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Animals in the wild must interact with the environment and har-
vest primary rewards such as food and reproductive opportunities
to maximize the likelihood that their genetic information survives
in future generations. Outside the controlled conditions of the
laboratory the time and place that these positive events occur can
often not be predicted with total accuracy. In order to survive in
such an unpredictable and risky world, organisms must be able
to assess not only the probabilities attached to future rewards but
also the precision of these estimates and use this information to
behave appropriately. Behavioral ecologists have studied the effects
of uncertainty on foraging in animals for many decades, but only
in recent years have we begun to understand how it is coded in the
brain and how this information relates to choice.

Before describing their neuronal correlates, we consider briefly
the definition of unpredictability and risk and the methodological
issues arising from studying them in humans and animals. In the
lay concept, risk increases with the perceived chance that a bad
outcome (i.e., an event that yields negative subjective value) will
occur. In the context of animals living in the wild, this typically
translates as the probability of death, either through predation or
starvation. However, because these long term hazards carry such
extreme negative values it is difficult to examine them quantita-
tively in the laboratory on a trial-by-trial basis (Real and Caraco,
1986). As a result, the majority of studies at both the behavioral
and neural levels have defined uncertainty according to economic
and mathematic principles, allowing researchers to define uncer-
tainty at discrete points in time and to study the effects of these
parameters on individual decisions. In contrast to the traditional
and lay usage of uncertainty, these principles have provided a more
precise and quantitative approach.

Economists and decision theorists interested in human behav-
ior typically divide uncertainty into two distinct concepts; risk,
where the probabilities of potential outcomes are known and

Probability and risk are important factors for value-based decision making and optimal for
aging. In order to survive in an unpredictable world, organisms must be able to assess the
probability and risk attached to future events and use this information to generate adaptive
behavior. Recent studies in non-human primates and rats have shown that both probability
and risk are processed in a distributed fashion throughout the brain at the level of single
neurons. Reward probability has mainly been shown to be coded by phasic increases and
decreases in firing rates in neurons in the basal ganglia, midbrain, parietal, and frontal
cortex. Reward variance is represented in orbitofrontal and posterior cingulate cortex and
through a sustained response of dopaminergic midbrain neurons.
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ambiguity, where the probabilities are not precisely known
(Knight, 1921; Ellsberg, 1961; “uncertainty” and “ambiguity” are
sometimes also used synonymously). However, other forms and
conceptualizations of unpredictability are conceivable and the
question whether humans outside the lab sharply distinguish
between risk and ambiguity could be investigated further. In
human terms, a risky decision might be to gamble on the out-
come of a fair roulette wheel, whereas an ambiguous decision
might be to gamble on the outcome of a football game. Formally,
risk can be defined according to the statistical properties of out-
come distributions, such as dispersion (i.e., variance or the related
SD or coefficient of variation), skewness, or kurtosis (Figure 1;
Burke and Tobler, 2011). These objective statistical properties are
not precisely known for an ambiguous option, thereby again pro-
viding, at least conceptually, a sharp distinction between risk and
ambiguity.

Real and Caraco (1986) identify two problems that all organ-
isms must overcome in a stochastic environment in order to
generate adaptive behavior. Firstly, an organism must learn and
keep in mind the outcome probability distributions attached to
certain actions and then select a strategy for exploiting these dis-
tributions to maximize fitness. The goal of neuroscientific research
on decision making under uncertainty has been to discover how
the brain solves these two problems by coding the parameters
and translating this information into actions. The vast majority of
such research has been performed using human subjects, primar-
ily in conjunction with functional magnetic resonance imaging
(fMRI). This has increased our understanding of the anatomical
substrates of reward uncertainty processing to a large degree and
has also revealed interesting parallels between sensorimotor and
economic decision processes (Braun et al., 2011; Wu et al., 2011).
Yet, the low spatial and temporal resolution of fMRI data does not
allow researchers to see the fast signaling of reward information
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FIGURE 1 | Different forms of reward-related uncertainty. Ambiguity
arises when the probabilities associated with a reward distribution are not
fully known. When probabilities are known, then the situation is risky. The
definition of risk used in the described studies is distinct from that used in
everyday language (for example, risky prospect is one where the probability
of a loss is non-zero). Instead, risk is defined by a number of parameters
that describe the properties of the underlying reward distribution. Careful
task design can allow researchers to disentangle neuronal responses to
different forms of uncertainty through the independent manipulation of
these parameters. For example, to show that a neuron responds to
variance, it is necessary to hold probability constant and also check that this
response does not vary with magnitude (O'Neill and Schultz, 2010). Risk
and ambiguity can also be separated through stimulus design (Hayden

et al., 2011). Note that entropy, SD, variance, and coefficient of variation
correlate with each other (but not monotonically with probability). Their
separation is therefore more difficult to achieve through task design and
might be particularly sensitive to noise in the data.

by individual neurons. fMRI is also not suited to observing the
large degrees of heterogeneity in both response properties and
task-related activity of single neurons within small regions of
interest. In order to elucidate the temporal propagation of reward
uncertainty signals in subcortical and cortical regions, single cell
recordings must be made in animals, typically in behaving rats and
monkeys.

However, using animals in research on the neural mechanisms
of decision making under risk poses a different set of chal-
lenges from those in human studies. One such issue is whether
the economic definitions of risk, envisaged to provide normative
or descriptive explanations of human behavior, apply to animal
behavior at all. Indeed, the ability of humans to process uncer-
tainty and exploit the information to succeed in the environment
may represent a recent evolutionary addition to our cognitive skills
that may not be possessed by animals at all. For example, for for-
aging animals in the wild, the sharp distinction between risk and
ambiguity may not be so clear. Animals have to infer the prop-
erties of outcome distributions through repeated sampling and
learning, thereby gradually turning ambiguity into risk (a similar
process may also occur in more controlled lab conditions; Rosati
and Hare, 2011). Moreover, mathematical abilities and the use
of numerical representations are more limited in animals com-
pared to humans. For these reasons, the cognitive tasks used to

probe behavioral and neural responses to uncertainty in animals
differ from those used in human experiments and are typically
based on paradigms previously used in animal learning theory. In
the present paper we separately review the forms of uncertainty
that have been tested experimentally in animals and describe the
neurophysiological data relating to each type.

The experiments discussed in this review all use single or mul-
tiple microelectrodes to record the extracellular potential changes
from cell bodies in the immediate vicinity of the electrode tip. In
a similar manner to the normative delineations between differ-
ent types of uncertainty, the descriptive neurophysiological results
can be crudely separated into two groups. The majority of ani-
mal experiments on reward uncertainty signals have manipulated
reward probability in an effort to elucidate the neural mechanisms
of learning or value processing. By contrast, only a small number
of studies have been conducted with a specific emphasis on eco-
nomic risk or reward variance and these have focused primarily
on cortical areas.

PROBABILITY IN PARIETAL AND FRONTAL CORTEX

A simple way to manipulate reward uncertainty is to change the
probability with which reward occurs following a cue or an action.
Behavioralists have long known that animal decisions are based
on reward probability in addition to reward magnitude (Herrn-
stein and Vaughn, 1980), with the assumed goal of maximizing
the reward rate (Stephens and Krebs, 1986). Although a number
of studies had previously investigated neural responses to reward
expectation (Watanabe, 1996; Schultz et al., 1997), the first experi-
ment to record probability-related activity of single neurons from
an economic point of view was probably conducted by Platt and
Glimcher (1999). Motivated by previous research implicating the
lateral intraparietal (LIP) area as an interface between sensory- and
action-related neural information in the brain (Goldberg et al.,
1990; Snyder et al., 1997), they hypothesized economically rele-
vant aspects of the decision environments might be represented
there for translation into action. Indeed, LIP neurons were sen-
sitive to expected reward magnitudes, but also modulated their
firing rates in response to the probability that a specific rewarded
action would be instructed (Platt and Glinicher, 1999).

This work laid the foundations for Sugrue et al. (2004 ) to record
from LIP neurons during a harvesting task in which the reward
probability of an unchosen option increased with the number of
times it had not been chosen. In this task the optimal behavior
is to distribute choices for each option according to the relative
probabilities that each option would be rewarded. The monkeys
were able to perform this task exceptionally well, with similar
behavior to computer simulations using an optimal strategy. The
activity of LIP neurons correlated with the relative values of tar-
gets in the response field of the cells, and this value was related
to the probability that a saccade to each target would result in a
reward. These recordings robustly support the idea that the brain
computes reward probability, although it remains unclear if LIP
neurons code probabilities in a pure fashion, separately from other
reward-related, sensory, or behavioral information. Other parts of
parietal cortex, such as the parietal reach region (PRR) code reward
probability between the sensory and motor phases of a memory-
guided reaching task. More specifically, the activity of PRR neurons
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correlated with differential reward probability information during
amemory period (1.2-1.8 s) after a cue, the size of which predicted
reward with high (p = 0.8) or low (p = 0.4) probability (Musallam
et al., 2004). Due to the suspected role of parietal cortex in inte-
grating sensory and action information it is possible that these
signals represent late and multiplexed information relevant to the
decision process, with afferent or further upstream cells coding
more basic reward information, such as probability.

Many neurons in the orbitofrontal cortex (OFC) appear
to code reward probability independent of other task-relevant
information such as future action, sensory information, or other
reward-related parameters. The OFC is innervated by dopamin-
ergic neurons originating in the ventral tegmental area via the
mesocortical pathway, and has strong reciprocal connections with
other subcortical reward-related regions such as the amygdala and
striatum (Barbas and De Olmos, 1990; Cavada et al., 2000). van
Duuren et al. (2009) investigated rat OFC responses by pairing
different odors with 0, 50, 75, and 100% chance of receiving a
rewarding outcome (a food pellet). During the course of one trial,
rats were trained to sample an odor for 1.5s, then proceed to a
reward delivery port where they waited for 1.5 s until the outcome
was delivered. A number of neurons coded the probability of the
reward during the waiting phase (before food was delivered) with
increasing or decreasing firing rates. A small number of neurons
were found to respond to reward probability in this manner dur-
ing the movement from odor sampling to reward delivery ports
and also after the reward was delivered.

The result that small numbers of OFC neurons code reward
probability in a pure manner is also supported by the work of Ken-
nerley et al. (2009), who recorded simultaneously from OFC, ante-
rior cingulate cortex (ACC), and lateral prefrontal cortex (LPFC)
of monkeys. In their task, monkeys were trained to choose between
abstract stimuli that predicted rewards with different magnitudes,
probabilities, or cost (number of lever presses required to obtain
the reward). The majority of cells in these areas coded two or more
reward parameters, but a number of neurons in all three areas
coded reward probability exclusively with increasing or decreasing
firing rates. In addition, there were proportionally more neurons
in the OFC that were tuned to a single reward parameter (such as
probability).

By contrast, ACC neurons were more likely to reflect more
than one decision parameter, potentially due to this area’s role
in passing value information to motor areas and assigning val-
ues to upcoming actions. This result is supported by previous
work by Amiez et al. (2006), which showed dorsal ACC neurons
integrated both reward probability and magnitude to code the
expected value of reward-predicting stimuli. Interestingly, Ken-
nerley et al. (2009) found that the latencies of separate neuronal
reward probability signals in the ACC were longer than those of
multiplexed value signals, suggesting the ACC receives its reward
probability information from multiple regions.

PROBABILITY IN BASAL GANGLIA AND MIDBRAIN
NEURONS

Electrophysiological studies of dopaminergic neurons in the sub-
stantia nigra (pars compacta) and ventral tegmental area have
provided strong evidence that the brain codes reward probability.

Fiorillo et al. (2003) used a Pavlovian conditioning paradigm with
abstract visual cues, with each cue predicting a reward (0.15ml
of juice after 2s) with a different probability (p =0.0, p=0.25,
p=0.5, p=0.75, and p=1.0). The monkeys showed increased
anticipatory licking during cues predicting rewards with higher
probabilities. Based on previous work on the phasic response
of dopaminergic neurons to reward-predicting stimuli (Schultz,
1998) the researchers predicted that the phasic response to the cue
should increase with increasing probability, and the response to
reward should decrease with probability. This hypothesis was sup-
ported by the data (Figure 2A), with the phasic response fulfilling
the necessary requirements of a reward prediction error reflecting
probability as predicted by animal learning theory (Rescorla and
Wagner, 1972).

The short latency of the dopaminergic neurons’ response to
reward-predicting stimuli (about 100 ms after stimulus onset) sug-
gests that these cells carry probabilistic reward information at an
early stage of any decision process. It has recently been proposed
that a potential input to these cells is the globus pallidus (Hong
and Hikosaka, 2008), with neurons of the interior segment of the
globus pallidus (GPi) responding to reward expectancy at a sim-
ilar latency to that of dopamine neurons. Arkadir et al. (2004)
partly addressed this question by using the same range of reward
probabilities as Fiorillo et al. (2003) and simultaneously record-
ing from the external segment of the globus pallidus (GPe) in an
instrumental conditioning task. Very few neurons of the GPe were
found to respond exclusively to reward probability, with the major-
ity responding to a combination of response direction and reward
probability. The longer latency of these responses suggested that
they may not be the source of reward probability signals observed
at stimulus onset in dopamine neurons. A follow-up study using a
probabilistic classical conditioning task with recordings from GPe,
GPj, and substantia nigra pars reticulata (SNr) further character-
ized responses in these regions to reward-predicting cues (Joshua
et al., 2009). This study confirmed that GPi neurons encoded
reward probability with latencies of around 250 ms after cue onset,
too slow to be the source of the dopaminergic signals demon-
strated by Fiorillo et al. (2003). By contrast, SNr cells responded to
increasing reward probability with increasing and decreasing fir-
ing rates in roughly equal proportions, with latencies in the range
of 125 ms, more similar to the latencies of dopamine neurons.

Another potential source for the dopaminergic reward prob-
ability signal is the lateral habenula (primarily glutamatergic),
for example via projection through the rostromedial tegmental
nucleus (primarily GABAergic; Jhou etal., 2009; Hongetal., 2011).
Neurons in this region code reward probability in an inverse man-
ner to dopaminergic neurons, showing increased suppression of
firing rates to stimuli predicting reward with increasing probabil-
ity (Figure 2B; Matsumoto and Hikosaka, 2009). These neurons
also increase their firing rates to stimuli that predict aversive
events, suppressing dopaminergic activity in the substantia nigra
pars compacta (Bromberg-Martin et al., 2010). The latency of
response suppressions reflecting reward probability information
in lateral habenula neurons is roughly comparable to that of exci-
tatory responses in SNc and VTA cells. The antagonistic manner of
reward and punishment probability coding in the dopaminergic
and lateral habenula neurons suggests that downstream structures
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rows represent trials with decreasing reward probability. Each column
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predicts reward with decreasing probability, the dopaminergic neurons’
phasic response to the stimulus decreases. In addition a sustained
response that increases until the time of reward encodes reward risk. (B) An
example of the responses of a single cell in the lateral habenula during a
similar task as described in [(A) from Matsumoto and Hikosaka, 2009]. Lateral
habenula neurons typically show increased firing rates during the
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presentation of cues that predict reward with decreasing probability. The task
did not include trials with 0.75 and 0.25 reward probabilities. (C) Population
responses of tonically active neurons in the putamen, as recorded by Apicella
et al. (2009). Stimulus-related reward probability information is encoded in the
pause and initial peak of a fraction of tonically active neurons. In addition
reward probability exerts strong modulation of suppression and subsequent
rebound activity at the time of the outcome. (D) Oyama et al. (2010) recorded
from the dorsal striatum of the rat, pairing auditory stimuli with reward in a
similar paradigm to Fiorillo et al. (2003). Shown here is a single cell
demonstrating analogous reward probability coding to dopamine neurons of
the VTA and SN, with the absence of a sustained uncertainty response. Note
that for p=0.00, no stimulus was presented to the animal, but a free reward
was delivered. All figures reprinted with permission.

may contain subpopulations of neurons that code probability for
both rewarding and punishing outcomes. The amygdala has been
shown to be one such structure, containing cells responsive to cues
predicting rewards and punishments and emitting responses that
may be modulated by the probability of the outcome (Belova et al.,
2007; Bermudez and Schultz, 2010a) as well as being sensitive to
reward magnitudes (Bermudez and Schultz, 2010b).

Two of the most-discussed regions that are innervated by
dopaminergic neurons are the striatum and the prefrontal cor-
tex (Haber, 2003). However, these structures at least indirectly
also project to dopaminergic neurons. Indeed, if the source of
reward probability signaling is the GPi as proposed by Hong
and Hikosaka (2008), one would also expect to find such sig-
nals in the putamen and caudate and recent research has shown
this to be the case. In the striatum, cholinergic tonically active
neurons (TANs) in the primate putamen have primarily been
the subject of investigation with regard to reward probability.
These cells typically show suppression of their firing rates when

dopaminergic cells show increased activity (Morris et al., 2004),
with the level of suppression coding reward probability in classi-
cal conditioning tasks (Figure 2C; Apicella et al., 2009). In these
cells, reward probability was found to be processed primarily at
the time of reward delivery, with increasing suppression of firing
rates when reward was delivered with low probabilities, an inverse
of the typical dopamine response (and more like lateral habe-
nula neurons’ responses). However, when no reward was delivered,
two populations of TANs showed divergent firing patterns. Some
cells increased their suppression when reward was predicted with
high probability (like dopaminergic midbrain cells) while oth-
ers showed increasing activity to reward omission with increasing
reward probability (like lateral habenula cells). The responses of
these neurons are quite variable and appear to only code reward
probability in Pavlovian rather than instrumental tasks (Apicella
etal.,2011). One potential explanation for the fast latency of TAN
suppression is that TANs and dopaminergic neurons are recruited
in parallel during the processing of relevant reward information,
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allowing dopaminergic input to modulate corticostriatal synapses
during learning.

By contrast, single-unit recordings from the dorsal striatum in
rats have shown responses to reward probability that are more
analogous to dopamine than that of TANs. Oyama et al. (2010)
recorded from the caudate nucleus while rats performed a similar
task to the one used in Fiorillo et al. (2003), with rewards being
paired with auditory stimuli at different probabilities. Upon stim-
ulus onset, many neurons were found to code reward probability
with increasing firing rates (Figure 2D). At reward delivery, the
opposite pattern of activation was found. Interestingly, these neu-
ronal responses to probability were invariant to the satiety of the
animal, suggesting that caudate neurons code probability indepen-
dently of the current state and do not reflect the subjective value of
the stimulus (a finding that is reminiscent of veridical probability
coding in the human striatum; Tobler et al., 2008).

RISK AS DISPERSION IN MIDBRAIN, POSTERIOR
CINGULATE, AND ORBITOFRONTAL CORTEX

Neurons that encode the probability of upcoming rewards are
present in the basal ganglia, and frontal and parietal cortex. Of
these, it seems that the responses of subcortical structures code
reward probability in a relatively straightforward manner at the
time of a reward-predicting cue. The phasic response of dopamin-
ergic neurons in particular to reward probability perfectly reflects
the notion of a reward prediction error signal, implying that prob-
ability representations are built up by successive sampling of the
reward environment. Fiorillo et al. (2003) also demonstrated that
amore sustained response of dopamine neurons in the same prob-
abilistic task reflected the degree of risk on each trial. In the task
of Fiorillo et al. (2003) when the animal is presented with a stim-
ulus predicting a reward with p =0 or p = 1, either no reward (for
p=0) or a reward (for p=1) will be received with certainty and
risk (e.g., variance) is zero on these trials. Risk is maximal for stim-
uli predicting rewards with p = 0.5, as the animal is equally likely to
receive areward or nothing at all. Risk therefore follows an inverted
U-shape as a function of increasing reward probability. Fiorillo
et al. (2003) found that approximately 30% of reward probabil-
ity encoding dopamine neurons showed a sustained response that
scaled with the risk on a given trial (Figure 2A). The sustained
responses followed the initial phasic reward probability response
and increased gradually until the time of reward delivery. It also
increased when probability was kept constant at p =0.5 but the
dispersion was increased by manipulating the magnitudes of the
two possible outcomes. How this risk signal is interpreted by post-
synaptic neurons remains to be explored. Schultz (2010) suggests
that the phasic, relatively high frequency spiking of dopaminer-
gic neurons that codes reward probability (and prediction error)
may be communicated to postsynaptic neurons through the pref-
erential activation of D1 receptors. By contrast, the sustained,
low frequency uncertainty response may preferentially engage
postsynaptic D2 receptors due to their high affinity.

Dopamine is unlikely to be the only monoamine neurotrans-
mitter involved in the coding of risk. Long et al. (2009) manipu-
lated the diet of rhesus macaques to rapidly deplete their trypto-
phan levels and thereby systemically lower serotonin levels. This
manipulation made monkeys more risk seeking. In particular, they

tended to choose risky options more often (the reward magnitude
of the safe option had to be increased by 60% in order to achieve
indifference) compared to control conditions with normal sero-
tonin levels. In risk-free choices, reward magnitude discrimina-
tion remained unchanged. Thus, serotonin appears to specifically
reduce the subjective value of risk.

Using a formal definition of risk, coefficient of variation,
McCoy and Platt (2005) recorded from the posterior cingulate cor-
tex of monkeys during a visual gambling task. The task involved
making a choice between two targets, with one yielding a fixed
reward (juice delivered for 150 ms) and the other yielding a risky
reward (chance delivery of juice for more than or less than 150 ms,
with a mean time of 150 ms). The variance of the risky target’s
juice delivery was increased to manipulate risk (i.e., the most risky
target would deliver juice for 50 or 250 ms, whereas the least risky
target delivered juice for 140 or 160 ms). In contrast to the majority
of human studies using such a paradigm, it was found that mon-
keys significantly preferred risky options to safe options, and that
this behavioral preference actually increased with risk. Moreover,
the preference could not be explained by novelty. Posterior cin-
gulate neurons increased their firing rates when monkeys chose
a risky option, especially for choices when the target was in the
neuron’s receptive field (Figure 3A). Interestingly, a number of
these cells showed increased firing rates preceding risky choices
even during fixation periods, suggesting a role for the posterior
cingulate in biasing eye movements to options with higher sub-
jective value. This information may be subsequently passed on to
posterior parietal cortex where evidence of the coding of relative
subjective value of eye movements has been shown (Dorris and
Glimcher, 2004; Sugrue et al., 2004).

Risk as dispersion and reward value responses were investigated
in detail with single-unit recordings in the OFC by O’Neill and
Schultz (2010). In this experiment, monkeys learned to associate
different visual stimuli with three binary equiprobable outcome
distributions that differed in reward variance. Providing the ani-
mal made a correct response, the stimulus associated with high
risk reward distributions was followed by either 0.18 or 0.42 ml of
juice. By contrast the low risk stimulus was followed by 0.27 or
0.33 ml of juice, and an intermediate risk stimulus was followed
by 0.24 or 0.36 ml. Note that the expected value of these reward
distributions was equal (0.3 ml). In addition to these risky distri-
butions, they also tested the responses of orbitofrontal neurons to
rewards that varied in magnitude but not risk.

When given a choice, the animals preferred increasingly risky
options over safe options with the same expected value and
responded more quickly to risk-predicting stimuli, suggesting that
monkeys were risk seeking in this situation. In areas 11, 12, 13,
and 14, 109 orbitofrontal neurons showed activity that increased
or decreased with risk (both reward variance and SD) at various
stages of the task, most prevalently at cue presentation and dur-
ing reward delivery (Figure 3B). Most of these cells coded risk at
one task epoch, but some coded risk at 2 or more task epochs.
Because monkeys were risk seeking in this experiment, a monot-
onic increase in activity to increasing risk could also indicate a
value response. The separate manipulations of value and risk used
by O’Neill and Schultz (2010) allowed them to demonstrate the
presence of both distinct and combined value and risk signals.
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FIGURE 3 | Reward variance coding in posterior cingulate and
orbitofrontal cortex. (A) VicCoy and Platt (2005) recorded from the
posterior cingulate cortex during a risky choice task. Neurons in this
area were modulated by the reward variance (CV, coefficient of
variation) of options inside and outside their respective receptive fields
at various stages of the task, but the greatest modulation was
observed at 200-400 ms after saccade onset. (B) O'Neill and Schultz
(2010) found risk-related activity at various stages of the task in
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orbitofrontal neurons. OFC neurons code reward variance at short
latencies after cue onset (~100ms) and continue to code variance
even after the reward is delivered, and risk is resolved. The latencies of
OFC risk coding neurons (faster than dopaminergic risk signals and the
risk responses in the posterior cingulate and comparable to the latency
of midbrain and basal ganglia reward probability signals) suggests the
OFC may provide risk information to higher cortical regions in
preparation for action selection. All figures reprinted with permission.

Yet, risk attitude appears to modulate responses of OFC neurons
to risk as dispersion, particularly in situations of choice. Roitman
and Roitman (2010) recorded from OFC neurons in rats. The ani-
mals performed in forced choice and free choice conditions. In
free choice sessions, they chose freely between a risky (zero or four
pellets, equiprobable) and a safe lever (two pellets for sure). In
forced choice sessions, only one lever was available. Risk attitudes
as measured in free choice situations were stable across days but
differed across animals. In the majority of test sessions the animals
were risk seeking (26 out of 42 sessions; 14 animals, each tested in
3 sessions), some were risk neutral (13 out of 42), and only few
risk averse (3 out of 42). The activity of OFC neurons decreased or
increased after the time of the outcome. These changes were not
modulated by risk attitude in forced choice sessions but differed
according to risk attitude in free choice sessions. In risk seeking
(but not in risk neutral) animals, activation changes to the safe
outcome were similar to those induced by the zero outcome of

the risky option. Thus, a preference for risk coincided with more
pronounced responses to the larger outcome of a risky option in
choice situations.

A sizeable number of the neurons in the two studies (O’Neill
and Schultz, 2010; Roitman and Roitman, 2010) continued to code
risk even after the outcome was delivered to the animal, which is
notable because the risk at this time point is zero. O’Neill and
Schultz (2010) speculate that these risk signals after the outcome
may represent an unsigned reward prediction error that could
drive attention. Such a signal has recently been reported in the ACC
of monkeys that receive outcomes following ambiguous gambles
when reward probabilities are unknown or indiscernible to the
animal (Hayden et al., 2011).

DECISION CONFIDENCE IN ORBITOFRONTAL CORTEX
Kepecs et al. (2008) extended the work on reward uncertainty
by investigating the role of subjective decision uncertainty during
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choice. In their task, rats were trained to enter a port and sample an
odor, which contained information as to whether a reward would
be delivered in an outcome port to the left or right of the odor port.
The sampled odor was a binary mixture of two separate odorants
(caproic acid and 1-hexanol), each of which was associated with
either the left or the right side. The proportion of each odorant
in the sample was altered (caproic acid: 1-hexanol ratios of 100:0,
68:32, 56:44, 44:56,32:68,and 0:100%) in order to make it more or
less difficult for the rat to decide which outcome port to visit. After
the decision, the rats were required to wait for between 0.3 and 1s
before receiving a drop of water if their choice was correct. During
this reward anticipation period, Kepecs et al. (2008) analyzed the
activity of neuronal units in the lateral OFC. A large number of
OFC neurons increased their firing rate with stimulus difficulty,
with a smaller proportion showing the inverse encoding pattern.
Although this pattern of firing is consistent with the dopaminergic
risk signal, the neurons differed in their responses if the rats made
correct or incorrect choices, suggesting that the OFC codes deci-
sion uncertainty calculated relative to the variance of perceptual
information in a single trial, rather than reward risk, which can
only be calculated after sampling outcomes over many trials. How-
ever, Kepecs et al. (2008) conclude that the decision uncertainty
experienced by rats in their task covaries with reward probability
and uncertainty (since the probabilities were only manipulated in
the range of p=0.5to p = 1). Although the OFC is densely inner-
vated by afferent fibers from dopaminergic midbrain, it remains
to be seen if the OFC decision uncertainty signal is related to
dopaminergic reward risk or probability signals. One speculative
idea is that the OFC signal is driven by upstream neurons that
maximally fire with coincident input from dopaminergic and lat-
eral habenula neurons. Since these cells have been demonstrated
to reliably respond in an opposite fashion to reward probability,
neurons that summate over the output of both would be more
likely to fire to cues predicting rewards at maximal risk.

CONCLUSION

The studies described in this review all demonstrate that behav-
iorally relevant reward parameters such as probability and variance
are encoded at the neuronal level and in a distributed fashion.
Many of the implicated regions are directly connected, suggesting
that a network contributes to the processing of probability and
risk. Measuring firing activity from single neurons requires the use

of single or multiple microelectrodes to detect discharges. Together
with well-controlled behavioral paradigms this technique allows
us to correlate neuronal activity with behavior at extremely high
temporal resolution. However, due to restricted sampling, electro-
physiological recordings are somewhat difficult to interpret on a
larger scale. The technique usually targets very small volumes of
brain tissue and limited numbers of neurons, and online search-
ing for neurons showing task-related activity may undermine the
ability to define specific roles of distinct brain regions or nuclei.
There also remains the possibility that reward uncertainty signals
are coded in a distributed fashion across networks of neurons,
which would be difficult to ascertain in behaving animals using
current techniques.

Many of the questions raised by single-unit recordings in
reward uncertainty paradigms are beginning to be addressed
by researchers. There are however many exceptions and gaps
in our understanding, providing many opportunities for further
research. Future research may wish to address whether higher-
order risk terms and ambiguity are processed in single neurons
and the degree to which reward uncertainty signals are processed
in a subjective or objective manner. The temporal development of
risk signals in the brain remains a complex issue (Table 1), espe-
cially with respect to where stimulus identity is decoded and the
relevant reward parameters passed onto regions generating appro-
priate behavioral output. One potential candidate as the source of
reward probability and risk signals is the amygdala (Herry et al,,
2007), which has been shown to distinguish the valence of condi-
tioned stimuli at latencies as short as 20-30 ms (Quirk et al., 1995).
At early stages of processing, reward uncertainty signals appear to
be coded separately from other information, consistent with eco-
nomic theories suggesting that the statistical parameters of reward
distributions are detected and represented separately in a mean—
variance approach to expected reward processing (Boorman and
Sallet, 2009). At later stages the signals are multiplexed with other
reward signals and often combine sensory and motor preparatory
information.

One problem of comparing the current findings relates to
the differences in the behavioral tasks used in different studies.
For example, the pathways responsible for passing reward uncer-
tainty signals to output structures may differ depending on the
sensory modality of stimuli or whether the task involves Pavlov-
ian or instrumental conditioning. This may particularly apply to

Table 1 | Example latencies (where available) of single units measured in experiments manipulating reward probability and variance.

Uncertainty parameter Region/structure

Response latency Experiment

Reward probability
Lateral habenula
Substantia nigra pars reticulata
Globus pallidus, internal segment
Globus pallidus, external segment
Putamen
Caudate

Reward risk Orbitofrontal cortex

Ventral tegmental area, substantia nigra pars compacta

Posterior cingulate cortex

Ventral tegmental area, substantia nigra pars compacta

~100ms Fiorillo et al. (2003)

~100ms Matsumoto and Hikosaka (2009)
~125ms Joshua et al. (2009)
200-300ms

200-300ms

<100-250 ms Apicella et al. (2009)

<100 ms Oyama et al. (2010)

~100ms O'Neill and Schultz (2010)
Reward-locked (~600 ms) Fiorillo et al. (2003)

300ms + McCoy and Platt (2005)
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striatal neurons that code reward-related information dependent
on whether or not an action is required or in choice versus no
choice situations (Hassani et al., 2001; Kawagoe et al., 1998; Lau
and Glimcher, 2008). The network propagation of these signals
could be further elucidated by employing at least three techniques.
Firstly, simultaneous recording of (anatomically well defined) pre-
and postsynaptic structures would potentially allow researchers to
identify the flow of reward uncertainty information. Stimulation
of one or more brain regions while simultaneously recording from
another could also further enhance our understanding of infor-
mation flow. Finally, a technique that allows the selective excitation
or suppression of distinct classes of neurons within an area would
potentially offer researchers a very powerful tool to assess the infor-
mational flow of reward uncertainty information. Optogenetics is
one such method that was recently used to modulate dopaminergic
activity in a reward-based paradigm in the mouse (Tsai etal.,2009).

Understanding the likelihood of a future reward or predict-
ing variability in the quality of potential rewards seems to be
just as important as predicting reward magnitudes to animals.
The effects of uncertainty are well known to affect the forag-
ing behavior of many species so it is perhaps not surprising that
these higher-order reward parameters are coded in large numbers
of cells throughout the brain. Additionally, the fact that reward
uncertainty is coded in the basal ganglia and midbrain, structures
that are largely conserved throughout the vertebrates, supports the
adaptive importance of such signals.
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