
Here, we propose using coexpression-based gene networks, 
which encompass many types of molecular interactions, as a con-
textual biological framework that may highlight common features 
of suspected disease genes in depression and other neuropsychi-
atric disorders. In coexpression networks, the links between genes 
(nodes) are determined by the extent of their correlated pattern 
of expression across multiple samples (measured by Pearson cor-
relation) and are thought to result from a variety of biological 
relationships between genes, including common transcription fac-
tors or adjacent genome position (Allocco et al., 2004; Purmann 
et al., 2007; Marco et al., 2009). Gene networks derived from dif-
ferent tissues and species consistently show stereotypical “small-
world” and “scale-free” network architecture (Carlson et al., 2006; 
Oldham et al., 2008). In small-world networks, nodes (genes) are 
typically strongly clustered into local communities that support 
biological sub-processes (Lee et al., 2004). Small-world networks 
also have rare “shortcut” links that balance local modularity with 
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into a pathological dynamical state. Gene microarrays have the 
potential to overcome this complexity by simultaneously measur-
ing levels of many different gene transcripts. However, this larger 
window into cellular activity has not always led to more consistent 
results, as different laboratories, brain regions, and model systems 
implicate a divergent set of pathological mechanisms in depression 
(Mehta et al., 2010).
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global connectivity. The connectivity distribution in scale-free net-
works can reinforce the local modularity and global connectivity 
of small-world architecture, as most genes are “provincial,” with 
only a few connections, while rare “hub” genes provide shortcuts 
between many nodes.

Networks with these structural characteristics are robust to the 
deletion of random nodes, but critically sensitive to disrupted func-
tion or “attacks” targeted at the rare hub nodes (Albert et al., 2000). 
Accordingly, at the level of molecular interactions, there are numerous 
demonstrations of close relationships between network connectivity 
and disease activity (Jeong et al., 2001; Feldman et al., 2008; Barrenas 
et al., 2009). Specifically, pathology-related targets may occupy stra-
tegic positions within these networks, which are poised to interrupt 
normal cellular function (Zotenko et al., 2008; Yanashima et al., 2009). 
Hub nodes may be intrinsically disease-targeted, or merely frequently 
associated with disease, due to their far-flung connections (He and 
Zhang, 2006; Goh et al., 2007). In either case, the collusion of network 
structure and pathology are important to understanding the relevance 
and priority of disease-related changes.

Therefore, to understand how networks of molecular interac-
tions may broadly direct transcription changes in depression, we 
investigated gene coexpression network structure in control and 
depressed subjects using post-mortem transcriptome datasets. 
Based on the prevalence of the lethality–centrality relationship in 
disease-related networks, we hypothesized that network changes 
between control and disease-state networks would be centered 
around coexpression hubs. Second we hypothesized that differ-
entially expressed (DE) genes would have a characteristic position 
and connectivity level in those networks. Mathematically, the first 
hypothesis tests the relationship of differential coexpression to 
network connectivity, while the second “hybrid” expression-and-
network hypothesis tests the relationship of differential expression 
to network connectivity. Because we seek to establish general prin-
ciples of differential expression, we show the findings are consist-
ent in an animal model of depression and applicable to a broader 
class of neuropsychiatric disorders, by including schizophrenia and 
bipolar disorder array datasets.

We show that while the basic structure of these networks is 
small-world and scale-free, connectivity changes in disease are not 
targeted at network hubs – the network topology is surprisingly 
resilient to the effects of depression, given the association of hubs 
and disease action. Relatedly, tests of our second hypothesis show 
that DE genes are positioned on the perimeter of the coexpression 
network – relatively far from the critical network core. To under-
stand what may mediate this resilient core gene network struc-
ture, we explore the relationship of variability in gene transcript 
expression levels to network connectivity. Based on these results, 
we propose a general model of altered transcription in neuropsy-
chiatric disorders and speculate on how the diffuse and peripheral 
localization of disease-related genes may inform the identification 
of consistent DE genes across studies.

MATERIALS AND METHODS
Study inclusion criteria
Thirteen human depression post-mortem microarray datasets of 
sufficient size for coexpression analysis were included (Table 1; 
Torrey et al., 2000; Iwamoto et al., 2004; Sibille et al., 2004; Aston 

et al., 2005; Iwamoto and Kato, 2006; Surget et al., 2009). Array 
data from mice submitted to the unpredictable chronic mild stress 
(UCMS) model of depression were also included (Surget et al., 
2009). Analyses were also performed on additional schizophrenia- 
and bipolar-related datasets (Table 1) to test whether the observed 
trends were specific to depression or relevant to multiple complex 
disorders. Those results are compiled with depression data (both 
human and mouse) into our meta-analysis results and displayed 
in the meta-analysis figures. We used optimized link-selection 
methods (below) to ensure that despite a range of post-mortem 
standards across this collection of studies, that the network struc-
ture was real and representative of biological features.

Optimal selection of network links to establish a 
high‑confidence gene networks using human  
post-mortem microarray data
There are multiple ways to infer gene interaction networks, how-
ever all methods rely on synchronous fluctuations in two or more 
genes across multiple microarrays. Therefore, when inferring 
biological networks based on microarrays, a primary concern is 
selecting an optimal level of correlation, so that the core network 
structure is a product of real biological interactions, not spurious 
data correlations. To ensure that the networks generated represent 
biological reality, we first individually optimize the link-selection 
process for each dataset, since each represents a distinct combina-
tion of sample size, data quality, and biological structure. Figure 
1A illustrates the importance of samples sizes in addressing these 
issues by shrinking the null distribution of expected Pearson cor-
relation values between genes (decreasing noise). The larger num-
ber of extreme correlation values of the non-permutated dataset 
(Figure 1A, red) compared to the permutated data (gray) is thus 
indicative of biological relationships underlying gene correlations. 
Using human array data, an additional concern is the influence 
of subpopulations on network generation. Increasing sample-size 
addresses this concern as it refines the set of actual correlations, 
decreasing false positives (shown in Figure 1B; distribution pla-
teauing at n = 14 samples). These plots show that false-positive 
network links are unlikely to occur at high link-selection thresh-
olds (Figure 1A).

To translate raw gene–gene correlation values into gene net-
works, we apply this optimized threshold to the absolute cor-
relation values and select all higher correlations to be network 
links (∼0.85 for most networks; Figure 1C). The outcome of this 
network generation procedure is extremely low false discovery 
rate (FDR) for network links, commonly under 1%. Bootstrap 
estimates of correlation values shows that at the high thresholds 
used here, the correlations are very stable and that there is little 
influence from outlying values (Figure 1D), as would be generated 
by the presence of subpopulations. Based on this complete assess-
ment of gene–gene correlations, every dataset was transformed 
into a separate high-confidence network, in which links represent 
biologically undefined but highly consistent relationship between 
connected nodes.

To optimally balance false positive and false negative links, we 
utilize the stereotypical community structure of biological net-
works. Because modularity (segregated clusters) is a hallmark of 
meaningful network connections, we chose the cutoff for “real” 
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correlations at the point of greatest biological/clustered struc-
ture. We do this by minimizing network synchronizability (λ

1
) 

– a measure which is small in networks of nearly disconnected 
clusters (Figure 1C), indicating the network has been pruned 
down to its core modular components (Perkins and Langston, 
2009). As illustrated in Figure 1C, this procedure generates 
networks for a range of potential cutoff values for the Pearson 
correlation between genes (x-axis Figure 1C) and then computes 
the corresponding synchronizability (a measure of modularity). 
To ensure we have found a robust minimum synchronizability 
(maximum modularity) we perform this procedure for several 
large randomly selected subnetworks and use the cutoff specified 
by the average of these tests. In addition to theoretical support 
that maximum modularity should reflect maximum biological 
information, this method was the top performer in a competi-
tion of threshold selection methods, indicating it indeed has 
practical relevance for creating coexpression networks (Borate 
et al., 2009).

Assortativity
The likelihood of connection to nodes of similar degree, is 
another global characteristic that may direct disease activity 
in coexpression networks (Newman, 2003). A commonly cited 
distinction between technological and biological network com-
pared to social networks social networks are positively assortative 
(meaning that hubs are preferentially connected to hubs, while 
provincial nodes are preferentially connected to other provincial 
nodes) while technological networks tend to be disassortative 
(have preferential hub-provincial connections). However, we 
show here that all investigated gene array-based networks are 
strongly assortative (mean/median assortativity 0.396/0.468; 
Table 1). The high positive assortativity may be due to the sym-
metric correlation basis of coexpression networks and their high 
modularity. Specifically, genes in large modules are by definition 
well-correlated with other genes in that large module, and genes 
in small modules are well-correlated with genes in that small 
module. Thus, the true assortativity of gene interactions should 
be determined by further research on the regulatory networks 
underlying coexpression.

Differential connectivity
To check for evidence of hub targeting of coexpression links in dis-
ease, we use the resampling-based confidence intervals (Figure 1D) 
to identify links that are differentially coexpressed in control and 
disease networks. If a link is in condition “A” is greater than the 
optimized cutoff and the correlation falls below its associated lower 
95% confidence bound in condition “B” (or the reverse situation 
for link creation) then we define it as differentially coexpressed (“A” 
and “B” signify datasets in any control/disease comparison). The 
prevalence of lethality–centrality relationships in disease biology 
suggests that altered links would be centered around hub nodes. 
Therefore we tracked the number of differentially coexpressed 
links connected to the top 5% most connected genes (“hub” nodes) 
versus an equal number of randomly selected (non-hub or “pro-
vincial” nodes). Significance of a particular number of altered 
links (p-values in Figure 3) connected to a given node type (hub/
provincial) was assessed by comparing the actual number of DE 

Frontiers in Neuroscience  |  Systems Biology	 	 August 2011  | Volume 5  |  Article 95  |  4

Gaiteri and Sibille	 Resilient gene networks in depression

http://www.frontiersin.org/systems_biology/
http://www.frontiersin.org/systems_biology/archive


it is possible to tell if a group of genes falls outside of the 95% 
expected range of resamples, either as highly connected hubs or 
low-connected “provincial” nodes.

Permutation significance bounds
We repeatedly splice datasets into two pseudo “control” and 
“depressed” selections, each consisting of 50/50 mixture of control/
depressed data. Thus any low p-values from this pseudo-compari-
son are due to chance or unknown demographic stratification char-
acteristic, and not disease effect. Repeated comparisons of degree 
versus p-value in such mixed datasets generates an expected null 
range for the degree associated with each p-value segment. The 
95% confidence intervals on expected degree for a given p-value 
segment are equivalent to the bounds that encompass 95% of the 
permutation values (see Figure 5B for examples).

links to the null distribution for the expected number of differ-
entially coexpressed links. These null distributions were created 
by permutating the control and disease arrays 1000 times to cre-
ate sets of networks with no disease-driven effects (because it is 
balanced between the permuted groups) and then counting the 
number of differentially coexpressed links (similar methodology 
to Choi et al., 2005).

Determining significance of gene connectivity
The expected mean connectivity of a selected group of genes (for 
instance, low p-value genes) can be accurately estimated through 
resampling even in degree-heterogeneous scale-free networks. By 
randomly selecting sets of genes of the same size (10,000 times), 
null distributions such as those in Figure 4D can provide con-
fidence intervals on expected connectivity. Utilizing these limits, 
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Figure 1 | Gene network validity and optimization – example from 
human amygdala. (A) Decreasing spurious network links with increasing 
sample size is shown by the null correlation distributions in permutated 
samples decreasing toward zero with increasing sample size, and the greater 
number of high correlations in real versus permutated data (red). (B) 
Decreasing false-positive correlations in the actual data set with increasing 
sample size is shown as a decrease in the number of extreme correlations 
when comparing 7–14 samples. Correlation values then remains constant 

between n = 14 and n = 28 samples. (C) Example estimates of network 
synchronizability (low synchronizability implies high modularity) at various 
thresholds in order to optimize correlation cutoff (example estimates  
based on different subsets of nodes are shown in different colors). Inset: 
schematic of link pruning and changes in modularity shown for increasing 
cutoffs. (D) 95% confidence bounds on Pearson correlation values  
(estimated by resampling) later employed in testing for differential 
coexpression.
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the connections of influential hub genes – a concept validated in 
other biological systems (Bullmore and Sporns, 2009). Hence, we 
compared gain or loss of connections (correlation-based links 
going from control to disease-state networks) to measure differ-
ential coexpression for hub and provincial genes (Figure 3A). This 
comparison (Figures 3B,C) shows that hub connections are not 
preferentially disrupted in the example of the amygdala network. 
In fact, hubs experience less average rewiring between control and 
depressed states than do provincial nodes. Also, the total number of 
differential connectivity between control and depressed networks 
lies within the disease-permutated bounds (Figure 3B), indicating 
that apparent connectivity changes in disease are indistinguishable 
from variability in the Pearson correlations (Figure 3C).

Expanding this test to all datasets, we find no evidence of hub tar-
geting (using p < 0.05 as the criterion for hub targeting in all datasets), 
including gene networks derived from an animal model of depression 
and bipolar and schizophrenia datasets. These results demonstrate 
that the pathology of depression is not created through differential 
connectivity targeted at hub nodes (at least using this methodology 
in current datasets), as in this critical measure (hub link targeting), 
coexpression networks are resilient to changes in depression.

A hybrid approach linking differentially expressed genes 
with coexpression networks
To address our second hypothesis relating to connectivity character-
istics of DE genes within coexpression networks, we use a constant 
network structure derived from the combined control and disease 
samples, supported by observation of similar connectivity in both 
conditions. We observed a robust trend between differential expres-
sion and connectivity, wherein genes with low p-values for differential 
expression display very low connectivity, while genes with non-
significant disease effect (high p-value) are progressively more con-
nected (Figure 4A). Evidence for this relationship was generated by  
(1) sorting p-values for differential expression from least to greatest 
numeric value, (2) binning the ordered p-values into 100 groups/
percentiles, and (3) computing the mean connectivity of each p-value 
group/percentile. We use this binned percentile method because it 
facilitates comparisons across datasets with unique p-value distribu-
tions. We repeated this procedure on every dataset, showing visual 
examples from the amygdala dataset, and compiling results across 
all datasets into a meta-analysis (see below). Performing all analyses 
using only control samples to generate the network structure does 
not significantly alter the trends (not shown), but leads to higher link 
false-discovery rates. Significance of the connectivity level at a given 
p-value percentile was tested by repeatedly selecting an equivalent 
number of genes at random from that particular dataset to generate a 
distribution of expected connectivity (Figure 4C). The results shown 
in Figure 4A do not rule out the possibility that DE genes might 
be located at low-connected but influential “bottleneck” positions. 
Since the betweenness centrality of such bottleneck nodes would 
be elevated, we assessed the relationship of betweeness centrality to 
differential connectivity (example result from amygdale dataset in 
Figure 4B) and found that DE genes are not located in bottleneck 
positions in coexpression networks.

The consensus relationship of connectivity to differential expres-
sion across all datasets (defined as meta-connectivity; see Materials 
and Methods) indicates a strong and stereotypical transcription 

Corrections for multiple testing and procedure for 
meta‑analysis of connectivity patterns
To assess the level of connectivity at a particular thresholds across 
datasets we combined individual p-values for under- or over-con-
nectivity using the “inverse normal method,” This is more appro-
priate to this data than the common Fisher’s method, as it equally 
weights high and low values and outputs a consensus p-value as 
opposed to specifically favoring low p-value results. This combined 
p-value estimation of under- or over-connectivity we term “meta-
connectivity,” significance of the meta-connectivity values was 
assessed using the Benjamini–Hochberg method to control the 
FDR (Benjamini and Hochberg, 1995). Because datasets can be seg-
mented with different bin sizes, correction to the meta-connectivity 
values due to multiple testing varies based on the number of seg-
ments into which genes are partitioned (alpha/#bins). Thus, it is 
possible to reduce the nominal FDR simply by a coarser estimation 
of the region of p-values with non-random connectivity. However, 
even with our fine-grained approach, there were clearly defined 
under- and over-connected regions at 10% FDR, which largely 
persisted at 1% FDR as well.

RESULTS
Small-world gene network structure in brain 
transcriptome datasets
In unweighted coexpression networks, each node is a single gene/
probe-set and each link represents a correlation between gene 
expression profiles above some threshold. These networks were 
generated with established techniques to minimize false-positive 
links (under 1%), that optimize the threshold for maximal biologi-
cal information (Figure 1). As expected based on many previous 
studies (Bergmann et al., 2004; Jordan et al., 2004; Van Noort et al., 
2004; Tsaparas et al., 2006), all datasets examined have approxi-
mately scale-free and small-world characteristics (Table 1). Since a 
graphical representation of the ∼200,000 links present in individual 
networks is not practical, the characteristics of the “consensus” 
network generated from both control and disease-state samples 
are illustrated in Figure 2D using the exemplar human amygdala 
dataset. First, the distribution of gene links (degree) fits a power-law 
on log–log scale (R = 0.82), indicating an approximately scale-free 
connectivity distribution (Figure 2A). Second, the distribution of 
path lengths (number of links) between any two genes is similar 
to that of randomized networks (Figure 2B). Third, genes were 
clustered into local communities with a high number of mutual 
interconnections (Figure 2C), compared to a randomized network 
with identical degree distribution and number of links. The combi-
nation of high clustering (Figure 2C) and low average path-length 
(Figure 2B) is the hallmark of small-world networks. All tested 
networks also showed uniformly positive assortativity, meaning that 
hubs are likely connected to other hubs, and provincial nodes to 
other provincial nodes (Table 1). Figure 2D describes a schematic 
of network structure that incorporates all of these characteristics.

Resilient small-world gene network structure in major 
depression
Since the basic combined structure of both control and disease 
coexpression networks is scale-free and small-world, it is possi-
ble that disease genes propagate pathological activity by altering 
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(see fewer number of significant points at middle percentiles in 
Figure 4D), due to lack of this broad trend in specific datasets 
(Figure 4A for instance). Similarly, there is an inconsistent drop in 
connectivity for ultra-high p-values, which is not supported across 
datasets, unlike the major finding of robust low connectivity for 
low p-value DE genes.

Since meta-analysis shows that the connectivity of DE genes 
is highly non-random (Figure 4D), we next investigated the 
broader question of whether these trends were specific to dis-
ease. To answer this question, for every dataset individually, 

response to disease that is closely related to gene network structure 
(Figure 4D). This collective analysis, that compiles results from 
datasets that span platform, disease, and species, suggests a stereo-
typical connectivity for the entire continuum of DE genes, with the 
most consistent finding across datasets being low connectivity for 
low p-values DE genes. This was very consistent for the top 10% of 
DE genes across all datasets, including bipolar-, schizophrenia-, and 
the UCMS animal model-related datasets, even when controlling 
for FDR (10%). Greater than expected connectivity is also observed 
for some moderately DE genes, but in a less consistent manner 
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Figure 2 | Scale-free and small-world properties of gene networks 
common to all human brain datasets – examples from human amygdala. 
(A) Histogram of frequency of connectivity values for exemplar amygdala 
network and randomized network with equal total number of links (degree, k), 
truncated at k = 400 for clarity. Inset: a power-law fit of full connectivity 
distribution (R = 0.82) on log–log scale indicates that the distribution of links is 
approximately scale-free. The connectivity distribution does not follow an exact 
power-law, but the degree distribution is highly heterogeneous compared to 
the Gaussian degree distribution expected under random connectivity (gray 

bars). (B) Path-length comparison of actual and randomized network indicates 
that the signal pathways through the network are extremely short (since 
random networks are a common benchmark for low path lengths). (C) 
Clustering coefficients by degree nodes for a segment of the real amygdala 
network compared to randomized network with identical degree distribution 
and number of links. Parameters for all dataset-related networks are in 
Table 1. (D) Network schematic of resilient structure, which persists in both 
control and disease networks, showing existence of hubs, high clustering, and 
positive assortativity.
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since transcript variance is unaffected by permutation. Note that 
transcript variability is factored out in the generation of Pearson 
correlations used here. So while this connectivity–variability trend 
exists, it is not circular, but appears to be a natural characteristic of 
gene networks. Thus, the special connectivity properties of disease 
genes appear fueled by the broader trend of connectivity increas-
ing with variability. Hence taking into consideration the context 
of variability/connectivity with transcriptional programs may lead 
to uncovering putative disease genes that are closer to the core 
neuropathology.

DISCUSSION
Resilience of small-world brain-related gene network 
structure to neuropsychiatric diseases
When genetic variants and environmental influences combine to 
create disease pathology, they utilize and interact with cellular 
and molecular networks. We showed here that the coexpression 
networks of brain regions implicated in depression and other 
neuropsychiatric disorders display small-world and scale-free 
characteristics. These networks architectures are efficient (low 
path-length) and well-organized (highly clustered) frameworks 
for transcriptional activation. This efficiency comes with a specific 
weakness – vulnerability to attacks on hub nodes (Albert et al., 
2000), as demonstrated by disease operation in other large-scale 
networks (Micheloyannis et al., 2006; Srinivas et al., 2007; Stam 
et al., 2007; Smit et al., 2008; Van Nas et al., 2009; Guye et al., 2010). 
Therefore, we speculated that the connectivity of disease-affected 
genes could offer a window into pathological mechanisms in neu-
ropsychiatric disorders. However, we found that the small-world 
connectivity characteristics of coexpression networks are resilient to 
the effects of depression (and of other neuropsychiatric diseases), and 
that the related pathology is not mediated by network disintegration 
via attack on hub nodes.
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Figure 3 | Small-world network structure is maintained in post-mortem 
networks in disease states – example from human amygdala. (A) 
Connectivity of hubs (top 5% connectivity nodes) and equal number of provincial 
(non-hub) nodes for examination of targeted differential connectivity in disease. 
This example selection of two different types of genes will be used to illustrate 
that disease does not target hub connections. (B) For this selection of provincial 
and hub nodes, we compute the relative fraction of altered links (both created 
and destroyed) between control and depressed networks. For comparison the 
same rewiring statistic is calculated for disease-permutated data (pseudo 

network comparisons with no disease effect). These permutations establish the 
mean and expected confidence bounds on a real effect. While provincial nodes 
are generically more likely to show differential connectivity compared to hub 
nodes, this is not a disease effect, but rather due to the greater statistical stability 
of hub nodes with a large base of connections, since the “real” network 
connectivity changes are within the expected bounds of variability. (C) To further 
quantify panel 3B, the p-values for probability of greater than expected differential 
connectivity are plotted, showing that connectivity changes in depression are not 
greater than expected by chance for both provincial and hub nodes.

we evaluate the same p-value to connectivity relationship for 
pseudo-groups, consisting of 50/50 control/disease combinations 
(Figure 5A). The range of expected results from these permuta-
tions (Figure 5B) shows that the non-random connectivity of the 
true control-disease comparison is actually not disease-specific, 
since the “observed” connectivity trends lie between permutation 
bounds. Furthermore, the control-disease comparison show a 
differential expression to connectivity relationship that is very 
similar to the mean relationship of all permutations, indicating 
that while the real differential expression to connectivity relation-
ship is non-random, it is not unexpected or disease-specific. This 
additional test for disease specificity was not performed in the 
only prior study that used comparable approaches (although in 
asthma; Lu et al., 2007). The permutation results indicate that 
some underlying trend beyond disease effects (which is negated 
by the permutations) must be creating the special connectivity 
of DE genes.

Baseline expression variability contributes to the 
differential expression to connectivity relationship
What could account for this generic relationship of DE genes to 
network connectivity (red line in Figure 5B)? A meta-analysis com-
paring baseline variance in transcript level to connectivity shows a 
strong relationship across all datasets (Figures 5C,D), where hubs 
show large swings in transcript level (high-variance), with a mean/
median correlation of 0.85/0.86 between variability and connectiv-
ity across all datasets. Since hubs show more variable expression 
levels, this presents a simple explanation for the low connectivity of 
low p-value DE genes since low-variance genes are less connected 
and, low p-values tend to be generated by low-variance genes, 
therefore low p-values are associated with low connectivity. Any 
split of the data (permutation testing) will show this association 
of low p-values for differential expression with low connectivity, 
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Figure 4 | Examples and meta-analysis of network characteristics 
stratified by significance of disease-related differential gene expression. 
(A) Stereotypical trends in connectivity by p-value for differential expression in 
human amygdala data, showing rising connectivity with rising p-values and 
particularly low connectivity for the most DE genes (in all figures lowest p-values 
are to the left and transparent gray area shows non-random connectivity values). 
Here, two-group t-test p-values were used for differential expression in order to 
normalize analytical approaches across datasets. Results using complex 
statistical models in the amygdala dataset did not affect the outcome (not 
shown). (B) Betweenness centrality (a measure of how trafficked a particular 

node is by all shortest network paths) by p-values in amygdala indicates that the 
DE genes are not merely low-connected, but on the edge of the network, 
because low p-value genes have the lowest betweenness centrality. (C) An 
example of a null connectivity distribution is used to estimate the expected 
range of connectivity – each network has its own specific null distribution used 
to estimate bounds on expected connectivity. (D) Combined p-value by degree 
trends for all datasets (spanning species, disease, and array platforms). 
Meta-connectivity values close to 0 indicate less connectivity than expected for 
that percentile of DE genes in all datasets. Percentiles with non-random 
connectivity were estimated at alpha = 0.05 and 10% FDR.

Two related studies (Lu et al., 2007; Torkamani et al., 2010) also 
observed a broad similarity in the structure of control and schizo-
phrenia gene networks or control and asthma-related networks, indi-
cating that coexpression structure may be unaffected, or only slightly 
affected in complex disorders. While complete network reconfigura-
tion and targeted destruction of hub connections appears to be rare 
in post-mortem brain networks, it may be more evident in smaller 
more dedicated local networks that operate on a short time-scale, 
such as those devoted to metabolism or immune function (Reverter 
et al., 2006; Leonardson et al., 2010). The lack of hub targeting does 
not preclude existence of differential connectivity shown by more 
involved methods or if larger samples become available.

As an alternative mechanism of network-pathology inter-
action, we tested if DE genes had a characteristic connectiv-
ity level within these resilient gene networks. We show that 

DE genes in neuropsychiatric disorders tend to have very low 
connectivity and fall on the edges of the network. This second 
form of network resilience to disease (i.e., differential expression 
of provincial nodes, but not central hubs) is the opposite of the 
standard pathological mechanisms in small-world networks, 
but potentially consistent with the broad range of affected 
systems in neuropsychiatric disorders. The low connectivity 
of DE genes is observed across various brain regions, species, 
neuropsychiatric diseases and array platforms. Such a diffuse 
disease signature may be characteristic of complex disorders 
(Lu et al., 2007), but this is unclear since previous studies did 
not include permutation testing for significance or explora-
tion of the relevance of expression variance. These findings are 
schematized in Figure 6, which shows the relationship between 
network structure and DE genes.
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patterns of variability, since individual genes have small pro-
disease effects in complex diseases. To determine if the low con-
nectivity of DE genes is specific to complex diseases, a useful 
future experiment would be to calculate the connectivity of DE 
genes from microarray datasets of disorders with more severe 
biological disturbances.

Inferring mechanisms of pathology from differentially 
expressed gene connectivity
Regardless of why DE genes are located on the edge of networks, 
how does this knowledge influence our conceptualization of dis-
ease effects on cellular networks? The decentralized nature of DE 
genes in coexpression networks (Figure 6) may contribute to the 
illusive nature of depression pathology and the high failure rate 

Why do differentially expressed genes have low 
connectivity?
Since we show that DE genes in neuropsychiatric disorders have 
low connectivity, it is natural to ask what biological and statistical 
relationships could generate this situation, and how can this 
knowledge improve selection of disease-associated genes in a 
network setting? We show that a strong variability–connectiv-
ity relationship (Figure 5) creates a situation where DE genes 
are generically low-connected. Several biological rationales 
may explain why DE genes are located on the edge of networks. 
It could be that DE genes follow generic patterns of variation 
(Figure 5B) due to high FDRs associated with microarray studies. 
Alternately, if control/disease comparisons accurately identify 
disease-related genes, they may indeed ride on top of normal 
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Figure 5 | Disease specificity of differentially expressed (DE) gene 
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of transcriptional research. Our investigation does not produce a 
specific list of genes considered implicated in depression, but our 
purpose was rather to highlight general properties of coexpression 
networks that have relevance to future gene selection criteria in 
neuropsychiatric disorders.

Moving forward with gene networks analysis in light of the 
position of DE genes
The distinctive lack of centrality of DE genes has both technical limita-
tions and implications for investigating mechanisms of diseases. First, 
it highlights a long-standing challenge in complex diseases: detecting 
biologically cohesive sets of genes that create a cumulative disease 
effect. We propose that coexpression links, which encapsulate many 
cellular relationships, can reveal collective dysfunction. For instance, 
coexpression links indicated that genes associated with depression in 
a cross-species analysis of depression were tightly bound together in 
glial and neuronal-growth related communities (Sibille et al., 2009). 
Specific modules of coexpressed genes may emerge to support spe-
cific biological functions, as exemplified by the identification of a 
neurogenesis-related gene module in hippocampus (Oldham et al., 
2008), or by identifying specific modulators by searching for transcrip-
tion factors linking DE genes, and that are themselves dysregulated 
(Hudson et al., 2009). But until we understand how disease or envi-
ronmental influences percolate through the structure of coexpres-
sion networks, it is difficult to define consistent strategies to predict 

of putative antidepressant drugs – which may essentially attempt 
to influence a vast network from the edge (if directly targeting DE 
genes). These results are consistent with the multifactorial nature 
of major depression, bipolar depression, and schizophrenia, and, 
from a coexpression perspective, suggest that modulators of single 
DE genes will have limited therapeutic effect. It may be discour-
aging that the disease signal follows generic patterns of network 
fluctuation, but by understanding patterns of molecular interac-
tions, it may be possible to more effectively track and dismantle 
disease processes.

Limitations
A common concern in microarray analysis is that varying standards 
for post-mortem parameters or array platform could induce techni-
cal artifacts. However, we designed this analysis to prevent exactly 
such effects by including data from multiple brain banks, array 
platforms, diseases, and species. Not only are the meta-analysis 
results significant, but the connectivity–variability relationship 
was evident categorically in each dataset. Samples sizes for indi-
vidual studies in psychiatry are relatively small, and sample size 
does affect ability to detect significant correlations. However we 
used permutation testing to ensure that likelihood of including 
false-positive links in any network was under 1%. Furthermore, 
we included nearly every microarray large publicly available study 
of depression, so our analysis is accurate to the current resolution 

Results represented:
Most nodes are provincial, bound together by infrequent hubs
Network is highly clustered, with modular communities
Average pathlength is low and close to that of random network
Low connectivity genes have greatest range of clustering
Assortativity stratifies network
DE genes (by p-value) have low connectivity
DE genes (by p-value) are located on the network edge
Highly variable genes are hubs

Schematic of network-transcription interaction
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Figure 6 | Schematic of relationship between network structure and differential expression incorporating all results.
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