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Brain–computer interfaces (BCIs) use brain signals to convey a user’s intent. Some BCI
approaches begin by decoding kinematic parameters of movements from brain signals, and
then proceed to using these signals, in absence of movements, to allow a user to control an
output. Recent results have shown that electrocorticographic (ECoG) recordings from the
surface of the brain in humans can give information about kinematic parameters (e.g., hand
velocity or finger flexion).The decoding approaches in these studies usually employed clas-
sical classification/regression algorithms that derive a linear mapping between brain signals
and outputs. However, they typically only incorporate little prior information about the tar-
get movement parameter. In this paper, we incorporate prior knowledge using a Bayesian
decoding method, and use it to decode finger flexion from ECoG signals. Specifically, we
exploit the constraints that govern finger flexion and incorporate these constraints in the
construction, structure, and the probabilistic functions of the prior model of a switched
non-parametric dynamic system (SNDS). Given a measurement model resulting from a
traditional linear regression method, we decoded finger flexion using posterior estimation
that combined the prior and measurement models. Our results show that the application
of the Bayesian decoding model, which incorporates prior knowledge, improves decoding
performance compared to the application of a linear regression model, which does not
incorporate prior knowledge. Thus, the results presented in this paper may ultimately lead
to neurally controlled hand prostheses with full fine-grained finger articulation.

Keywords: brain–computer interface, electrocorticographic, decoding algorithm, finger flexion, prior knowledge,

machine learning

1. INTRODUCTION
Brain–computer interfaces (BCIs) allow people to control devices
directly using brain signals (Wolpaw, 2007). Because BCI systems
directly convert brain signals into commands to control output
devices, they can be used by people with severe paralysis. Core
components of any BCI system are the feature extraction algo-
rithm that extracts those brain signal features that represent the
subject’s intent, and the decoding algorithm that translates those
features into output commands to control artificial actuators.

Substantial efforts in signal processing and machine learn-
ing have been devoted to decoding algorithms. Many of these
efforts focused on classifying discrete brain states. The linear
and non-linear classification algorithms used in these efforts are
reviewed in (Muller et al., 2003; Bashashati et al., 2007; Lotte
et al., 2007). Other efforts have formulated the decoding prob-
lem as that of feature translation rather than classification. This
approach has been used by many invasive studies using action
potentials acquired from microelectrodes implanted within cor-
tex (Taylor et al., 2002; Hatsopoulos et al., 2004; Carmena et al.,
2005; Lebedev et al., 2005; Velliste et al., 2008), but also by ECoG

studies (Schalk et al., 2007; Kubánek et al., 2009) and EEG stud-
ies (Wolpaw and McFarland, 2004; McFarland et al., 2008, 2010;
see Schwartz et al., 2001; Koyama et al., 2010 for review). Many
single neuron-based and ECoG-based studies have implemented
such translation algorithms for decoding continuous trajectories
of limb movements. The simplest translation algorithms use lin-
ear models to model the relationship between brain signals and
limb movements. This linear relationship can be defined using
different algorithms, including pace regression (Kubánek et al.,
2009), ridge regression (Mulliken et al., 2008), or time-embedded
linear Wiener filter (Bradberry et al., 2010, 2011; Presacco et al.,
2011). Other studies have explored the use of non-linear meth-
ods, including neural networks (Chapin et al., 1999; Sanchez
et al., 2002, 2003; Kim et al., 2005), multilinear perceptrons (Kim
et al., 2006), and support vector machines (Kim et al., 2006).
Despite substantial efforts, it is still unclear whether non-linear
methods can provide consistent benefits over linear methods in
the BCI context. In any case, both linear and non-linear BCI
decoding methods are often used to model the direct mapping
between brain signals and particular behavioral parameters. This
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approach usually does not readily offer opportunities to incor-
porate prior knowledge about the target model system. In the
example of finger flexion, existing methods did not account for
the physiological, physical, and mechanical constraints that affect
the flexion of different fingers. Not integrating prior information
likely produced suboptimal results. This issue has been addressed
in other domains using different algorithms (Viola and Jones,
2004; Taylor et al., 2006, 2010; Tong et al., 2007; Tong and Ji,
2008; Yao et al., 2009) that can incorporate such information.
One popular method is based on Bayesian inference, which has
been adopted in computer vision (Tong et al., 2007; Taylor et al.,
2010). A Bayesian model can systematically capture prior knowl-
edge and combine it with new measurements. Specifically, the
target variables (e.g., finger flexion values) are estimated through
posterior estimation that combines the prior model and the
measurement.

The main question we sought to answer with this study is
whether appropriate integration of prior knowledge improves the
fidelity of decoding of individual finger movements. To do this, we
used a switching non-parametric dynamic system (SNDS) to build
a model that integrates information from prior knowledge and
from the output of a simple regression model that was established
between ECoG signals and finger flexion. This method is an exten-
sion to the switched linear dynamic system (SLDS) method. SLDS
has been successfully applied in a variety of domains (Azzouzi
and Nabney, 1999; Pavlovic et al., 2001; Zoeter and Heskes, 2003;
Droppo and Acero, 2004; Rosti and Gales, 2004; Oh et al., 2005).
The proposed SNDS addresses several limitations of SLDS in
terms of modeling the prior knowledge of the finger flexion. We
applied the SNDS technique to a dataset used in previous studies
(Kubánek et al., 2009; Wang et al., 2010) to decode from ECoG sig-
nals the flexion of individual fingers, and we compared decoding

results when we did and did not use prior knowledge (i.e., for
SNDS/regression and regression). Our results show that incorpo-
ration of prior knowledge substantially improved decoding results
compared to when we did not incorporate this information.

We attribute this improvement to the following technical
advances. First, and most importantly, we introduce a prior model
based on SNDS, which takes advantage of prior information about
finger flexion patterns. For example, movements of fingers gener-
ally switch between extension, flexion, and rest, and there are some
constraints that govern the transition between these movement
states. Second, to effectively model the duration of movement pat-
terns, our model solves the “Markov assumption” problem more
efficiently by modeling the dependence of state transition on the
continuous state variable. Third, because estimation of continuous
transition is crucial to accurate prediction, we applied kernel den-
sity estimation to model the continuous state transition. Finally, we
developed effective learning and inference methods for the SNDS
model.

2. MATERIALS AND METHODS
2.1. DATA COLLECTION
In this study, we used a dataset that was collected for a previous
study (Kubánek et al., 2009). This section gives a brief overview
of this dataset. Data included ECoG recordings five subjects –
three women (subjects A, C, and E) and two men (subject B and
D). Each subject had a 48- or 64-electrode grid placed over the
fronto-parietal-temporal region including parts of sensorimotor
cortex. During the experiment, the subjects were asked to repeat-
edly flex and extend specific individual fingers according to visual
cues that were given on a video screen. The fingers moved naturally
and neither the fingers nor the hand were fixed. The experimen-
tal setup for this study is illustrated in Figure 1. Typically, the

FIGURE 1 | Experimental setup for this study.
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subjects flexed the indicated finger 3–5 times over a period of 1.5–
3 s and then rested for 2 s. The data collection for each subject
lasted 10 min, which yielded an average of 30 trials for each finger.
The flexion of each finger was measured by a data glove (5DT Data
Glove 5 Ultra, Fifth Dimension Technologies), which digitized the
flexion of each finger at 12 bit resolution.

The ECoG signals from the electrode grid were recorded using
the general-purpose BCI2000 system (Schalk et al., 2004; Schalk
and Mellinger, 2010) connected to a Neuroscan Synamps2 system.
All electrodes were referenced to an inactive electrode that was
far from the epileptogenic focus and areas of interest. The signals
were further amplified, bandpass filtered between 0.15 and 200 Hz,
and digitized at 1000 Hz. Each dataset was visually inspected and
those channels that did not clearly contain ECoG activity (such
as reference/ground electrodes) were removed, which resulted in
48, 63, 47, 64, and 61 channels (for subjects A–E respectively) for
subsequent analyses.

2.2. FEATURE EXTRACTION
Feature extraction was identical to that in (Kubánek et al., 2009).
In short, we first re-referenced the signals using a common average
reference (CAR), which subtracted 1

H �H
q=1 sq from each channel,

where H is the total number of channels and sq is the collected sig-
nal at the qth channel and at the particular time. For each 100-ms
time slice (overlapped by 50 ms) and each channel, we converted
these time-series ECoG data into the frequency domain using an
autoregressive model of order 20 (Marple, 1986). Using this model,
we derived frequency amplitudes between 0 and 500 Hz in 1 Hz
bins. ECoG features were extracted by averaging these frequency
amplitudes across five frequency ranges, i.e., 8–12, 18–24, 75–115,
125–159, and 159–175 Hz. In addition to the frequency features
described above, we obtained the Local Motor Potential (LMP;
Schalk et al., 2007; Acharya et al., 2010) by averaging the raw time-
domain signal at each channel over 100-ms time window. This
resulted in 6 features for each of the ECoG channels, e.g., a total
of 288 features from 48 channels.

2.3. EVALUATION
We defined a movement period as the time between 1000 ms prior
to movement onset and 1000 ms after movement offset. Move-
ment onset was defined as the time when the finger’s flexion value
exceeded an empirically defined threshold (one-fifth of the largest
finger flexion value). Conversely, movement offset was defined as
the time when the finger’s flexion value fell below that threshold
and no movement onset was detected within the next 1200 ms
(Kubánek et al., 2009). To achieve a dataset with relatively bal-
anced movement and rest periods, we discarded all data outside
the movement period. For each finger, we used fivefold cross vali-
dation to evaluate the performance of our modeling and inference
algorithms that are described in more detail in the following
sections, i.e., four-fifth of trials (around 30 trials and approxi-
mately 1320 ∼ 1650 samples) were used for training and one-fifth
of trials were used for testing (around 5 trials and approximately
330 ∼ 420 data points). All analysis below were based on the output
of pace regression (i.e., the same algorithm used in Kubánek et al.,
2009), specifically the Pace Regression algorithm implemented in
the Java-based Weka package (Hall et al., 2009), which estimated

the time course of finger flexion from the time course of ECoG
signal features.

3. SWITCHING NON-LINEAR DYNAMIC SYSTEM
The output of the pace regression algorithm was combined with
prior knowledge using a switching non-linear dynamic system
(SNDS). The SNDS is a Bayesian decoding model that infers the
posterior distribution of finger flexion by combining a prior model
and a measurement model (as shown in Figure 2). Similar regres-
sion/classification methods based on Bayesian inference have been
adopted in a variety of domains (Viola and Jones, 2004; Tong et al.,
2007; Yao et al., 2009; Taylor et al., 2010). In this work the prior
model was represented by the structure and parameterizations of
the SNDS, which were constructed to capture the constraints that
govern the finger flexion. The measurement model was given by
the output of pace regression, i.e., the prediction of finger flexion
from the brain signal features.

Section 3.1 develops a set of constraints that govern finger
flexion. Section 3.2 then describes the construction of the prior
model that incorporates these constraints. Section 3.3 discusses
the measurement model. Finally, Section 3.4 describes learning
and inference using SNDS.

3.1. CONSTRAINTS THAT GOVERN FINGER FLEXION
In this section, we will develop a set of constraints that guide the
movement of the fingers. These constraints commonly exist but
are generally ignored by most decoding algorithms. Conventional
decoding algorithms (such as pace regression) may make predic-
tions that may be outside of these constraints. For example, a
conventional decoding algorithms may produce a prediction of a
finger that flexes past physical constraints, or may result in predic-
tions in which a finger immediately proceeds from full extension
to full flexion.

Figure 3 shows two examples of typical flexion traces. From
this figure, we can make the following observations:

(i) The movement of fingers can be categorized into three states:
extension (state S1), flexion (state S2), and rest (rest state S3).

(ii) For each state, there are particular predominant movement
patterns. In the extension state S1, the finger keeps moving
away from the rest position. In the flexion state S2, the finger
moves back to the rest position. In the rest state S3, there are
only very small movements.

(iii) For either state S1 or state S2, the movement speed is rela-
tively low toward full flexion or full extension, but faster in
between. For the rest state, the speed stays close to zero.

(iv) The natural flexion or extension of fingers are limited to
certain ranges due to the physical constraints of our hand.

FIGURE 2 |The schematic diagram of Bayesian decoding.
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(v) The transition between different states is not random.
Figure 4 shows the four possible transitions between three
states. The extension state and flexion state can transfer to
each other, while the rest state can only follow the flexion
state and can only precede the extension state. This is also
easy to understand from our common sense about natural
finger flexion. When the finger is extended, it is impossible
for it to directly transition into the rest state without experi-
encing flexion first. Similarly, fingers can not transition from
the rest state to the flexion state without first going through
the extension state.

(vi) Figure 4 discusses four possible ways of state transitions. The
probability of these transitions depends on the finger posi-
tion. For example, in the situation at hand, it is unlikely that
the extension state transfers to the flexion state right after the
extension state begins. At the same time, it is more likely to
occur when the finger has extended enough and is near the
end. Similar situations occur at other state transitions.

In summary, the observations described above provide con-
straints that govern finger flexion patterns. Using the meth-
ods described below, we will build a computational model that
incorporates these constraints and that can systematically learn
the movement patterns from data.

FIGURE 3 | Examples of two flexion traces.

FIGURE 4 | A diagram of possible state transitions for finger

movements.

3.2. PRIOR MODEL
In this section, we show how the constraints summarized above
are incorporated into the construction of the SNDS model. The
SNDS is an extension of SLDS (Pavlovic et al., 2001; Oh et al., 2005)
but with two key differences: (1) the continuous state transition
is modeled by kernel density estimation to account for the speed
changes under different finger positions; (2) the state not only
depends on the previous state, but also the previous finger posi-
tion. The prior model is shown as the top two layers in Figure 5.
The top layer S represents moving states that include the extension
state (S1), flexion state (S2), and rest state (S3). The middle layer
(continuous state variable) represents the real finger position. We
discuss these two layers in detail below.

3.2.1. State transitions (top layer)
In the standard SLDS, the probability of duration τ of state i is,
according to the Markov assumption, defined as follows:

P(τ ) = qτ
ii(1 − qii) (1)

where qii denotes the transition probability of state i when it makes
a self transition. Equation 1 states that the probability of staying
in a given state decreases exponentially with time. This behav-
ior can not provide an adequate representation for many natural
temporal phenomena. The natural finger flexion is an example. It
usually takes a certain amount of time for fingers to finish exten-
sion or flexion. Thus, the duration of certain movement patterns
will deviate from the distribution described by Eq. 1.

This limitation of the state duration model has been addressed
for hidden Markov models (HMMs) in the area of speech recogni-
tion by introducing explicit state duration distributions (Ferguson,
1980; Russell and Moore, 1985; Levinson, 1986; Ostendorf et al.,
1996). In Ferguson (1980), duration was modeled by discrete prob-
abilities. Later studies introduced parametric models, including
the Gamma distribution (Levinson, 1986) and Poisson distribu-
tion (Russell and Moore, 1985). A similar idea was also introduced
in switching linear dynamic system to form a segmental SLDS (Oh
et al., 2008). While better performance was achieved, introduc-
ing state duration distribution complicates models as well as the

FIGURE 5 | SNDS model in which St,Yt, Zt represent the moving

states, real finger position, and the estimated finger position at time t,

respectively.
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learning and inference process. In fact, in many cases, the tempo-
ral variance is dependent on spatial variance, i.e., state transition is
dependent on continuous state variables. In the context of finger
flexion, as discussed in Section 3.1, the transition of moving states
is dependent on finger position. In the model shown in Figure 5,
the variable St not only has an incoming arrow from St − 1 but also
from Y t − 1:

P(St |Yt−1, St−1) = 1

P(Yt−1, St−1)
P(Yt−1, St−1, St )

= P(St−1)

P(Yt−1, St−1)
P(Yt−1|St−1, St )P(St |St−1)

= 1

P(Yt−1|St−1)
P(Yt−1|St−1, St )P(St |St−1)

(2)

where P(Y t−1|St−1) is a normalization term with no relation to St.
P(St|St−1) is the state transition, which is same with that in HMM
and standard SLDS. P(Y t−1|St−1,St) is the posterior probability
of Y t−1 given state transition from St−1 to St. P(Y t−1|St−1,St)
plays a central role in controlling state transition. It directly relates
state transition to finger position. We take the transition between
extension state and flexion state as an example to give an intuitive
explanation.

Figure 6A shows that the transition from extension state to flex-
ion state most probably happens at the finger position between
1 and 2.5, which is near the extension end of movement. Simi-
larly, Figure 6B implies that when the finger position is between
−1.2 and −0.9, which is the flexion end of the finger movement,
the transition from flexion state to extension state has a high
probability.

3.2.2. Continuous state transition (middle layer)
In SLDSs, the Y transition is linearly modeled. However, in our
model, the continuous state transition is still highly non-linear
during the extension and flexion states. This is mainly because the
finger movement speed is uneven (fast in the middle but slow at
the beginning and end). Modeling the continuous state transition

properly is important for accurate decoding of finger movement.
Here we propose a non-parametric method with which continu-
ous state transitions are modeled using kernel density estimation
(Frank et al., 2000). A Gaussian kernel is the most common
choice because of its effectiveness and tractability (Marron and
Wand, 1992). With a Gaussian kernel, the joint estimated joint
distribution p̂(Yt−1, Yt ) under each state can be obtained by:

p̂(Yt−1 =yt−1, Yt = yt ) = 1

NhYt−1 hYt

·
N∑

j=1

K

(
yt−1 − yj−1

hYt−1

)
K

(
yt − yj

hYt

)
.

(3)

where K (·) is a given kernel function; hYt−1 and hYt are numeric
bandwidth for Y t−1 and Yt. N is the total number of train-
ing examples. Our choice for K (·) is a Gaussian kernel K (t ) =
(2π)−1/2e−t 2/2. Bandwidths hYt−1 and hYt are estimated via a
leave-one-out likelihood criterion (Loader, 1999), which maxi-
mizes:

LCV (hYt−1 , hYt ) =
N∏

i=1

p̂{hYt−1 ,hYt ,−i}(yi−1, yi) (4)

where p̂{hYt−1 ,hYt ,−i}(yi−1, yi) denotes the density estimated with

(yi − 1,yi) deleted. p̂(Yt−1, Yt ) provides a much more accurate
representation of continuous state transition than does a linear
model.

Figure 7 gives an example of the kernel locations for p̂(Yt−1, Yt )

under each of the three states (trained with part of the data from
thumb flexion of subject A). Even though kernel locations do not
represent the joint distribution p̂(Yt−1, Yt ) , they do help to gain
some insight into the relationship between Y t−1 and Yt. Each
graph in Figure 7 describes a temporal transition pattern for each
movement pattern. For the extension state, all kernel locations are
above the diagonal, which means that statistically Yt is greater than
Y t−1, i.e., fingers are moving up. Also the farther the kernel loca-
tions are from the diagonal, the larger the value of Yt −Y t−1, which

FIGURE 6 | (A) Probabilistic density function (PDF) of Y t−1 given St−1 = extension and St = flexion; (B) Probabilistic density function of Y t−1 given St−1 = flexion
and St = extension.
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FIGURE 7 | (A) Kernel locations for p̂(Yt−1, Yt ) under extension state; (B) kernel locations for p̂(Yt−1, Yt ) under flexion state; (C) kernel locations for p̂(Yt−1, Yt )

under rest state. Numbers on the axis are the normalized amplitude of the fingers’ flexion.

implies greater moving speed at time t (because the time between
t and t − 1 is a constant, Yt −Y t−1 could be a measurement of the
speed). In the extension state, the moving speed around average
flexion is statistically greater than that around the two extremes
(full flexion and extension). Similar arguments can be applied to
the flexion state in Figure 7. For the rest state, kernel locations are
almost along the diagonal, which means Yt =Y t−1, i.e., fingers are
not moving. The capability of being able to model the non-linear
dependence of speed on position under each state is critical to
make a precise prediction of the flexion trace.

3.3. MEASUREMENT MODEL (BOTTOM LAYER)
Z in Figure 5 is the measurement, i.e., the time course of finger
flexion predicted from ECoG using pace regression. Similar ways
of constructing measurements as the output of other classifiers or
regressors have been widely adopted in machine learning and com-
puter vision community (Viola and Jones, 2004; Tong et al., 2007)
as well as neural computation (Yao et al., 2009). Here we make an
assumption that for each flexion pattern, Zt depends linearly on Yt,
and is corrupted by Gaussian noise. Thus, this relationship can be
represented by a linear Gaussian, which has been commonly used
in Bayesian networks to accommodate continuous variables (Lau-
ritzen, 1992; Friedman et al., 1998; Cowell et al., 2003). Specifically,
we have

Zt = α(s)Yt + w(s), w(s) ∼ N (μ, σ (s)2
) (5)

Parameters α(s), μ(s), and σ (s)2
can be estimated from the

training data via:

α(s) = E[ZY ] − E[Z ]E[Y ]
E[Y 2] − E2[Y ] (6)

μ(s) = E[Z ] − αE[Y ] (7)

σ (s)2 = E[Z 2] − E2[Z ] − (E[ZY ] − E[Z ]E[Y ])2

E[Y 2] − E2[Y ] (8)

where E represents the statistical expectation and it is approxi-
mated by the sample mean.

3.4. LEARNING AND INFERENCE
3.4.1. Learning
All variables of the SNDS model are incorporated during learn-
ing. Finger flexion states are estimated from the behavioral flex-
ion traces (e.g., Figure 3). Specifically, samples on the extension
parts of the traces are labeled with state “extension,” samples
on the flexion parts of the traces are labeled with state “flex-
ion,” and samples during rest are labeled with state “rest.” Y is
the true flexion trace, which we approximate with the data glove
measurements.

All parameters �̄ in our model (Figure 5) consist of three
components: the state transition parameter �̄S , continuous state
transition parameter �̄Y , and measurement parameter �̄O . For
state transition parameter �̄S , as discussed in Eq. 2, P(St|St−1) and
P(Y t−1|St−1,St) are learned from the training data. P(St|St−1) can
be simply obtained by counting. However, here we need to enforce
the constraints described in Section 3.1(v). The elements in the
conditional probability table of P(St|St−1) corresponding to the
impossible state transitions are set to zero. P(Y t−1|St−1,St) is esti-
mated by kernel density estimation using the one-dimensional
form of Eq. 1. Y transition parameter �̄Y includes the joint
distribution p̂(Yt−1, Yt ), which can be estimated using Eq. 3 in
which bandwidths were selected using the criteria in Eq. 4. �̄O

includes α(s), μ(s), and σ (s)2
and they can be estimated using

Eqs 6–8.

3.4.2. Inference
Given the time course of ECoG signals, our goal is to infer the
time course of finger flexion. This is a typical filtering prob-
lem, that is, recursively estimating the posterior distribution of
St and Yt given the measurement from the beginning to time t, i.e.,
Z 1:t :

P(St , Yt |Z1:t ) ∝ P(Zt |St , Yt , Z1:t−1)P(St , Yt |Z1:t−1)

= P(Zt |St , Yt )

×
⎡
⎣∑

St−1

∫
Yt−1

P(St , Yt |St−1, Yt−1)P(St−1, Yt−1|Z1:t−1)

⎤
⎦

Frontiers in Neuroscience | Neuroprosthetics November 2011 | Volume 5 | Article 127 | 6

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Wang et al. Prior knowledge improves decoding from electrocorticographic

= P(Zt |St , Yt )

×
⎡
⎣∑

St−1

∫
Yt−1

P(St |St−1, Yt−1)P(Yt |St , Yt−1)P(St−1, Yt−1|Z1:t−1)

⎤
⎦

(9)

where P(St−1,Y t−1, Z 1:t ) is the filtering result of the former step.
However, we note that not all the continuous variables in our
model follow a Gaussian distribution, because kernel density esti-
mation was used to model the dynamics of the continuous state
variable. Hence, it is infeasible to update the posterior distribution
P(St,Yt|Z 1:t ) analytically in each step. To cope with this issue, we
adopted a numerical sampling method based on particle filtering
(Isard and Blake, 1998; Maskell and Gordon, 2001) to propagate
and update the discretely approximated distribution over time.
The inference algorithm is as follows:

(i) Initialization
• For t = 0 and i = 1,. . .,N, sample Si

0 and Y i
0 from the initial

distribution P(S0) and P(Y 0|S0).
(ii) Importance sampling

• For i = 1 to N, sample S̃i
t and Ỹ i

t from S̃i
t ∼

p(Si
t |Si

t−1, Y i
t−1) and Ỹ i

t ∼ p(Y i
t |S̃i

t , Y i
t−1) .

• For i = 1 to N, evaluate the importance weights wi
t =

p(zt |S̃i
t , Y i

t−1)

• Normalize the importance weights: w̃i
t = wi

t /�N
j=1 w

j
t

(iii) Resampling
• For i = 1 to N, sample (Si

t , Y i
t ) from the set { (S̃i

t , Ỹ i
t ), i =

1, . . . , N } according to the normalized importance
weights w̃i

t .

Once the N samples and normalized importance weights
have been constructed, the finger flexion at time step t can be
estimated by:

ε[Yt ] =
N∑

i=1

w̃i
t Ỹ i

t (10)

St = round

(
N∑

i=1

w̃i
t S̃i

t

)
(11)

where round(·) means rounding (·) to the nearest integers.

4. RESULTS
4.1. DECODING OF FINGER FLEXION USING PRIOR KNOWLEDGE
The main question we set out to answer in this study was to deter-
mine whether appropriate incorporation of prior knowledge can
improve the performance of the decoding of finger flexion. We
began our analyses by using SNDS in combination with a linear
method (i.e., pace regression) as the underlying decoding algo-
rithm. We previously used pace regression alone (i.e., without
SNDS) to decode finger flexion using the same dataset (Kubánek
et al., 2009).

To give a qualitative impression of the improvement of the
SNDS algorithm combined with pace regression compared to pace
regression alone,we first provide an example of the results achieved

with each of these two approaches on the decoding of index finger
flexion of subject A. These results are shown in Figure 8. In this
figure, the top panel shows results achieved using pace regres-
sion and the middle figure shows results achieved using SNDS.
In each of these two panels, the thin dotted line shows the actual
flexion of the index finger (concatenated for five movement peri-
ods), and the thick solid line shows the flexion decoded using
pace regression/SNDS. This figure demonstrates qualitatively that
the decoding of finger flexion achieved using SNDS much better
approximates the actual finger flexion than does pace regres-
sion. The bottom panel again shows the actual flexion pattern
(thin dotted line) as well as the finger flexion state (1 = flexion,
2 = extension, 3 = rest; thick solid line).

These results demonstrate that the state of finger flexion [which
cannot be directly inferred using a method that does not incorpo-
rate a state machine (such as pace regression)] can be accurately
inferred using SNDS.

In addition to the qualitative comparison provided above,
Table 1 gives the main results of this study, which are a quan-
titative comparison between the results achieved using SNDS and
pace regression. The results presented in this table are provided
as mean squared error between actual and decoded finger flexion
(min/max/mean, computed across cross validation folds). They
show that for all fingers and all subjects, the results achieved using
SNDS are superior to those achieved using pace regression alone.
The overall mean square error reduces from 0.86 (pace regression)
to 0.64 (SNDS), i.e., an improvement of 26%. This improve-
ment of SNDS compared to pace regression was highly statisti-
cally significant (p << 0.001, paired t -test on the mean squared
error for all fingers and subjects and between pace regression
and SNDS).

4.2. ADDITIONAL ANALYSES
4.2.1. Impact of different aspects of prior knowledge
The previous section demonstrated how we incorporated prior
knowledge into a computational model to improve decoding of
finger flexion. We were interested to what extent each aspect of the
prior knowledge contributed to the improvement of the results.
Thus, we incrementally incorporated each of these aspects into the
model and determined the resulting effect.

The different models are shown in Figure 9. In this figure,
the different models are: (a) a state-space model that captures
the temporal dependency of finger flexion. The linear Gauss-
ian in the state-space model can only capture linear transitions.
(b) Introduces switch states that form a switched linear dynamic
system (SLDS). Under SLDS, both the transition and measure-
ment models are piecewise approximated using linear Gaussians.
In other words, this version can model non-linear relationships
to some extent. (c) Differs from (b) in that it replaces the lin-
ear Gaussian transition with the transition modeled by kernel
density estimation. This refined transition can capture the depen-
dency of movement speed on finger position and can constrain
the finger movement range. Finally, (d) includes the depen-
dency of state transition on the finger position by adding a link
from Y t−1 to St. The final model differs from the model (d)
by replacing the linear Gaussian transition with kernel density
estimation.
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FIGURE 8 | (A) Actual finger flexion (dotted trace) and decoded finger flexion (solid trace) using pace regression (mean square error 0.68); (B) Actual finger
flexion (dotted trace) and decoded finger flexion (solid trace) using SNDS (mean square error 0.40); (C) Actual finger flexion (dotted trace) and state prediction
(solid trace).

Table 1 | Comparison of decoding performance between pace regression and SNDS.

Subject Alg. Thumb Index finger Middle finger Ring finger Little finger Avg.

A Pace (MSE) 0.58 ± 0.05 0.64 ± 0.02 0.77 ± 0.03 0.86 ± 0.06 0.81 ± 0.04 0.73

SNDS (MSE) 0.35 ± 0.07 0.44 ± 0.05 0.63 ± 0.07 0.73 ± 0.09 0.59 ± 0.06 0.54

Pace (CC) 0.70 ± 0.03 0.68 ± 0.01 0.61 ± 0.02 0.56 ± 0.03 0.59 ± 0.02 0.63

SNDS (CC) 0.82 ± 0.04 0.76 ± 0.03 0.64 ± 0.04 0.58 ± 0.04 0.65 ± 0.03 0.69

B Pace (MSE) 0.65 ± 0.10 0.63 ± 0.18 0.68 ± 0.16 0.52 ± 0.08 0.60 ± 0.15 0.62

SNDS (MSE) 0.46 ± 0.12 0.44 ± 0.20 0.49 ± 0.14 0.39 ± 0.10 0.40 ± 0.17 0.43

Pace (CC) 0.68 ± 0.04 0.68 ± 0.09 0.65 ± 0.09 0.74 ± 0.04 0.71 ± 0.08 0.69

SNDS (CC) 0.76 ± 0.05 0.75 ± 0.10 0.70 ± 0.06 0.77 ± 0.05 0.76 ± 0.07 0.75

C Pace (MSE) 0.83 ± 0.15 0.78 ± 0.03 0.87 ± 0.08 0.89 ± 0.08 0.97 ± 0.12 0.87

SNDS (MSE) 0.53 ± 0.20 0.46 ± 0.07 0.54 ± 0.05 0.61 ± 0.10 0.73 ± 0.14 0.56

Pace (CC) 0.58 ± 0.07 0.61 ± 0.01 0.56 ± 0.06 0.55 ± 0.04 0.51 ± 0.07 0.56

SNDS (CC) 0.70 ± 0.09 0.74 ± 0.03 0.69 ± 0.04 0.61 ± 0.06 0.57 ± 0.09 0.66

D Pace (MSE) 1.29 ± 0.10 1.07 ± 0.12 0.99 ± 0.05 1.09 ± 0.08 1.27 ± 0.12 1.14

SNDS (MSE) 1.15 ± 0.11 0.94 ± 0.13 0.87 ± 0.03 0.96 ± 0.05 1.0 ± 0.10 0.98

Pace (CC) 0.35 ± 0.06 0.46 ± 0.07 0.50 ± 0.04 0.45 ± 0.04 0.38 ± 0.06 0.42

SNDS (CC) 0.38 ± 0.07 0.51 ± 0.07 0.55 ± 0.02 0.50 ± 0.03 0.46 ± 0.05 0.48

E Pace (MSE) 1.03 ± 0.05 0.96 ± 0.15 0.80 ± 0.15 0.94 ± 0.07 0.90 ± 0.13 0.93

SNDS (MSE) 0.84 ± 0.10 0.75 ± 0.18 0.63 ± 0.13 0.73 ± 0.07 0.68 ± 0.19 0.71

Pace (CC) 0.49 ± 0.03 0.52 ± 0.08 0.60 ± 0.08 0.54 ± 0.05 0.55 ± 0.07 0.54

SNDS (CC) 0.57 ± 0.06 0.61 ± 0.09 0.65 ± 0.08 0.61 ± 0.05 0.65 ± 0.10 0.62

Results are given, for a particular finger and subject, as the mean squared error (MSE) and correlation coefficient (CC) ± SD, calculated across all cross validation folds

and between actual and decoded finger flexion.

Figure 10 shows the quantitative results in the mean squared
error (also averaged across all fingers and subjects for each model).
In addition, and similar to before, we ran a paired t -test between

pace regression and SNDS for models (a–d), respectively, and
all p-values were <<0.001. As mentioned above, these results
show that the final model achieves a 26% reduction in mean
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FIGURE 9 | Comparison of computational models that incorporate different types of prior knowledge. See text for details.

FIGURE 10 | Performance (given as mean squared error for pace

regression, intermediate models (a–d), and the final model.)

squared error compared to pace regression. These quantitative
improvements are also reflected in qualitative improvements in
the decoded flexion traces: Figure 11 gives examples for decoded
finger flexion traces using the different models. These results show
that both model (a) (state-space model) and model (b) (SLDS)
produce results that are quite improved compared to the results
for pace regression. Figure 11 shows that the predicted flexion
traces for model (a) are much smoother than those for pace
regression, presumably due to the consideration of temporal cor-
relations. The stronger descriptive power of model (b) provided
by the state layer further improves on the results for model (a).
Model (c) is produced by replacing the linear Gaussian transi-
tion with kernel density estimation in model (b). By refining the
movement speed and constraining the movement range, model
(c) produces accurate flexion traces as shown in Figure 11. Com-
pared to the result of model (b), an obvious difference is that
the flexion trace produced by model (c) stays relatively flat in the
rest state. Model (d) provides another significant improvement by
placing the dependency of state transition on the finger position,
although this is not obvious in the short sample given in Figure 11.
The final model, which combines elements from both (c) and (d),
achieves results that are superior to both model (c) or model (d).

The accurate finger flexion estimated by kernel density estimation
allows for more accurate estimation of transitions, which in turn
results in application of the correct kernel density estimation
transition function, and thus results in improved finger flexion
estimation.

4.2.2. Using SNDS with a different decoding method
Because SNDS is a general probabilistic framework to incorpo-
rate prior knowledge into the decoding process, we also studied,
as an example for the use of a different decoding algorithm, the
combination of SNDS and a non-linear method (i.e., a Gaussian
process Rasmussen, 1996). We previously used a Gaussian Process
alone (i.e., without SNDS) to decode finger flexion using the same
dataset (Wang et al., 2010).

The practical application of Gaussian processes is affected by its
computational complexity, which is cubic to the data size. Sparse
Gaussian processes (SPGP; Snelson and Ghahramani, 2006) have
be developed to reduce its computational complexity. Table 2
shows the comparison for the four algorithms: pace regression,
Gaussian process and SNDS combined with the output of pace
regression and Gaussian process. For all subjects, the use of a
Gaussian processes outperform the use of pace regression, and
the use of SNDS outperformed the use of the respective decoding
algorithm alone.

5. DISCUSSION
This paper demonstrates that prior knowledge can be success-
fully captured to build switched non-parametric dynamic systems
to decode finger flexion from ECoG signals. We also showed
that the resulting computational models improve the decoding
of finger flexion compared to when prior knowledge was not
incorporated. This improvement is possible by dividing the flexion
activity into several moving states (St), considering the state transi-
tion over time, establishing specific state transition by considering
its dependence on the finger position (continuous state variable
Yt) and modeling the individual transition pattern of continuous
state variables under each moving state accurately by using kernel
density estimation.

Generally, this improvements in decoding performance likely
results from the different types of constraints on the possible flex-
ion predictions that are realized by the computational model. In
other words, the model may not able to produce all possible fin-
ger flexion patterns, although it is important to point out that
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FIGURE 11 | Exemplary decoding results of the models in Figure 10.

Table 2 | Comparison of decoding performance between pace

regression, Gaussian process, and SNDS using the output of these

two algorithms.

Algorithm Sub. A Sub. B Sub. C Sub. D Sub. E

Pace 0.73 0.62 0.87 1.14 0.93

SNDS (pace) 0.54 0.43 0.56 0.98 0.71

SPGP 0.60 0.57 0.73 1.07 0.90

SNDS (SPGP) 0.46 0.39 0.53 0.96 0.75

Results are given, for each subject (the average result across five fingers), as

mean squared errors computed between actual and decoded movement (across

all cross validation folds).

the constraints that we put on finger flexions are those of natural
finger flexions. Yet, it is still unclear to what extent these con-
straints and the same methodology used here may generalize to
those of other natural movements, such as simultaneous move-
ments of multiple fingers or hand gestures during natural reaches.
In particular, our method improves results in part because it infers
discrete behavioral states, but there may be many such states dur-
ing natural movements, in particular when multiple degrees of
freedom (e.g., movements of different fingers, wrist, hand, etc.)
are considered. However, individual degrees of freedom of nat-
ural hand/finger movements are usually not independent, but are
coordinated to form particular movement patterns such as those
during reach-and-grasp. Thus, the number of possible states will
usually be dramatically less than the number of all possible states.
In this case, using techniques to reduce the dimensionality (such
as principal component analysis, PCA) of the behavioral space
should also limit the number of states. In other words, it would be
straightforward to change the definition of states from movements
of individual fingers to estimation of different grasp patterns. The
general structure of the model would be the same while the para-
meterization and physical meanings of the variables would be
somewhat different. At the same time, as the amount of prior

knowledge decreases, e.g., movements along different degrees of
freedom occur unpredictably and independently, the benefit of
using prior knowledge will likely decrease.

There are some directions in which this work could be further
improved. First, to reduce the computational complexity caused by
kernel density estimation, non-linear transition functions can be
used to model the continuous state transitions. Second, more effi-
cient inference methods could be developed to replace standard
particle sampling. Finally, the methods presented in this paper
could be extended to allow for simultaneous decoding of all five
fingers instead of one at a time.

In conclusion, the results presented in this paper demonstrate
that, with appropriate mathematical decoding algorithms, ECoG
signals can give information about finger movements that in
their specificity and fidelity goes substantially beyond what has
previously been demonstrated using any other method in any
species. With further improvements to current ECoG sensor tech-
nology, in particular to the density and form factor of current
implants, and extension of current methods to real-time capabil-
ity, it may ultimately be possible to develop neurally controlled
hand prostheses with full fine-grained finger articulation. This
eventual prospect is exciting, because even simpler capabilities
may offer distinct advantages, e.g., the restoration of select grasp
patterns in stroke patients. More generally, the possibility that
ECoG may support practical, robust, and chronic brain–computer
interfaces was recently further substantiated: the study by Chao
et al. (2010) showed that the signal-to-noise ratio of ECoG sig-
nals, and the cortical representations of motor functions that can
be identified with ECoG, are stable over several months (Schalk,
2010).
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