike sorting. This means 

FIgure 4 | rat’s trajectory reconstruction based on place cell firing in real-time mode. x/y-Positions of real track (red) and reconstructed track [blue (A,B)]. Error 
with median error horizontal line [solid (C)]. Speed V (D).
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coding). We wanted to implement a system that could also be used 
as a real-time system and therefore spike firing from future peri-
ods of time were not included in our study (see also Brown et al., 
1998). This may have imposed a further limit on reconstruction 
quality. The step size had a minor influence on accuracy and 500 ms 
appeared to be optimal for the accuracy and it is also relatively short 
compared to a 3-s time window.

The spike sorting algorithm used in this paper requires some 
training data to identify spike templates for real-time sorting. A 
disadvantage of real-time sorting algorithms is that neurons of 
which waveforms are changing during recording cannot be identi-
fied after the training stage (Chandra and Optican, 1997; Aksenova 
et al., 2003). Therefore real-time spike sorting algorithms without 
the need of a learning phase are developed (Rutishauser et al., 2006). 
This is of special importance for closed-loop experiments which 
adapt experimental stimuli to the neural response observed. In 
some previous position reconstruction papers the spike sorting was 
done with all the data and for the encoding and decoding steps the 
data were split (e.g., Brown et al., 1998). In the current paper it was 
important to get all of the parameters for spike sorting only from 
the training data to allow the sorting in real-time mode. This was 
realized with the 3σ method that performed comparably to well 
known sorting methods (manual sorting, KlustaKwik).

The position reconstruction was also possible with subicular 
units, but was more accurate with CA1 units which have smaller PFs 
(Taube, 1995; Sharp, 1997). This was of course just tested with one 
recording but it is interesting that subicular units contain enough 
information for the reconstruction. Hippocampal and subicular 
regions work together, possibly to provide the overall cognitive 
mapping abilities of the animal (Sharp, 1997). For the real-time 
experiments CA1 was used because of the higher accuracy achieved 
here but for future experiments it will be interesting to perform 
reconstruction using both types at the same time. More datasets 
will be recorded in future to compare the two regions.

Hippocampal activity is also depending on theta activity 
(O’Keefe and Recce, 1993). The phase of firing becomes earlier on 
each successive theta cycle the animals runs through its’ PF. Huxter 
et al. (2008) demonstrated that phase precession occurs in both lin-
ear and two-dimensional environments and that position and head-
ing can be predicted from neural activity at different theta phases. 
Heading information can be best recovered from ascending slopes 
of theta oscillations and position reconstruction optimally from 
descending slopes. Jensen and Lisman (2000) found that recon-
struction is improved when phase coded and rate coded informa-
tion are both considered. But this was only the case when epochs 
with large systematic error were excluded first. For the real-time 
reconstruction it is not possible to exclude epochs and therefore it 
was not implemented for the real-time experiments. Furthermore 
the optimal time window for reconstruction was around 3 s which 
spans several theta cycles and averages out the phase information.

Trying to reconstruct the animal’s path based on the firing of 
a small set of neurons is not only a technological achievement. By 
doing it, we try to understand how the hippocampus and the brain 
integrate information from PCs in order to codify position and to 
construct a map of space. Something that we have learnt is that a 
few neurons are sufficient to reconstruct with certain accuracy the 
trajectory of an animal. This finding suggests that there is quite 

Erratic jumps in reconstruction accuracy can occur for different 
reasons. The firing rate is modulated by speed, and often decreases 
when the animal stops and receives food rewards and therefore 
stopping was often associated to visiting the home base or to eating 
(Tchernichovski et al., 1998). This increased the chance for errors 
and artifacts in the recorded data. There may be also biological 
reasons for the erratic jumps, maybe due to the rat looking around 
or planning the next move (Johnson et al., 2005). Jensen and Lisman 
(2000) have shown that by using both phase information and rate 
information the reconstruction error can be improved. In this case 
also theta cycles must be identified to investigate the firing at specific 
theta phases. But the improvement is reduced if large systematic 
error sources affect the reconstruction. Jensen and Lisman (2000) 
showed that erratic jumps can be reduced if the reconstruction is 
only performed for time windows with a minimum of spikes pre-
sent. Furthermore when an animal is eating, LIA and sharp wave-
ripples occur which are associated with replay and thus yields larger 
errors (Foster and Wilson, 2007; Lansink et al., 2009). As already 
mentioned in the results section, minimizing the reconstruction 
to points where the firing rate is above a certain threshold yielded 
better reconstruction results for certain segments of space. But 
it does not reduce the overall error rate much, because the posi-
tions that have not been reconstructed have to be interpolated. This 
estimation leads to new reconstruction errors for the interpolated 
positions, and thus increases the error rate. Important to note is 
also that for a real-time system every single time point should be 
reconstructed and therefore no data were excluded.

The length of the reconstruction window defines how many 
spikes are used for the reconstruction and is therefore dependent 
on the firing rate of the neurons and the rat’s running speed. In 
theory the error is inversely proportional to the square root of the 
time window. While Zhang et al. (1998) and Brown et al. (1998) 
used windows of about 1 s length we found that a relative long 
time window of 3 s yielded the best results, which can be explained 
by the lower amount of cells used. Also Wilson and McNaughton 
(1993) showed an improved accuracy by increasing the window 
length from 0.1 to 4 s. Jensen and Lisman (2000) showed that even 
with short windows of about 100–500 ms good accuracy can be 
reached, but excluded epochs with less spikes. In our case, using a 
time window of 3 s, the time steps that contained no spikes were 
below 0.5% of total recording time, and therefore their influence 
can be neglected. It must of course be noted that a rat can run 
longer distances if the window length increases.

We found that the selection of the PF smoothing Kernel is of 
relevance for the reconstruction. Zhang et al. (1998) reported that 
the reconstruction was not sensitive to the spatial blurring Kernel. 
The difference in findings may depend on the number of simul-
taneously recorded cells included: the lesser number of cells, the 
larger the impact each one of the PFs has on the global computa-
tion. Thus, larger PFs overlap more easily with other PFs and this 
increases the joint firing rate and yields a lower error rate. But this 
advantage is counterbalanced by the fact that larger PFs hold less 
spatial information. In this study the optimal smoothing Kernel 
was calculated in the off-line procedure.

In previous studies (Zhang et al., 1998) the time window used for 
position reconstruction included spike information not only from 
the past (retrospective coding) but also from the future (prospective 
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some redundancy in the system and opens the question of why 
this redundancy is necessary, and what are all the different spatial 
and non-spatial aspects that PCs are coding. It also reveals that our 
system works for a stable set of PCs, while the hippocampus can deal 
with PFs which can be rather plastic, while the spatial representation 
remains stable. With the system described here, one could explore 
under which conditions our reconstruction algorithm could main-
tain a stable path reconstruction while some landmarks, and thus 
some PFs, would change.

For a BCI application based on PCs it has to be assumed that a 
rat could be trained in a closed-loop experiment to modulate its 
own PC activity. In a first run the rat learns its environment and 
generates particular patterns of PC activity at various places in the 
arena. If the animal would only receive a rewarding stimulus when 
it visits a particular position in space where a specific PC fires, one 
may ask whether the activity of this PC would be enhanced. Another 
question is whether the rat is able to modulate PC firing voluntarily.

The system can also be seen as a verification method of the 
prior characterization of the environment and allows us the express 
stability with a certain accuracy rate. This allows of course also to 

express changes of the environment to study varying environments. 
The spatial characterization of the environment is specific for the 
training arena and can therefore not be applied to unknown spatial 
contexts. But this is also the case for other neuroprosthetic applica-
tions that must be trained, e.g., on a specific types of movement.

The closed-loop experimentation and analysis system proposed 
here allows to evaluate the quality of PC recordings in real-time 
and helps to reduce the recording time. The real-time system allows 
researchers on the fly to check whether the spikes are sortable and 
not contaminated with noise. Furthermore, it can be used to change, 
e.g., arena properties and or provide direct neuronal stimulation 
during the recording to investigate changes in PFs. As such it intro-
duces a new range of closed-loop systems for the study of cognition 
and behavior and their neuronal substrate. Our study showed suc-
cessfully that deeper brain structures can be analyzed in real-time 
which could be useful for future neuroprosthetic applications.
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