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Binge drinking, frequently referred to clinically as problem or hazardous drinking, is a pat-
tern of excessive alcohol intake characterized by blood alcohol levels ≥0.08 g% within a
2-h period. Here, we show that overexpression of α1 subunits of the GABAA receptor
contributes to binge drinking, and further document that this involvement is related to the
neuroanatomical localization of α1 receptor subunits. Using a herpes simplex virus ampli-
con vector to deliver small interference RNA (siRNA), we showed that siRNA specific for
the α1 subunit (pHSVsiLA1) caused profound, long-term, and selective reduction of gene
expression, receptor density, and binge drinking in high-alcohol drinking rats when deliv-
ered into the ventral pallidum (VP). Scrambled siRNA (pHSVsiNC) delivered similarly into
the VP failed to alter gene expression, receptor density, or binge drinking. Silencing of the
α1 gene in the VP, however, failed to alter binge sucrose or water intake. These results,
along with our prior research, provide compelling evidence that the α1-containing GABAA
receptor subunits are critical in the regulation of binge-like patterns of excessive drink-
ing. Collectively, these data may be useful in the development of gene-based and novel
pharmacological approaches for the treatment of excessive drinking.
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INTRODUCTION
Of the total US population 21 years and older, 23% are binge
drinkers and 76% of the alcohol consumed in the US is
in the form of binge drinking [National Survey on Drug
Use and Health (NSDUH), 2002]. The adverse consequences
include increased risk of developing alcohol dependence, par-
ticularly during adolescence (Hingson and Zha, 2009), and a
significant increase in the risk for hypertension, cardiomyopa-
thy, alcohol poisoning, sexually transmitted diseases, liver dis-
ease, and brain damage (Crews and Braun, 2003; Naimi et al.,
2003; Townshend and Duka, 2005). Perhaps the most devas-
tating societal cost of binge drinking is a substantial propor-
tion of alcohol-related deaths in the form of vehicle crashes
[Chikritzhs et al., 2001; Center for Disease Control, and Preven-
tion (CDCP), 2004], making binge drinking the third leading
preventable cause of death in the US. Because the proportion
of drinkers that binge is highest among 18- to 20-year-olds
(72%; NSDUH, 2002), young drinkers contribute substantially to
these fatalities (CDCP, 2004). Hence, binge drinking is an enor-
mous public health burden in need of more radical treatment
approaches.

Novel gene therapies, which target candidate receptors linked
to excessive alcohol drinking, may offer potential alternatives to
psychosocial and pharmacotherapeutic interventions for treating
binge drinking. The γ-amino butyric acid-A (GABAA) recep-
tors may represent such a therapeutic target (Koob, 2004; June
and Eiler, 2007; Harris et al., 2008; Kumar et al., 2009). Of the
potential GABAA receptors, substantial evidence implicates the
α1 subunit-containing receptors in regulating excessive alcohol
drinking (Harvey et al., 2002; June et al., 2003; June and Eiler,
2007). Thus, pharmacological studies demonstrate that microin-
fusion of α1-preferring ligands into the ventral pallidum (VP, a
locus containing the highest concentrations of α1 subunits within
the reward circuitry; Churchill et al., 1991) selectively regulates
excessive alcohol drinking (June et al., 2003; Harvey et al., 2002;
June and Eiler, 2007). Furthermore, the GABA-enhancing effects
of alcohol in the VP were positively correlated with binding of the
α1 selective agonist [3H]zolpidem, and increased zolpidem bind-
ing has been reported in the VP of alcohol-preferring rats (Criswell
et al., 1995; Devaud et al., 1995). Finally, two lines of α1 knock-out
[KO] mice evidence markedly decreased alcohol drinking (Boehm
et al., 2004; June et al., 2007).
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While the above evidence suggests that GABAA α1-containing
receptors of the VP may play a role in excessive alcohol drinking,
their direct role in mediating binge drinking when blood alcohol
concentration (BAC) ≥ 0.08 mg% (National Institute on Alcohol
Abuse, and Alcoholism, 2004; Bell et al., 2006) was only docu-
mented by our recent report (Liu et al., 2011). In that study, we
reported that downregulation of the GABA α1 receptor subunit
gene in the VP resulted in a selective and profound reduction in
binge drinking in P rats. In the present study, we sought to further
understand the role that the α1 receptor subunit plays in binge
drinking by examining its capacity to regulate the behavior in the
high-alcohol drinking (HAD) rat line. The HAD line has been sug-
gested as a model of human alcohol abuse (McBride and Li, 1998),
but has not been characterized as extensively as the P rat (Bell et al.,
2006). As with the P rat in the effort-related operant model (Liu
et al., 2011), we posited that the α1 receptor subunit selectively
regulates volitional home-cage binge drinking in HAD rats.

To begin testing our hypothesis, we first examined innate levels
of the α1 receptor protein in the VP and in other reward loci of
HAD and LAD rats, which have disparate alcohol drinking phe-
notypes (McBride and Li, 1998). While we recently reported that
the VP was associated with binge alcohol drinking, and that P rats
exhibited significantly higher levels of the α1 subunit protein rel-
ative to NP rats at this site (Liu et al., 2011), we also considered
the possibility that levels of the α1 subunit within other alcohol
reward loci such as the extended amygdala (EA) and basolateral
amygdala (BLA; Koob, 2004; Koob and Le Moal, 2005) could also
be associated with excessive alcohol intake. The EA comprises the
bed nucleus of the stria terminalis (BST), the central nucleus of the
amygdala (CeA), and the shell of the nucleus accumbens (NAcc;

Heimer and Alheid, 1991). The BLA is a projection locus for sev-
eral EA loci; it sends reciprocal projections to the VP (Heimer and
Alheid, 1991), and, like the EA, primarily contains α2 receptor sub-
types. Substantial evidence suggests that neuroadaptive changes in
both the EA and the VP, may be linked to motivation for exces-
sive/binge alcohol drinking (Koob and Le Moal, 2005; Stephens
and Duka, 2008; Liu et al., 2011). Finally, because the EA and
related loci contain high levels of the α2 receptor subunit (Pirker
et al., 2000; Kaufmann et al., 2003), and we have previously shown
that α2 receptor subunits regulate binge drinking in P rats, at least
in the CeA (Liu et al., 2011), we also investigated the possibility
that higher levels of the α2 subunit could be observed in HAD
relative to LAD rats in these putative alcohol reward loci.

RESULTS
HAD RATS EXPRESS ELEVATED LEVELS OF THE GABAA α1 SUBUNIT IN
THE VP AND CeA THAN THEIR LAD COUNTERPARTS
Duplicates of punch biopsies obtained from distinct neu-
roanatomical sites (VP, CeA, BLA, and BST) of HAD and LAD
rats were immunoblotted with α1- or α2-specific antibodies,
with results quantitated by densitometric scanning as previously
described (Smith et al., 1998; Liu et al., 2011). Levels of α1 in
HAD rats were significantly higher in the VP (Figure 1A) and CeA
(Figure 1B) than in LAD rats, but the two lines expressed similar
levels of α1 in the BLA and BST (Figures 1C,D). These findings
are in direct contrast to those obtained for the α2 receptor subunit,
the levels of which were similar for HAD and LAD rats at all the
examined anatomical sites (Figures 1E–H). Our previous report
in P rats also revealed an elevation in α1 subunits in the VP and
CeA (Liu et al., 2011).

FIGURE 1 | α1 expression is increased in the ventral pallidum (VP)

and central amygdaloid nucleus (CeA) from HAD as compared with

LAD rats. Micropunch samples were collected from the right and left
hemispheres of rats and pooled. Protein extracts were immunoblotted
with antibodies specific for the GABAA α1 (A–D) or α2 (E–H) subunits,
using GAPDH antibody as control. Quantitation was done by
densitometric scanning; each lane represents a distinct animal. The

levels of α1 were significantly higher in the VP [F (1,14) = 15.15,
P < 0.002] (A) and CeA [F (1,13) = 71.51, P < 0.001] (B) from HAD than
LAD rats. The levels of α1 in the basolateral amygdaloid nucleus [BLA;
(C)] and bed nucleus of the stria terminalis (BST) (D), as well as the
levels of α2 at all these sites (E–H), were similar between HADs and
LADs. The Newman–Keuls post hoc followed each significant
between-group ANOVA. *P < 0.001.
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HSV-BASED VECTORS DELIVER siRNA TO SPECIFIC
NEUROANATOMICAL SITES
Having seen that α1 is overexpressed in the VP and CeA, we wanted
to know whether it is associated with vulnerability to engage in
binge alcohol drinking. We focused on the VP to determine if the
findings observed in P rats could be extrapolated to HAD rats
in a volitional model of binge alcohol drinking. It should also
be noted that overexpression of α1 in the CeA of P rats failed to
regulate binge drinking, in contrast to similar overexpression in
the VP (Liu et al., 2011). These findings indicate that overexpres-
sion of the α1 subunit in the CeA in and of itself is not sufficient
to regulate the neuroadaptional processes associated with binge
drinking.

In the present study, we employed the siRNA technology to
examine the contribution of the α1 subunit to binge drinking, as
it provides a mechanism for inhibiting specific genes at individual
loci. The sequence and specificity of the α1 siRNA used in these
studies and the construction of the HSV-based vector for its deliv-
ery (pHSVsiLA1), have been described previously (Liu et al., 2011).
pHSVsiNC, a scrambled siRNA sequence delivered with a similar
HSV-based vector, was studied in parallel with pHSVsiLA1 as a
specificity control. Both vectors express enhanced green fluores-
cent protein (EGFP) in order to facilitate their detection following
delivery.

As described in the Section “Materials and Methods,” vectors
were delivered into the VP by bilateral stereotaxic microinfusion,
and transduction was assessed by confocal microscopy at 72 h post
delivery by EGFP visualization. The image shown in Figure 2A for
1 of the 13 bilateral injection sites in the VP of a HAD rat given
pHSVsiLA1 (Figure 2B) indicates that transduction was effec-
tive, with substantial clusters of transduced neurons seen near the
injection site. We conclude that most EGFP-positive cells con-
tain GABAA receptors, because 90% of the synapses in the VP
are GAD immunoreactive, and α1 is the most highly expressed
GABAA subunit in the VP (Churchill et al., 1991; Pirker et al.,
2000).

FIGURE 2 | Visualization represents low magnification of amplicon

infected cells in the VP using confocal microscopy. (A) Low
magnification showing a group of infected cells near 1 of the 13 bilateral VP
(black) injection sites in (B); also depicted in high magnification is an
individual neuron expressing the EGFP tag. Scale bar represents 25 μm in
(A) and 250 μm in the insert. (B) Histological mapping of control and
pHSVsiLA1 amplicon infusions across the VP, with coronal sections at
+2.20 to −0.80 mm from bregma (Paxinos and Watson, 1998). Black dots
indicate the bilateral stereotaxic infusion sites across the VP (red).

pHSVsiLA1 SPECIFICALLY INHIBITS α1 EXPRESSION AT THE SITE AT
WHICH IT IS INJECTED
To examine whether α1 expression is specifically inhibited by
pHSVsiLA1, cohorts of HAD rats were given pHSVsiLA1, pHSVs-
iNC, or PBS in the VP, with levels of α1 protein determined at
3 days post-infusion via immunoblotting of duplicate sections
with α1-specific antibody. Alpha-2-specific antibody was used as
a control. pHSVsiLA1 caused a robust decrease in α1 levels rel-
ative to those in the PBS-treated animals, a finding that was not
observed in HAD rats given pHSVsiNC (Figure 3A). Moreover,
the levels of the α2 subunit were not altered (Figure 3B), con-
sistent with the conclusion that α1 reduction is not secondary
to compensatory increases in another subunit, notably α2, in the
same tissues. Particularly significant from the standpoint of ther-
apy, α1 expression was still significantly inhibited on day 17 after
pHSVsiLA1 infusion, albeit at a less profound level than on day 3
post-infusion (Figure 3C), underscoring the specificity and pro-
tracted duration of pHSVsiLA1’s inhibitory effect. The long-term
effect of pHSVsiLA1, at least in this animal model, is not an
artifact of the experimental procedures. Alpha-2 expression was
unchanged (Figure 3D), and levels of α1 expression on day 30
after pHSVsiLA1 infusion were similar to those observed both
pre-surgery and for animals given PBS or pHSVsiNC (Figure 3E).

REDUCED α1 EXPRESSION IN pHSVsiLA1-, BUT NOT
pHSVsiNC-TREATED CELLS, EXTENDS TO PROTEIN LEVELS ON THE CELL
SURFACE AS DETERMINED BY IMMUNOBLOTTING OF BIOTINYLATED
PROTEINS
The cell culture data summarized in Figure 4 indicate that approx-
imately 50% of the total α1 protein levels are biotinylated (i.e.,
expressed on the cell surface). Identical levels of biotinylated α1
protein were seen in cells treated with pHSVsiNC; however, treat-
ment with pHSVsiLA1 caused a significant decrease in levels of
biotinylated α1 protein. The data indicate that inhibition of α1
expression by pHSVsiLA1 also causes a significant reduction in
surface protein expression.

pHSVsiLA1-INDUCED α1 INHIBITION DECREASES THE DENSITY OF THE
GABAA RECEPTOR
Because pHSVsiLA1 specifically reduced α1 gene expression,
including on the surfaces of cells, we wanted to know whether
it interferes with the density of the GABAA receptor. HAD rats
were given pHSVsiLA1 or PBS in the VP and tissues were col-
lected at 3 days after infusion, when levels of α1 expression are
significantly decreased. The collected VP tissues were assayed for
radioligand binding of [3H]EBOB, a specific radioligand for the
non-competitive convulsant blocking site of the GABA receptor,
as previously described (Korpi et al., 1995). Binding was signif-
icantly reduced in the pHSVsiLA1-treated rats, as revealed by
competition of picrotoxin with [3H]EBOB (Figure 5). A satu-
ration isotherm showed significant differences in specific bind-
ing between the group given pHSVsiLA1 (n = 10) relative to
the PBS group (n = 10). [3H]EBOB binding (B max) was pro-
foundly reduced from 861 ± 16 fmol/mg protein in the control
to 554 ± 8 fmol/mg protein in the pSHVsiLA1-treated rats, with
no significant change in affinity (K d; control, 2.67 ± 0.24 nM;
pSHVsiLA1, 2.70 ± 0.18 nM; Figures 5A,B). Reduced binding
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FIGURE 3 | pHSVsiLA1 inhibits α1 expression in the VP. Micropunch
samples of HAD rats given PBS (control), pHSVsiLA1, or pHSVsiNC (n = 3
each) into the VP by stereotaxic microinfusion were collected from the VP
tissues on days 3 (A,B), 17 (C,D) or 30 (E) after infusion and assayed for
gene expression by immunoblotting. Quantitation was done by
densitometric scanning, and data are expressed as the mean ± SEM. Each
well represents a sample of tissue from the left (L) or right (R) hemisphere
of one animal; the levels of protein reduction were symmetrical in both the
left (L) and right (R) hemispheres; hence, the data were pooled. (A)

Immunoblotting with α1 antibody at 3 days post-infusion indicates that
levels of α1 protein were significantly lower in rats given pHSVsiLA1
(siLA1) than PBS [F (2,15) = 173.43, P < 0.001], but similar α1 levels were

seen in rats given PBS and pHSVsiNC (siNC). (B) Duplicates of the tissues
used for (A) were immunoblotted with α2-specific antibody, with no
significant group effects. (C,D) VP tissues from HAD rats given PBS (n = 3)
or pHSVsiLA1 (n = 5, n = 3 respectively) as in (A,B) were immunoblotted
with α1 or α2 antibodies at 17 days after infusion. α1 expression was still
significantly lower in the pHSVsiLA1-treated rats [F (1,14) = 16.66,
P < 0.001]. Immunoblotting with α2 antibody did not differentiate between
the PBS and pHSVsiLA1-treated rats, and pHSVsiNC did not reduce α1
expression relative to PBS (data not shown). (E) Immunoblotting of VP
tissues collected on day 30 after infusion indicated similar levels of α1
expression in PBS and pHSVsiLA1-treated rats. Significant effects were
identified using the Tukey post hoc test; *P < 0.001.

levels evidenced after pHSVsiLA1 treatment (64% of control lev-
els) correlate well with the reductions in α1 protein expression on
the cell surface (50% of control levels; Figure 4). A similar reduc-
tion was not seen in any of the neuroanatomical sites of the PBS
control rats that were not injected with the virus, nor in animals
given pHSVsiNC or pHSVsiLA1 at sites that do not express high
levels of α1 (data not shown), confirming the specificity of the
pHSVsiLA1-mediated inhibition. Collectively, the data summa-
rized in Figures 3–5 indicate that use of vector-delivered siRNA
allows for specific inhibition of gene expression in one targeted
neuroanatomical site, thereby providing the means to examine its
contribution to alcohol drinking.

VP-DELIVERED pHSVsiLA1 INHIBITS ALCOHOL DRINKING IN HAD RATS
Having seen that pHSVsiLA1 specifically inhibits α1 expression
and reduces the density of the GABAA receptor in the VP, we
wanted to know whether this reduction is associated with inhibi-
tion of binge alcohol drinking. Cohorts of HAD rats (n = 5–6
per group) were trained to self-administer alcohol (Bell et al.,
2006; Integrative Neuroscience Initiative on Alcoholism (INIA)-
West, 2008) and randomly administered, by cohort, pHSVsiLA1,
pHSVsiNC, or PBS into the VP. After 3 days, during which the

animals recovered from the stress of surgery, they were allowed
to engage in daily alcohol drinking for 30 days. The results of
these studies are summarized in Figure 6. In the rats given
pHSVsiLA1, alcohol drinking was virtually eliminated on days
3–6 after infusion, when α1 expression was robustly inhibited.
Drinking was still profoundly reduced by comparison to the
PBS-treated animals on days 7–17 after pHSVsiLA1 infusion,
when α1 expression was still inhibited. From days 18–26 the
pHSVsiLA1-treated animals tended to show a daily elevation in
responding. However, their intake levels were significantly lower
compared with the control animals. By days 26–30 there was no
differentiation in ethanol administration observed between the
pHSVsiLA1 and control groups (Figure 6A). However, the pre-
cise time at which protein expression returned to pre-surgery
levels in the pHSVsiLA1-treated animals is unknown. At 17 days
post-infusion, α1 expression was significantly attenuated relative
to control-treated animals, albeit markedly above that of animals
72 h post-treatment. At present, we are investigating the protracted
time-course of protein reduction vis-à-vis reduction in volitional
alcohol intake following administration of the α1 siRNA amplicon
into theVP, in order to more precisely determine the significance of
the relationship between the two. Nevertheless, we propose that the
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effect of pHSVsiLA1 is specific for alcohol, because water ingestion
was similar between rats treated with pHSVsiLA1 or PBS control
throughout the study interval (Figure 6B), and because the effects
of pHSVsiLA1 was undistinguishable from those of PBS in HAD
rats trained to drink sucrose in an analogous model (Figure 6C).
We conclude that inhibition of alcohol intake by pHSVsiLA1 is
related to α1 inhibition in the VP. This is not an artifact of vector-
induced toxicity or inflammation, because alcohol drinking was
not reduced by pHSVsiNC, which was constructed exactly like
pHSVsiLA1, but does not inhibit α1 expression or interfere with
receptor density (Figure 6D). Toxicity determined based on loss of
body weight and general activity levels was not seen for pHSVsiLA1
or pHSVsiNC (Figures 7A,B).

DISCUSSION
Therapeutic strategies that target drinking-related genes may
offer improved alternatives to psychosocial and pharmacother-
apeutic interventions for binge drinking. Indeed, human and

FIGURE 4 | Inhibition of biotin-labeled cell surface proteins. Eluates of
WS-1 cells untreated (−) or transduced with pHSVsiLA1 or the scrambled
control vector pHSVsiNC, examined for biotinylated GABA α1 protein by
immunoblotting. Approximately 50% of the total levels of α1 protein
expressed in the cells is biotinylated (i.e., expressed on the cell surface).
Similar levels of biotinylated α1 protein were seen in cells treated with
pHSVsiNC, but treatment with pHSVLA1 caused a significant decrease in
the levels of biotinylated α1 protein [F (3,8) = 316.78, P < 0.001].
Subsequent Tukey post hoc test confirmed that inhibition of α1 expression
by pHSVsiLA1 also caused a significant reduction in the levels of cell
surface protein expression (P < 0.01).

animal studies, including studies focusing on the contribution
of the GABAA receptor (Edenberg et al., 2004; Dick et al., 2006)
have shown that genetics are a strong risk factor for alcoholism
(Cloninger, 1987; McBride and Li, 1998; Murphy et al., 2002).
However, major clinical challenges are posed by our relatively poor
understanding of the role played by specific subunits in the reg-
ulation of excessive alcohol drinking and the brain loci in which
they are expressed (June and Eiler, 2007; Lobo and Harris, 2008).
Following our previous report for P rats (Liu et al., 2011), the
current findings provide a second piece of compelling molecu-
lar evidence that overexpression of the GABAA α1 subunit within
distinct neuroanatomical loci plays a key role in the regulation of
binge drinking, suggesting that its inhibition with vector-delivered
siRNA may have therapeutic potential. The following comments
seem pertinent with respect to these findings.

An emerging hypothesis is that addiction results from the
interaction of reward mechanisms and impaired inhibition of reg-
ulatory genes (Goldstein and Volkow, 2002; De Wit and Richards,
2004), such as the GABAA receptor. However, the exact identity of
the contributing receptor subunit and its localization in the brain
are still unknown. Our data indicate that the levels of the GABAA

α1 subunit are significantly elevated in the VP of HAD animals
relative to their LAD counterparts, and that siRNA-mediated inhi-
bition of α1 expression in the VP reduces both receptor density
and binge alcohol drinking. The specificity of the siRNA used in
these studies and the HSV-1-based amplicon vector used for its
delivery (pHSVsiLA1) were documented by direct comparison of
the effects of pHSVsiLA1 to those mediated by an identical vector
used to deliver a scrambled siRNA sequence (pHSVsiNC) in cul-
tured cells that specifically overexpress only the α1 subunit (Liu
et al., 2011) and in brains from microinfused rats (Figure 6D). In
all our studies, pHSVsiNC had no effect on α1 expression, recep-
tor density, or alcohol intake. This is in contrast to pHSVsiLA1,
which caused a profound and selective reduction of the α1 protein
levels, the density of the GABAA receptor and alcohol drinking.
The specificity of the effect of pHSVsiLA1 is further documented
by the finding that pHSVsiLA1 failed to alter α2 protein levels.
Expression of the α1 gene in the VP was maximally reduced
at 3 days after pHSVsiLA1 microinfusion. At that time, the VP
evidenced approximately 60% reduction in radioligand binding
using [3H]EBOB, with no significant change in affinity between

FIGURE 5 | Binding profile of [3H]EBOB in HAD rats microinfused with

PBS (n = 10) or pHSVsiLA1 (n = 10) at 72 h post-infusion. (A) Saturation
isotherm shows significant differences in specific binding between the two
groups [F (3, 312) = 107, P < 0.0001]. A Tukey post hoc test detected that
[3H]EBOB binding (B max) was reduced from 861 ± 16 to 554 ± 8 fmol/mg

protein in control and pSHVsiLA1-treated rats, respectively, with no
significant change in affinity (K d; control, 2.67 ± 0.24 nM;
pHSVsiLA1-treated, 2.70 ± 0.18 nM). (B) Scatchard analysis of [3H] EBOB
binding to GABAA receptors in VP of PBS- (n = 10) or pHSVsiLA1- (n = 20)
treated rats.
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FIGURE 6 | pHSVsiLA1 delivery into the VP inhibits alcohol intake in HAD

rats. (A–C) HAD rats were microinfused with pHSVsiLA1 (n = 6) or PBS
(control; n = 6) into the VP and examined for intake of alcohol (10% v/v) (A),
water (B), or sucrose (C) in a home-cage bottle paradigm for 90 min. Alcohol
results are expressed in grams per kilogram (g/kg). Prior to surgery, BACs in
the PBS control and pHSVsiLA1 groups were 112 mg%/dL ± 13 and
118 mg%/dL ± 25, respectively. Two-way ANOVA revealed significant main
effects of Day [F (28,140) = 5.58, P < 0.001], Group [F (1,5) = 86.184,
P < 0.001], and a significant interaction for Day × Group [F (28,140) = 5.35,
P < 0.001]. Relative to the control group, significant reductions in alcohol
drinking were observed in the pHSVsiLA1-treated group from days 3–25
(Tukey post hoc test). Alcohol intake was similar during days 26–30 for the
pHSVsiLA1 and PBS control groups. (B) Water intake (mL/kg)/22.5 h was also
similar across pre-surgical days and post-surgical days 1–10 between the
pHSVsiLA1 and PBS control groups. (C) Sucrose intake in the two-bottle
choice home-cage paradigm over the 90-min period. ANOVA revealed a

significant session effect [F (7,74) = 3.616, P < 0.0001]. Specifically, both the
control and pHSVsiLA1 pre-surgery groups demonstrated significantly higher
drinking than the post-surgery groups on day 3 (P < 0.01). However, no
differences were observed between the two groups at pre-surgery or at any
post-surgery time point (P > 0.01). (D) HAD rats were given the scrambled
amplicon pHSVsiNC (n = 6) or PBS (control; n = 6) into the VP and examined
for alcohol consumption. Results are expressed in grams per kilogram (g/kg)
during the daily 90 min alcohol sessions. Prior to surgery, BACs in the PBS
and pHSVsiNC groups were 133 mg%/dL ± 26 and 122 mg%/dL ± 21,
respectively. ANOVA revealed a significant session effect [F (7, 80) = 11.96,
P < 0.0001], but no group effects. Specifically, drinking in the both the control
and pHSVsiNC pre-surgery groups was significantly greater than in the
post-surgery groups on days 3 and 4 (P < 0.01). However, no differences were
observed between the two groups at pre-surgery or at any post-surgery time
point (P > 0.01). Significant effects were identified using the Newman–Keuls
post hoc test.

the control- and pHSVsiLA1-treated groups (K d = 2.67 ± 0.24 vs.
2.70 ± 1.8 nM, respectively). In this context, it is important to
point out that the magnitude of binding using [3H]EBOB cor-
related with α1 expression on the cell surface, as determined by
biotinylation analysis of pHSVsiLA1-treated cultured cells. Inter-
estingly, temporal studies of the pHSVsiLA1-treated rats indicated
that α1 expression in the VP was still inhibited at 17 days post-
infusion, albeit at a less robust level than that seen for day 3
post-infusion. This is indicative of a time-dependent restoration
of α1 gene expression. Indeed, by day 30 post-infusion, the lev-
els of α1 expressed in the VP from the pHSVsiLA1-treated rats
were similar to those seen in the same animals before microinfu-
sion (pre-surgery), as well as those in PBS and pHSVsiNC-treated
rats throughout the study interval. Most importantly, alcohol
intake by the HAD rats showed a very strong correlation with
α1 expression in the VP, with drinking being inhibited through-
out the time that α1 expression was reduced and returning to
baseline levels together with α1 expression. While we still do
not know the exact time after day 17 at which α1 expression
was restored, the protracted duration of pHSVsiLA1’s effect is
consistent with previous reports for the function of siRNA deliv-
ered with HSV amplicons (Saydam et al., 2005) and suggests that

this approach may have therapeutic promise. The behavioral data
across the 30-day time period (Figure 6A) show that, by day 21,
profound elevations in drinking begin to emerge, with a daily
progression in intake being observed up to the conclusion of the
30-day intake period. We lack protein data for days 18–29; how-
ever, the data we do have support the elevations seen in drinking
and show the protein levels progressing in the same direction as
the behavior.

The precise mechanism by which GABAA receptors in the VP
contribute to the regulation of alcohol intake is still unclear.
It is possible that elevations in protein expression in the VP
and other alcohol reward loci results in an overactive GABAer-
gic/dopaminergic reward circuitry. This, in turn, may predispose
alcoholics to engage in binge drinking by altering impulsivity
(Edenberg et al., 2004). Indeed, impulsivity is associated with
excessive drinking in humans (Petry, 2001) and rodents (Wilhelm
and Mitchell, 2008; Oberlin and Grahame, 2009), particularly
with binge drinking (Stephens and Duka, 2008). Recently, it has
been shown that elevated dopamine levels also play a significant
role in modulating impulsivity (Buckholtz et al., 2010; Fernando
et al., 2011). Thus, it is possible that the elevated GABA levels in
P rats may disinhibit dopaminergic neurons in the VP (Kalivas,
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FIGURE 7 | Amplicon vectors do not alter body weight or locomotor

activity measurements in the open-field in HAD rats. (A) Body weights
and locomotor measures for animals given pHSVsiLA1 or PBS control (n = 8
each/total = 16) at 96 h post-surgery (4 days). No significant differences
were observed between groups for body weight [F (3, 28) = 0.252,
P > 0.05]. (B) In addition, locomotor activity (i.e., horizontal activity over a
10-min period) was also similar for animals given PBS and pHSVsiLA1 (n = 8
each/total = 16) at 96 h post-surgery (4 days) [F (3, 28) = 0.0278, P > 0.994].
No significant differences between groups were observed.

1993). Such elevations in dopamine could result in reductions in
alcohol self-administration following siRNA microinfusion into
the VP.

GABAergic neurons in the VP have been reported to regulate
major dopaminergic output neurons within the same structure
(Gong et al., 1998). It has also been reported that the VP receives
additional GABAergic afferents from the VTA (Kalivas, 1993),
which is also been known to regulate excessive alcohol drinking
(McBride and Li, 1998; Eiler II and June, 2007). GABA can directly
inhibit or indirectly stimulate dopaminergic cells via disinhibition
of GABAergic interneurons (Kalivas, 1993). Thus, the topography
of theVP places it in a unique position to serve as a pivotal regulator
of dopaminergic and GABAergic inputs that could control binge
drinking. The relationship between enhanced GABA levels and
excessive alcohol drinking has also been demonstrated (Roberto
et al., 2004). In this context, it is particularly important to point
out that pHSVsiLA1-mediated inhibition of α1 in the NAcc and
CeA does not reduce alcohol intake in P rats (Liu et al., 2011). In
contrast, inhibition of α2 in the CeA reduces binge drinking (Liu
et al., 2011). Thus, the current data and our prior research strongly
suggest that neuroanatomical localizations of the α1 and α2 recep-
tor subunits in the VP and CeA, respectively, are key regulators of
binge drinking.

In conclusion, taken together, our data suggest that binge drink-
ing is due in part to impairment of neuronal inhibition caused by
an overactive GABAergic reward circuitry. While normal GABAer-
gic tone may dampen impulsivity to impair the initiation of binge
drinking (Edenberg et al., 2004), elevations in certain brain reward
loci may release the inhibition of neuronal activity to initiate the
behavior. More research is needed to further delineate the role that
an overactive GABAergic reward circuitry plays in binge drinking.

MATERIALS AND METHODS
ANTIBODIES
The generation and specificity of the rabbit-derived GABAA α1
and α2 antibodies have been described previously (Pirker et al.,
2000). These recognize amino acids 1–9 and 322–357 of the α1

and α2 proteins, respectively. The antibody controls (GAPDH
and actin) can be used interchangeably, based on availability. The
GAPDH antibody was unavailable during the middle portion of
the study period.

AMPLICON CONSTRUCTION AND CELL TRANSDUCTION
The siRNAs LA1 (α1 subunit) and NC (scrambled, non-specific),
as well as the construction and functionality of the respective HSV-
1-based amplicon vectors, are described in Table S1 and Figures
S2–S4 in Supplementary Material (Liu et al., 2011). Construction
used the basic plasmid pHSVsi that contains an HSV-1 origin of
DNA replication (ori), the HSV-1 DNA packaging/cleavage signal
(pac), and the HSV-1 IE 4/5 promoter to express the EGFP reporter
gene. A second transcription unit consists of the RNA polymerase
III-dependent H1 promoter and start and termination signals for
siRNA synthesis (Saydam et al., 2005). The siRNAs were inserted
into pHSVsi between the BglII and HindIII sites. Amplicon DNA
was packaged into HSV-1 particles and the titers of the vector
stocks were determined by counting the number of green cells at
24 h after transduction and expressing them as transduction units
(TU)/mL.

IMMUNOBLOTTING
Ventral pallidum tissues were harvested by micropunch (140 μm
thick). Immunoblotting was conducted as previously described
(Wales et al., 2007). Lysis was performed in RIPA buffer (20 mM
Tris–HCl (pH 7.4), 0.15 mM NaCl, 1% Nonidet P-40, 0.1% sodium
dodecyl sulfate, 0.5% sodium deoxycholate) with 1% phosphatase
and protease inhibitor cocktails (Sigma, St. Louis, MO, USA),
and total protein was determined by the bicinchoninic assay
(Pierce, Rockford, IL, USA). Proteins were resolved by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and transferred
to nitrocellulose membranes. Blots were exposed to antibody
overnight at 4˚C, followed by horseradish peroxidase-labeled goat
anti-rabbit IgG (Cell Signaling, Beverly, MA, USA) for 1 h at room
temperature. Detection was performed using ECL kit reagents
(Amersham Life Science, Arlington Heights, IL, USA) and quan-
titation was by densitometric scanning with a Bio-Rad GS-700
imaging densitometer.

RADIOLIGAND BINDING
Cerebellum, VP, CeA, and BST membrane homogenates were pre-
pared from adult male HAD rats, and binding of [3H]EBOB
was determined by filtration assay (Kralic et al., 2002). Briefly,
homogenates were incubated with 6.0 nM [3H]EBOB in 50 mM
Tris–HCl buffer (pH 7.4), containing 300 mM NaCl, at 23˚C for
1 h. Non-specific binding was determined with 50 μM picrotoxin.
After incubation,bound and free ligand were separated by rapid fil-
tration over Whatman GF/B glass-fiber filters (presoaked in 0.05%
polyethylenimine for 20 min), followed by three 4 mL washes with
ice-cold 0.9% NaCl solution. Radioactivity was counted by liquid
scintillation spectroscopy (Packard TRI-CARB 2900 TR, Downers
Grove, IL, USA).

ISOLATION OF BIOTIN-LABELED CELL SURFACE PROTEINS
To examine whether pHSVsiLA1 alters the expression of the GABA
α1 protein on the cell surface, we used the Pierce® Cell Surface
Protein Isolation Kit (Pierce Biotechnology, Rockford, IL, USA)
according to the manufacturer’s instructions.
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STEREOTAXIC PROCEDURES
High-alcohol drinking rats were anesthetized by intraperitoneal
injection of nembutal (50 mg/kg) and positioned in a stereotaxic
apparatus as described previously (Liu et al., 2011). The selected
microinjection sites in the rat VP extend from +2.2 mm anterior to
bregma to −0.8 mm posterior to bregma, and from 0.5 to 3.0 mm
lateral to the midline (Paxinos and Watson, 1998). Since amplicons
do not diffuse over long distances in brain, a single large injection
would fail to cover the entire VP and likely also result in a pressure
lesion. Thus, we performed a pattern of 13 small injections in each
hemisphere spaced across the entire VP (Figure 2B). At each site,
200 nL of either pHSVsiLA1 amplicon (2.5 × 105 TU), pHSVsiNC
(2.5 × 105 TU) in PBS diluent or PBS control were injected using
a calibrated pulled glass micropipette (∼20 μm tip) connected
to a Picospritzer II pneumatic pressure injection apparatus (Sci-
ence Products GmbH, Hofheim, Germany). Injections lasted 30 s
and were separated by 1–2 min pauses for tissue recovery prior to
insertion of the pipette at the next site. Acrylic microbeads were
mixed with the amplicon and control injections to confirm accu-
racy of the microinjection placement based on the Rat Brain Atlas
(Paxinos and Watson, 1998). All surgical and amplicon admin-
istration procedures were approved by the IACUC and Biosafety
Committees at the University of Maryland School of Medicine.

BINGE ALCOHOL DRINKING
To initiate excessive alcohol drinking in HAD rats, we used
the drinking-in-the-dark-multiple-scheduled-access (DIDMSA)
binge model developed by the Integrative Neuroscience Initiative
on Alcoholism (INIA)-West, 2008, McBride and Li, 1998, Bell et al.,
2006, which emulates the binge alcohol drinking patterns seen in
humans (Naimi et al., 2003). Our experimental design comprised
both pre- and post-surgery phases of home-cage binge alcohol
drinking. In brief, rats were each presented with two 10 mL glass
pipette vials equipped with stainless-steel sipper spouts and rubber
stoppers. The pipettes were calibrated to allow for measurement

of drinking for both alcohol and water. The 10% (v/v) alco-
hol solution was prepared using 10% alcohol (USP) and 90%
deionized water (v/v). This pre-surgery phase included 21 days of
consecutive alcohol drinking wherein HAD rats consumed alcohol
for 1.5 h daily. The daily 1.5 h alcohol drinking periods were each
divided into three 30 min bouts separated by 1 h intervals wherein
rats received food and water in their home cages. During the
non-binge periods (i.e., 22.5 h), rats also received food and water
ad libitum. To determine if the rats were consuming binge alcohol
levels of the 10% (v/v) alcohol solution, BAC levels were evaluated
beginning on day 11 of the pre-surgery period, and were quantified
every other day up to day 21, as previously reported (Harvey et al.,
2002). Based on quantification of BACs, the HAD rats were strat-
ified into two cohorts with BACs of 112 mg%/dL ± 13 (n = 6) or
118 mg%/dL ± 25 (n = 5). The two cohorts then received the PBS
control or the pHSVsiLA1 amplicon vector, respectively. Seventy-
two hours after administration of the experimental treatments, the
post-surgery phase began. During the post-surgery phase, all rats
consumed their daily 1.5 h binge alcohol for 15 consecutive days.

STATISTICAL ANALYSES
Data were analyzed by between-group ANOVAs and mixed
repeated-measures ANOVAs for group and days. Significant
ANOVAs were followed by the Tukey, Newman–Keuls or t -test
post hoc tests. Analyses were performed using the StatMost 5.0
(Dataxiom Software Inc., Los Angeles, CA, USA) and GraphPad
Prism 6.0 (GraphPad Software, Inc., La Jolla, CA, USA) programs.
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