
ORIGINAL RESEARCH ARTICLE
published: 12 April 2012

doi: 10.3389/fnins.2012.00032

Comparison between frame-constrained fix-pixel-value
and frame-free spiking-dynamic-pixel convNets for visual
processing
Clément Farabet 1,2*, Rafael Paz 3, Jose Pérez-Carrasco4, Carlos Zamarreño-Ramos4,

Alejandro Linares-Barranco3*,Yann LeCun1, Eugenio Culurciello2*,Teresa Serrano-Gotarredona4 and

Bernabe Linares-Barranco4

1 Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
2 Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est, Équipe A3SI, ESIEE Paris, Champs sur Marne, Marne-la-Vallée, France
3 Robotic and Technology of Computers Group, University of Seville, Seville, Spain
4 Instituto de Microelectrónica de Sevilla, IMSE-CNM-CSIC, Sevilla, Spain

Edited by:

Tobi Delbruck, Institute for
Neuroinformatics, Switzerland

Reviewed by:

Tobi Delbruck, Institute for
Neuroinformatics, Switzerland
Anton Civit, University of Seville,
Spain
Zhengming Fu, Advanced Micro
Devices, USA

*Correspondence:

Clément Farabet, Computer Science
Department, Courant Institute of
Mathematical Sciences, New York
University, 715 Broadway, 12th Floor,
New York, NY 10003, USA.
e-mail: cfarabet@nyu.edu;
www.clement.farabet.net;
Alejandro Linares-Barranco, Robotic
and Technology of Computers Lab,
University of Seville, ETSI
Informática, Av. Reina Mercedes s/n,
41012-Sevilla, Spain.
e-mail: alinares@atc.us.es;
Eugenio Culurciello, Weldon School of
Biomedical Engineering, Purdue
University, 206 S. Martin Jischke
Drive, Room 2031, West Lafayette, IN
47907, USA.
e-mail: euge@purdue.edu

Most scene segmentation and categorization architectures for the extraction of features
in images and patches make exhaustive use of 2D convolution operations for template
matching, template search, and denoising. Convolutional Neural Networks (ConvNets) are
one example of such architectures that can implement general-purpose bio-inspired vision
systems. In standard digital computers 2D convolutions are usually expensive in terms of
resource consumption and impose severe limitations for efficient real-time applications.
Nevertheless, neuro-cortex inspired solutions, like dedicated Frame-Based or Frame-Free
Spiking ConvNet Convolution Processors, are advancing real-time visual processing.These
two approaches share the neural inspiration, but each of them solves the problem in dif-
ferent ways. Frame-Based ConvNets process frame by frame video information in a very
robust and fast way that requires to use and share the available hardware resources (such
as: multipliers, adders). Hardware resources are fixed- and time-multiplexed by fetching
data in and out. Thus memory bandwidth and size is important for good performance. On
the other hand, spike-based convolution processors are a frame-free alternative that is
able to perform convolution of a spike-based source of visual information with very low
latency, which makes ideal for very high-speed applications. However, hardware resources
need to be available all the time and cannot be time-multiplexed.Thus, hardware should be
modular, reconfigurable, and expansible. Hardware implementations in both VLSI custom
integrated circuits (digital and analog) and FPGA have been already used to demonstrate
the performance of these systems. In this paper we present a comparison study of these
two neuro-inspired solutions. A brief description of both systems is presented and also
discussions about their differences, pros and cons.

Keywords: convolutional neural network, address-event-representation, spike-based convolutions, image convo-

lutions, frame-free vision, FPGA,VHDL

1. INTRODUCTION
Conventional vision systems process sequences of frames cap-
tured by video sources, like webcams, camcorders (CCD sen-
sors), etc. For performing complex object recognition algorithms,
sequences of computational operations are performed for each
frame. The computational power and speed required makes it
difficult to develop a real-time autonomous system. But brains
perform powerful and fast vision processing using small and slow
cells (neurons) working in parallel in a totally different way. Vision
sensing and object recognition in the mammalian brain is not per-
formed frame by frame. Sensing and processing are performed in
a continuous way, spike by spike, without any notion of frames.

The visual cortex is composed by a set of layers (Shepherd,
1990; Serre, 2006), starting from the retina. The processing starts
beginning at the time the information is captured by the retina.

Although cortex has feedback connections, it is known that a very
fast and purely feed-forward recognition path exists in the visual
cortex (Thorpe et al., 1996; Serre, 2006).

In recent years significant progress has been made toward the
understanding of the computational principles exploited by the
visual cortex. Many artificial systems that implement bio-inspired
software models use biological-like (convolution based) process-
ing that outperform more conventionally engineered machines
(Neubauer, 1998). These systems run at low speeds when imple-
mented as software programs on conventional computers. For
real-time solutions direct hardware implementations of these
models are required. However, hardware engineers face a large
hurdle when trying to mimic the bio-inspired layered structure
and the massive connectivity within and between layers. A grow-
ing number of research groups world-wide are mapping some of

www.frontiersin.org April 2012 | Volume 6 | Article 32 | 1

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuromorphic_Engineering/10.3389/fnins.2012.00032/abstract
http://community.frontiersin.org/people/Cl%C3%A9mentFarabet/42848
http://community.frontiersin.org/people/JOSE_ANTONIOP%C3%89REZ_CARRASCO/44379
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=14451&d=1&sname=CarlosZamarre�o&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=14456&d=1&sname=AlejandroLinares_Barranco&name=Science
http://community.frontiersin.org/people/YannLeCun/49899
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=28568&d=3&sname=EugenioCulurciello&name=Technology
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=14450&d=1&sname=TeresaSerrano_Gotarredona&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=12772&d=3&sname=BernabeLinares_Barranco_1&name=Technology
mailto:{cfarabet@nyu.edu}; {www.clement.farabet.net}
mailto:alinares@atc.us.es
mailto:euge@purdue.edu
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

these computational principles onto both real-time spiking hard-
ware through the development and exploitation of the so-called
AER (Address-Event-Representation) technology, and real-time
streaming Frame-Based ConvNets on FPGAs.

ConvNets have been successfully used in many recognition and
classification tasks including document recognition (LeCun et al.,
1998a),object recognition (Huang and LeCun,2006; Ranzato et al.,
2007; Jarrett et al., 2009), face detection (Osadchy et al., 2005), and
robot navigation (Hadsell et al., 2007, 2009). A ConvNet consists
of multiple layers of filter banks followed by non-linearities and
spatial pooling. Each layer takes as input the output of previ-
ous layer and by combining multiple features and pooling over
space, extracts composite features over a larger input area. Once
the parameters of a ConvNet are trained, the recognition operation
is performed by a simple feed-forward pass.

The simplicity of the feed-forward pass has pushed several
groups to implement it as custom hardware architectures. Most
of ConvNet hardware implementations reported over the years
are for the frame-constrained fix-pixel-value version, as they map
directly from the software versions. The first one was the ANNA
chip, a mixed high-end, analog-digital processor that could com-
pute 64 simultaneous 8 × 8 convolutions at a peak rate of 4.109
MACs (multiply-accumulate operations per second; Boser et al.,
1991; Säckinger et al., 1992). Subsequently, Cloutier et al. pro-
posed an FPGA implementation of ConvNets (Cloutier et al.,
1996), but fitting it into the limited-capacity FPGAs available at
those times required the use of extremely low-accuracy arith-
metic. Modern DSP-oriented FPGAs include large numbers of
hard-wired multiply-accumulate units that can greatly speed up
compute-intensive operations, such as convolutions. The frame-
constrained system presented in this paper takes full advantage of
the highly parallel nature of ConvNet operations, and the high-
degree of parallelism provided by modern DSP-oriented FPGAs.
Achieved peak rates are in the order of 1011 MACs.

On the other hand, Frame-free Spiking-Dynamic-Pixel Con-
vNets compute in the spike domain. No frames are used for sensing
and processing the visual information. In this case, special sensors
are required with a spike-based output. Spike-based sensors and
processors typically use AER (Address-Event-Representation) in
order to transmit the internal state and/or results of the neurons
inside a chip or FPGA.

AER was originally proposed almost twenty years back in
Mead’s Caltech research lab (Sivilotti, 1991). Since then AER
has been used fundamentally in vision (retina) sensors, such as
simple light intensity to frequency transformations (Culurciello
et al., 2003; Posch et al., 2010), time-to-first-spike coding (Ruedi
et al., 2003; Chen and Bermak, 2007), foveated sensors (Azad-
mehr et al., 2005), spatial contrast (Costas-Santos et al., 2007;
Massari et al., 2008; Ruedi et al., 2009; Leñero-Bardallo et al.,
2010), temporal contrast (Lichtsteiner et al., 1998; Posch et al.,
2010; Leñero-Bardallo et al., 2011), motion sensing and computa-
tion, (Boahen, 1999), and combined spatial and temporal contrast
sensing (Zaghloul and Boahen, 2004). But AER has also been used
for auditory systems (Chan et al., 2007), competition and winner-
takes-all networks (Chicca et al., 2007; Oster et al., 2008), and
even for systems distributed over wireless networks (Teixeira et al.,
2006). After sensing, we need Spiking Signal Event Representation

techniques capable of efficiently processing the signal flow coming
out from the sensors. For simple per-event heuristic processing and
filtering, direct software based solutions can be used (Delbrück,
2005, 2008). Other schemes rely on look-up table re-routing and
event repetitions followed by single-event integration (Vogelstein
et al., 2007). Alternatively, we can find some pioneering work in the
literature aiming at performing convolutional filteringon the AER
flow produced by spiking retinas, (Vernier et al., 1997; Choi et al.,
2005), where the shape of the filter kernel was hard-wired (either
elliptic or Gabor). Since 2006, working AER Convolution chips
have been reported with arbitrary shape programmable kernel
of size up to 32 × 32 pixels pre-loaded onto an internal kernel-
RAM (Serrano-Gotarredona et al., 2006, 2008; Camuñas-Mesa
et al., 2011, 2012). This opens the possibility of implementing
in AER spiking hardware generic ConvNets, where large number
of convolutional modules with arbitrary size and shape kernels are
required.

In this paper we present, discuss and compare two differ-
ent neuro-cortex inspired approaches for real-time visual pro-
cessing based on convolutions: Frame-based fix-pixel-value and
Frame-free dynamic-pixel-spiking ConvNet Processing hardware.

Section 2 describes generic ConvNets and their structure.
Section 3 briefly describes frame-free ConvNet types of imple-
mentations, and Section 4 describes a frame-constrained FPGA
implementation. Implemention details will be given in a very
concise manner, so the reader can grasp the main ideas behind
each implementation. For more detailed descriptions the reader is
refer to the corresponding references. Finally, Section 5 provides a
comparison of both cases indicating pros and cons of each.

2. STRUCTURE OF GENERIC ConvNets
Figure 1 shows a typical hierarchical structure of a feed-forward
ConvNet. Convolutional Networks (LeCun et al., 1990, 1998a),
or ConvNets, are trainable multi-stage architectures composed of
multiple stages. The input and output of each stage are sets of
arrays called feature maps. For example, if the input is a color
image, each feature map would be a 2D array containing a color
channel of the input image (for an audio input each feature map
would be a 1D array, and for a video or volumetric image, it would
be a 3D array). At the output, each feature map represents a par-
ticular feature extracted at all locations on the input tolerating
degrees of deformations and sizes.

Each stage is composed of three layers: a filter bank layer, a
non-linearity layer, and a feature pooling layer. A typical ConvNet
is composed of one, two, or three such 3-layer stages, followed by
a classification module. Each layer type is now described for the
case of image recognition.

2.1. FILTER BANK LAYER -F
The input is a 3D array with n1 2D feature maps of size n2 × n3,
and coordinates(xi, yi), with i = 1,. . .n1. Let’s call each input fea-
ture map fi = (xi,yi),with xi = 1,. . .n2 and yi = 1,. . .n3. The output
is also a 3D array composed of m1 feature maps of size m2 × m3

and coordinates (Xj, Yj) with j = 1,. . .m1. Let’s call each output
feature map Fj = (Xj, Yj), with Xj = 1,. . .m2 and Yj = 1,. . .m3.
A trainable filter (kernel) wij in the filter bank has size l1 × l2

and connects input feature map fi to output feature map Fj. The

Frontiers in Neuroscience | Neuromorphic Engineering April 2012 | Volume 6 | Article 32 | 2

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

FIGURE 1 | Architecture of a typical convolutional network for object recognition. This implements a convolutional feature extractor and a linear classifier
for generic N-class object recognition. Once trained, the network can be computed on arbitrary large input images, producing a classification map as output.

module computes Fj = bj + �iwij∗fi where ∗ is the 2D convolution
operator and bj is a trainable bias parameter. Each filter detects a
particular feature at every location on the input. Hence spatially
translating the input of a feature detection layer will translate the
output but leave it otherwise unchanged.

2.2. NON-LINEARITY LAYER
In traditional ConvNets this simply consists of a point wise tanh()
sigmoid function applied to each site(Xj, Yj). However, recent
implementations have used more sophisticated non-linearities
(Lyu and Simoncelli, 2008; Pinto et al., 2008).

2.3. FEATURE POOLING LAYER
This layer treats each feature map separately. In its simplest
instance, called PA, it computes the average values over a neigh-
borhood in each feature map. This results in a reduced-resolution
output feature map which is robust to small variations in the loca-
tion of features in the previous layer. The average operation is
sometimes replaced by a max PM. Traditional ConvNets use a point
wise tanh() after the pooling layer, but more recent models do not.

Supervised training is performed using a form of stochastic
gradient descent to minimize the discrepancy between the desired
output and the actual output of the network. All the filter coeffi-
cients in all the layers are updated simultaneously by the learning
procedure. The gradients are computed with the back-propagation
method. Details of the procedure are given in LeCun et al. (1998a),
and methods for efficient training are detailed in LeCun et al.
(1998b).

3. FRAME-FREE SPIKING-DYNAMIC-PIXEL ConvNets
In frame-free spiking ConvNets the retina sensor pixels gener-
ate spikes autonomously. Pixel activity changes continuously, as
opposed to frame-based systems, where the pixel value is frozen
during each frame time. Such spikes are sent to projection fields
in the next layer, and the contribution of each spike is weighted
by a 2D spatial filter/kernel value wij over the projection field. In
the next layer pixels, incoming weighted spikes are accumulated
(integrated) until a pixel fires its own spike for the next layer, and
so on. Each pixel in any Convolution Module represents its state by
its instantaneous spiking activity. Consequently, each pixel at any
layer has to be present at any time and its state cannot be fetched in

and out as in Frame-based approaches. This is the main drawback
of this approach: all ConvModules have to be there in hardware
and hardware resources cannot be time-multiplexed.

Adapting ConvNets to Spiking Signal Event-based represen-
tations yields some very interesting properties. The first one is
the very reduced latency between the input and output event
flows of a spiking convolution processor. We call this the “pseudo-
simultaneity” between input and output visual flows. This is
illustrated by the example at the end of Section 3.

The second interesting property of implementing Spiking Event
Convolutions (or other operators, in general) is its modular scala-
bility. Since event flows are asynchronous, each AER link between
two convolutional modules is independent and needs no global
system level synchronization.

And the third interesting property of spike-based hardware, in
general, is that since processing is per-event, power consumption
is, in principle, also per-event. Since events usually carry relevant
information, power is consumed as relevant information is sensed,
transmitted, and processed.

Next we describe briefly three ways of computing with spik-
ing ConvNets. First, we briefly describe an event-based simulation
software tool for emulating such spiking AER hardware systems.
Second, we briefly summarize some programmable kernel VLSI
implementations. And third, similar FPGA implementations are
discussed.

3.1. SOFTWARE SIMULATOR
A behavioral event-driven AER simulator has been developed for
describing and studying generic AER systems (Pérez-Carrasco,
2011). Such simulator is very useful for designing and analyz-
ing the operation of new hardware systems combining existing
and non-existing AER modules. Modules are user-defined and
they are interconnected as defined by a netlist, and inputs are
given by stimulus files. The simulator was written in C++. The
netlist uses only two types of elements: AER modules (instances)
and AER links (channels). AER links constitute the nodes of the
netlist in an AER system. Channels represent point-to-point con-
nections. Splitter and merger instances are used for spreading or
merging links. Figure 2 shows an example system and its text
file netlist description with 7 instances and 8 channels. Channel
1 is a source channel. All its events are available a priori as an

www.frontiersin.org April 2012 | Volume 6 | Article 32 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

FIGURE 2 | Example netlist and its ASCII file netlist description.

input file. These events can be pre-recorded by a real AER retina
(Lichtsteiner et al., 1998; Posch et al., 2010; Leñero-Bardallo et al.,
2011). Each instance is defined by a line. Instance operation is
described by a user-defined function. Channels are described by
lists of events. Once the simulator has finished, there will be a list
of time-stamped events for each node. Each event is defined by
6 values (TpR, TRqst, TAck, a, b, c). The first 3 are timing parame-
ters and the other three are open user-defined parameters that the
instances interpret and interchange. Usually, a and b are the event
address (x, y) and c its sign. TRqst is the time when an event Rqst
was generated and TAck when it was acknowledged. TpR is the time
of creation of an event (before communicating or arbitrating it
out of its source module). The simulator scans all channels look-
ing for the earliest unprocessed TpR. This event is processed: its
TRqst and TAck are computed and the state of the event destination
modules are updated. If this creates new events, they are added
to the end of the corresponding links event lists, and the list is
re-sorted for indreasing TpR. Then the simulator looks again for
the earliest unprocessed TpR, and so on.

3.2. VLSI IMPLEMENTATION
Reported VLSI implementations of AER spiking ConvModules
(either mixed-signal, Serrano-Gotarredona et al., 2006, 2008; or
fully digital, Camuñas-Mesa et al., 2011, 2012) follow the floor plan
architecture in Figure 3, where the following blocks are shown: (1)
array of lossy integrate-and-fire pixels, (2) static RAM that holds
the stored kernel in 2’s complement representation, (3) synchro-
nous controller, which performs the sequencing of all operations
for each input event and the global forgetting mechanism, (4)
high-speed clock generator, used by the synchronous controller,
(5) configuration registers that store configuration parameters
loaded at startup, (6) left/right column shifter, to properly align the

FIGURE 3 | Architecture of the convolution chip.

Frontiers in Neuroscience | Neuromorphic Engineering April 2012 | Volume 6 | Article 32 | 4

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

stored kernel with the incoming event coordinates, (7) AER-out,
asynchronous circuitry for arbitrating and sending out the out-
put address events generated by the pixels, and (8) for the digital
version a 2’s complement block is required to invert kernel data
before adding them to the pixels, if an input event is negative.
When an input event of address (x, y) is received, the controller
copies row after row the kernel values from the kernel-RAM to the
corresponding pixel array rows (the projection field), as indicated
in Figure 3. Then all pixels within this projection field update
their state: they add/subtract the corresponding kernel weight
depending on event and weight signs. When a pixel reaches its pos-
itive or negative threshold, it signals a signed output event to the
peripheral arbiters, which send its address and sign out. Parallel
to this per-event processing, there is a global forgetting mecha-
nism common for all pixels: pixel values are decremented (if they
are positive) or incremented (if they are negative) triggered by a
global periodic signal. This implements a constant leak of fixed rate
that discharges the neurons, allowing the ConvModule to capture
dynamic reality with a time constant in the order of this leak. A
more formal mathematical justification of this event-driven con-
volution operation can be found elsewhere (Serrano-Gotarredona
et al., 1999).

3.3. FPGA IMPLEMENTATION
Figure 4 shows the block diagram of an FPGA spike-based con-
volver. A serial peripheral interface (SPI) is used to communicate
with a USB microcontroller in order to allow to change the con-
figuration from a laptop (Kernel matrix, kernel size, forgetting
period, and forgetting quantity). The circuit in the FPGA can be
divided into the following parallel blocks:

• A 64 × 64 array of memory cells: the matrix is implemented
using a block of dual-port RAM in the FPGA. Each position of
the RAM is 8-bit length.

• Kernel memory: The kernel is stored also in the internal RAM
of the FPGA in an 11 × 11 matrix with 8-bit resolution.

• Conv state machine: Each input event corresponds to the
address of a pixel. Centered on this address, the kernel is added

to the memory matrix, which is used to save the state of the
convolution cells. If any of the modified cells reaches a value
higher than a global programmable threshold (Th), an output
event with this cell address is queued to be sent through the AER
output bus, and the cell is reset.

• Forgetting mechanism. A configurable forgetting circuitry is
also present in the architecture. The forgetting is based on
a programmable counter that accesses the memory matrix
periodically in order to decrease its values by a constant.

• Memory arbiter. The 64 × 64 cell memory matrix is a shared
resource between the forgetting circuitry and the convolution
state machine. Therefore, a memory arbiter is required.

• FIFO and AER output state machine: A 16 event first-input-
first-output buffer is used to store the outgoing events before
they are transmitted by the state machine using the asynchro-
nous protocol.

• SPI State Machine. This controller is in charge of receiving ker-
nel size and values, forgetting period and amount to forget.
The system is configured and controlled through a computer
running MATLAB.

The system has been implemented in hardware in a Virtex-6 FPGA.
A VHDL description of this ConvModule with 64 × 64 pixels and
kernels of size up to 11 × 11 has been used to program differ-
ent ConvModule arrays into a Virtex-6 FPGA, together with the
corresponding inter-module communication and event routing
machinery. The internal structure of commercial FPGAs with their
internal memory arrangement and distribution is not optimum
for implementing event-driven parallel modules. Nonetheless, it
was possible to include an array of 64 Gabor filters, each with
a specific scale and orientation to perform a V1 visual cortex
pre-processing on event data coming out of a temporal difference
retina (Zamarreño-Ramos, 2011; Zamarreño-Ramos et al., under
review). Table 1 summarizes the resources used by the Virtex-6.

3.4. EXAMPLE SYSTEM AND OPERATION
The example in Figure 5 illustrates event-driven sensing
and processing, and pseudo-simultaneity, on a very simple

FIGURE 4 | Block diagram of the FPGA AER-based convolution processor (left) and its State Machine (right).

www.frontiersin.org April 2012 | Volume 6 | Article 32 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

Table 1 | Frame-free FPGA resource consumption.

Resources of a Virtex6 LX240T #Used

128 × 8-bit single-port block RAM 64

16 × 1-bit single-port read-only distributed

RAM

64

16 × 16-bit dual-port distributed RAM 64

4096 × 8-bit single-port block RAM 64

4 × 4-bit single-port read-only distributed

RAM

1

64 × 64-bit single-port read-only distributed

RAM

1

2-33-bit adders/subtractors 2752

2-14-bit counters 1487

Flip-flops 91397

Finite-state-machines 1557

2-33-bit comparators 3274

1-32-bit multiplexors 25801

Slices registers 74987 out of 301440 (24%)

Slices LUTs 83521 out of 150720 (55%)

Occupied Slices 32720 out of 37680 (86%)

Block RAM36E1/FIFO 64 out of 416 (15%)

Block RAM18E1/FIFO 68 out of 832 (8%)

two-convolution setup. Figure 5A shows the basic setup. A 52
card deck is browsed in front of a motion sensitive AER retina
(Leñero-Bardallo et al., 2011). Figure 5B shows a picture taken
with a commercial camera with 1/60 sec (16.67 ms) exposure time.
Figure 5C shows the events captured during a 5-ms time window,
while a card with “clover” symbols is browsed. Figure 5D shows
the instantaneous event rate for the whole event sequence when
browsing the complete 52 card deck. Most cards are browsed in
a 410-ms time interval, with peak event rate of about 8 Meps
(mega events per second) computed on 10 μs time bins. The
events produced by the retina are sent (event after event) to a
first Event-Driven Convolution chip programmed with the kernel
in Figure 5E to filter out noise and enhance shapes of a mini-
mum size. The output events produced by this first Convolution
chip are sent to a second Convolution chip programmed with the
kernel in Figure 5F. This kernel performs crude template match-
ing to detect “clover” symbols of a specific size and orientation.
In order to perform more sophisticated size and pose invariant
object recognition a full multi-stage ConvNet would be neces-
sary. However, this simple example is sufficient to illustrate the
pseudo-simultaneity property. The two-convolution system was
simulated using the simulator described in Section 1 and using
recorded event data taken from a real Motion Sensitive retina
(Leñero-Bardallo et al., 2011) using an event data logger board
(Serrano-Gotarredona et al., 2009). This event data logger board
can record up to 500 k events with peak rates of up to 9 Meps.
Figure 5G shows the retina events (red dots), the first convo-
lution output events (green circles) and the second convolution
output events (blue stars) in y vs. time projection, for a 85-ms
time interval. One can see very clearly the events corresponding
to 4 cards (numbered “1” to “4” in the figure). Cards “2” to “4”
contain “clover” symbols that match the size and orientation of

FIGURE 5 | Illustration of pseudo-simultaneity in fast event-driven

recognition. (A) Feed-forward Two-Convolution system. (B) Photograph
with commercial camera at 1/60 s. (C) Five milliseconds event capture from
AER motion retina. (D) Event rate computed using 10 μs bins. (E) First
pre-filtering Kernel. (F) Second template-matching kernel. (G) Events from
real retina (red dots), simulated output of first filter (green circles), and
simulated output of second filter (blue stars). (H) y/time zoom out. (I) x/y
zoom out.

the kernel. Figure 5G includes a zoom box between 26 and 29 ms.
The events inside this zoom box are shown in Figure 5H in y vs.
time projection, and in Figure 5I in y vs. x projection. As one
can see, between time 26 and 29 ms a clear “clover” symbol is
present at the retina output (small red dots). The retina “clover”
events range between 26.5 and 29 ms (2.5 ms duration). The out-
put events of the first filter (green circles) range between time 26.5
and 28.5 ms (2.0 ms duration), which is inside the time window
of the retina events. Consequently, retina and first convolution

Frontiers in Neuroscience | Neuromorphic Engineering April 2012 | Volume 6 | Article 32 | 6

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

streams are simultaneous. The output events of the second Con-
volution (thick blue dots) are produced at time 27.8 ms (1.3 ms
after the 1st retina “clover” event and 1.2 ms before the retina last
“clover” event), which is during the time the retina is still sending
out events of the “clover” symbol, and also while the first Convolu-
tion is still providing output events for this symbol. Note that the
second convolution needs to collect a very large number of events
before making a decision, because its kernel is very large. However,
in a standard ConvNet with many ConvModules, kernels are usu-
ally much smaller and would require much less input events to start
providing outputs, therefore also speeding up the whole recogni-
tion process, in principle. As can be seen in Figures 5G,H, clover
symbol recognition is achieved even before the sensor has deliv-
ered all the events that form the symbol. All this illustrates quite
nicely the pseudo-simultaneity property of frame-free event-driven
systems.

This contrasts with the Frame-Constraint philosophy. Even if
one has a very high-speed video camera, say 1 kframe/s, the system
has first to acquire an image (which would take 1 ms), send it to
a frame-constraint processing system (like the one described in
Section 4), and assuming it can provide an output after another
1 ms, the recognition result would be available 2 ms after the start
of sensing. Although these times are comparable to what is shown
in Figure 5H, the sensing output and the processing output are
sequential, they are not simultaneous. This is one key concep-
tual difference between the two approaches. To understand how
this extrapolates to multiple layers, let us refer to Figure 6. At
the top (Figure 6A) there is a 6-layer ConvNet feature extraction
system for object recognition. Let us assume each layer contains
a large number of feature extraction ConvModules, whose out-
puts are sent to each subsequent layer. Let us assume that we have
a very fast Frame-based processing system per layer (as the one
described in the next Section) and that it is capable of comput-
ing all feature maps within a layer in 1 ms. Let us assume also
that we have a very fast sensor capable of providing a frame rate
of 1 image/ms (1000 fps), and that the output of each stage can
be transmitted to the next stage much faster than in 1 ms. Let
us also assume that there is a sudden visual stimulus that lasts
for about 1 ms or less. Figure 6B shows the timing diagram for
the outputs xi at each subsequent layer of a Frame-based imple-
mentation. The sudden stimulus happens between time 0 and
1 ms, and the sensor output is provided at time 1 ms. The first
layer feature maps output is available at time 2 ms, the second
at time 3 ms, and so on until the last output is available at time
6 ms. Figure 6C shows how the timing of the events would be
in an equivalent six layer event-driven implementation. As in
Figure 5, the sensor provides the output events simultaneously
to reality, thus during the interval from 0 to 1 ms. Similarly, the
1st event-driven feature maps x1 would be available during the
same interval, and so on for all subsequent layers xi. Conse-
quently, the final output x5 will be available during the same time
interval the sensor is providing its output, this is, during interval
0 to 1 ms.

An immediate feature that the pseudo-simultaneity between
input and output event flows allows, is the possibility of efficiently
implementing feedback systems, as feedback would be instanta-
neous without any need to iterate for convergence. However, this

feature is not exploited in present day ConvNets, because they are
purely feed-forward.

3.5. FRAME-CONSTRAINED FIX-PIXEL-VALUE ConvNets
In this section we present a run-time programmable data-flow
architecture, specially tailored for Frame-Constrained Fix-Pixel-
Value ConvNets. We will refer to this implementation as the
FC-ConvNet Processor. The processor receives sequences of still
images (frames). For each frame, pixels have fix (constant) values.
The architecture presented here has been fully coded in hardware
description language (HDL) that target both ASIC synthesis and
programmable hardware like FPGAs.

A schematic summary of the FC-ConvNet Processor system is
presented in Figure 7A. The main components are: (1) a Control
Unit (implemented on a general-purpose CPU), (2) a grid of
independent Processing Tiles (PTs), each containing a routing
multiplexer (MUX) and local operators, and (3) a Smart DMA
interfacing external memory via a standard controller.

The architecture presented here proposes a very different par-
adigm to parallelism, as each PT only contains useful computing
logic. This allows us to use the silicon surface in a most efficient way.
In fact, where a typical multi-processor system would be able to use
50 cores, the proposed data-flow grid could implement 500 tiles.

For image processing tasks (ConvNets in this case), the follow-
ing observations/design choices fully justify the use of this type of
grid:

• Throughput is a top priority. Indeed, most of the operations
performed on images are replicated over both dimensions of
images, usually bringing the amount of similar computations
to a number that is much larger than the typical latencies of a
pipelined processing tile.

• Reconfiguration time has to be low (in the order of the system’s
latency). This is achieved by the use of a common run-time
configuration bus. Each module in the design has a set of con-
figurable parameters, routes or settings (depicted as squares on
Figure 7A), and possesses a unique address on the network.
Groups of similar modules also share a broadcast address, which
dramatically speeds up their reconfiguration.

• The processing elements in the grid should be as coarse grained
as permitted, to maximize the ratio between computing logic
and routing logic.

• The processing elements should not have any internal state,
but should just passively process any incoming data. The task
of sequencing operations is done by the global control unit,
which stores the state and simply configures the entire grid for a
given operation, lets the data-flow in, and prepares the following
operation.

Figure 7B shows how the grid can be configured to compute a
sub-part of a ConvNet (a sum of two convolutions is fed to a non-
linear mapper). In that particular configuration, both the kernels
and the images are streams loaded from external memory (the filter
kernels can be pre-loaded in local caches concurrently to another
operation). By efficiently alternating between grid reconfiguration
and data streaming, an entire ConvNet can be computed (unrolled
in time).

www.frontiersin.org April 2012 | Volume 6 | Article 32 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

FIGURE 6 | Illustration of pseudo-simultaneity concept extrapolated to

multiple layers. (A) Vision system composed of Vision Sensor and five
sequential processing stages, like in a ConvNet. (B) Timing in a

Frame-constraint system with 1 ms frame time for sensing and per stage
processing. (C) Timing in an Event-driven system with micro-second delays
for sensor and processor events.

A compiler takes a software representation of a trained Con-
vNet, and produces the binary code to be executed on the Control
Unit. The ConvNet Processor can be reprogrammed with new
binary code at run-time.

The compiler typically executes the following operations:

• Step 1: Analyses a given ConvNet layer by layer, and per-
forms cross-layer optimizations (like layer combinations and
merging).

• Step 2: Creates a memory map with efficient packing, to place
all intermediate results (mostly feature maps for ConvNets) in
a minimal memory footprint.

• Step 3: Decomposes each layer from step 1 into sequences of
grid reconfigurations and data streams. Each reconfiguration
results in a set of operations to be performed by the Control

Unit and each data stream results in a set of operations for the
Smart DMA (to read/write from/to external memory).

• Step 4: Results from Step 3 are turned into a fully sequential
binary code for the Control Unit.

Our architecture was implemented on two FPGAs, a low-end Vir-
tex 4 with limited memory bandwidth and a high-end Virtex-6
with fourfold memory bandwidth.

Figure 8 shows the time taken to compute a typical ConvNet
trained for scene analysis/obstacle detection (pixel-wise classifica-
tion, see Hadsell et al., 2009), on different computing platforms.
The CPU implementation is classical C implementation using
BLAS libraries. The GPU implementation is a hand-optimized
implementation that uses as many of the cores as possible. The
GPU, an nVidia 9400 M is a middle-range GPU optimized for

Frontiers in Neuroscience | Neuromorphic Engineering April 2012 | Volume 6 | Article 32 | 8

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

FIGURE 7 | (A) A data-flow computer. A set of run-time configurable
processing tiles are connected on a 2D grid. They can exchange data with
their 4 neighbors and with an off-chip memory via global lines. (B) The grid
is configured for a more complex computation that involves several tiles:
the 3 top tiles perform a 3 × 3 convolution, the 3 intermediate tiles another
3 × 3 convolution, the bottom left tile sums these two convolutions, and the
bottom center tile applies a function to the result.

low-power. As can be seen, the most generic hardware (CPU) is
the least efficient because it is less parallel and relies on heavy
processor-memory traffic. The GPU improves about an order of
magnitude, as more parallelism is achieved. FPGA implemen-
tations can be made to exploit massive parallelism with high-
bandwidth memories, thus achieving much higher efficiencies.
Finally, a dedicated ASIC in a high-end technology would be
optimum.

3.6. COMPARISON BETWEEN FRAME-CONSTRAINED AND
FRAME-FREE SPIKING ConvNets

In order to compare Frame-Constrained vs. Frame-Free spiking
hardware performance of ConvNets implementations, we need
to be aware of the fundamental difference between information
coding of both approaches.

FIGURE 8 | Computing time for a typical ConvNet, versus the number

of connections used for training the network.

In a Frame-Constrained vision system, visual reality is sampled
at a rate Tframe. The input to the system is then, for each Tframe,
an array of N × M pixels each carrying an n-bit value. There is a
fixed amount of input information per frame. For a given Con-
vNet topology (as in Figure 1), one knows exactly the number
and type of operations that have to be carried out starting from
the input frame. Depending on the available hardware resources
(multipliers, adders, accumulators, etc) one can estimate the delay
in processing the full ConvNet for one input image, independently
on the content of the image. If the full ConvNet operators can
be mapped one by one onto respective hardware operators, then
no intermediate computation data has to be fetched in and out
from the chip/FPGA to external memory. This is the ideal case.
However, in practical implementations to-date, either the input
image is processed by patches, or the ConvNet is processed by
parts within the hardware, or a combination of both, using exten-
sive chip/FPGA to external memory traffic. Let’s call Rhw the ratio
between the available hardware resources and all the hardware
resources a given ConvNet would require to compute the full input
frame without fetching intermediate data to/from external mem-
ory. Then, in Frame-Constrained Fix-Pixel-Value ConvNets speed
is a strong function of Rhw and the external memory bandwidth.

In a Frame-Free Spiking System, sensor pixels generate spikes
continuously and asynchronously. Visual information is repre-
sented by a flow of events, each defined in 3D (x, y, t). Many
times an event carries also “sign” information (positive or neg-
ative). The number of spikes per second in the visual flow is
highly dependent on scene information content (as opposed to the
Frame-Constrained case). In Frame-Free Spiking systems, the full
ConvNet structure (as in Figure 1) must be available in hardware.
Consequently, Rhw = 1. This is due to the fact that visual informa-
tion at each node of the ConvNet is represented by a sequence or
flow of events that “fill” the time scale and keep synchrony among
all nodes. The great advantage of this is that the different flows
are practically simultaneous because of the “pseudo-simultaneity”
property of input-to-output flows in each ConvNet module. The

www.frontiersin.org April 2012 | Volume 6 | Article 32 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

processing delay between input-to-output flows is determined
mainly by the statistics of the input event flow data. For example,
how many space-time correlated input events need to be collected
that represent a given shape. If one tries to time-multiplex the
hardware resources (for implementing larger networks, for exam-
ple) then the flows would need to be sampled and stored, which
would convert the system into a Frame-Constrained one. Conse-
quently, if one wants to scale up a Frame-Free Spiking ConvNet,
then it is necessary to add more hardware modules. In principle,
this should be simple, as inter-module links are asynchronous and
modules are all alike. As the system scales up, however, processing
speed is not degraded, as it is determined by the statistical informa-
tion content of the input event flow. Note that this is a fundamental
difference with respect to Frame-constrained systems, where one
needs to first wait for the sensor to provide a full frame before
starting processing it. Scaling up a spiking system does not affect
the pseudo-simultaneity property. An important limitation will be
given by the inter-module event communication bandwidth. Nor-
mally, event rate lowers as processing is performed at subsequent
stages. Thus the highest event rate is usually found at the sen-
sor output. Consequently, it is important that the sensors include
some kind of pre-processing (such as spatial or temporal contrast)
to guarantee a rather sparse event count.

Although present day ConvNets are purely feed-forward struc-
tures, it is widely accepted that computations in brains exploit
extensive use of feedback between processing layers. In a Frame-
constraint system, implementing feedback would require to iterate
each feed-forward pass until convergence, for each frame. On the
other hand, in Frame-free event-driven systems, since input and
output flows at each module are instantaneous, feedback would
be instantaneous as well, without any need for iterations.

Another big difference between Frame-Constrained and
Frame-Free implementations is that the first one is technologically

more mature while the second one is very incipient and in research
phase.

Table 2 summarizes the main differences between both
approaches in terms of how data is processed, whether hardware
multiplexing is possible, how hardware can be scaled-up, and what
determines processing speed and power consumption. Note that
AER spiking hardware is easily expandable in a modular fashion
by simply interconnecting AER links (Serrano-Gotarredona et al.,
2009; Zamarreño-Ramos et al., under review). However, expand-
ing the FPGA hardware described in Section 4 is not so straight
forward and dedicated ad hoc techniques need to be developed.

Table 3 compares numerically performance figures of com-
parable ConvNets implemented using either Frame-Constrained
fix-pixel-value or Frame-free spiking-dynamic-pixel techniques.
The first two columns show performance figures of arrays of
Gabor filters synthesized into Virtex-6 FPGAs. The Purdue/NYU
system implements an array of 16 parallel 10 × 10 kernel Gabor
filters operating on input images of 512 × 512 pixels with a delay
of 5.2 ms, thus equivalent to 4 M-neurons with 400 M-synapses
and a computing power of 7.8 × 1010 conn/s. The IMSE/US sys-
tem implements an array of 64 Gabor filters operating on input
visual scenes of 128 × 128 pixels with delays of 3 μs per-event per
module, thus equivalent to 0.26 M-neurons with 32 M-synapses
and a computing power of 2.6 × 109 conn/s.

Note that while the 5.2 ms delay of the Purdue/NYU Frame-
Constraint system represents the filtering delay of 16 ConvMod-
ules, the 3-μs/event delay of the IMSE/US system does not rep-
resent a filtering delay. This number simply characterizes the
intrinsic speed of the hardware. The filtering or recognition delay
will be determined by the statistical time distribution of input
events. As soon as enough input events are available that allow the
system to provide a recognition decision, an output event will be
produced (3 μs after the last input event).

Table 2 | Frame-free vs. frame-constrained.

Frame-free Frame-constrained

Data processing Per-event, resulting in pseudo-simultaneity Per frame/patch

Hardware multiplexing Not possible Possible

Hardware up-scaling By adding modules Ad hoc

Speed Determined by statistics of input stimuli Determined by number and type of operations, available hardware resources

and their speed

Power consumption Determined by module power per-event, and

inter-module communication power per-event

Determined by power of processor(s) and memory fetching requirements

Feedback Instantaneous. No need to iterate Need to iterate until convergence for each frame

Table 3 | Performance comparison.

Purdue/NYU IMSE/US 3D ASIC Grid 40 nm

Input scene size 521 × 512 128 × 128 512 × 512 512 × 512

Delay 5.2 ms/frame 3 μs/event 1.3 ms/frame 10 ns/events

Gabor array 16 convs 10 × 10 kernels 64 convs 11 × 11 kernels 16 convs 10 × 10 kernels 100 convs 32 × 32 kernels

Neurons 4.05 × 106 2.62 × 105 4.05 × 106 108

Synapses 4.05 × 108 3.20 × 107 4.05 × 108 1011

Conn/s 7.8 × 1010 2.6 × 109 3 × 1011 4 × 1013

Frontiers in Neuroscience | Neuromorphic Engineering April 2012 | Volume 6 | Article 32 | 10

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

The third and fourth columns represent performance estima-
tions for futuristic Frame-constrained and Frame-free systems.
Column 3 corresponds to the ASIC systems projected for a high-
end 3D technology (see Figure 7), where speed is improved a
factor four for a given number of connections with respect to the
Virtex-6 realization. Column four corresponds to the estimated
performance for an array of 100 reconfigurable multi-module
40 nm technology chips. Based on the performance figures of
an already tested event-driven ConvChip fabricated in 0.35 μm
CMOS (Camuñas-Mesa et al., 2011, 2012), which holds an array
of 64 × 64 pixels in about 5 mm × 5 mm, it is reasonable to expect
that a 1-cm2 die fabricated in 40 nm CMOS could hold 1 million
neurons with 1G-synapses. In order to improve event through-
put, processing pixels should be tiled into slices to avoid very
long lines and pipeline/parallelize event processing. Off-chip event
communication should be done serially (Zamarreño-Ramos et al.,
2011a,b), and possibly using multiple I/O ports to improve inter-
chip throughput. All this could probably improve event through-
put by a factor of 100 with respect to the presented prototype.
Consequently, we might consider as viable, event throughputs in
the order of 108 eps (events per second) per chip. Using AER-mesh
techniques (Zamarreño-Ramos, 2011; Zamarreño-Ramos et al.,
under review) to assemble modularly a grid of 10 × 10 such chips
on a (stackable) PCB would allow for a ConvNet system with about
108 neurons and 1011 synapses, which is about 1% of the human

cerebral cortex (Azevedo et al., 2009), in terms of number of neu-
rons and synapses. The brain is certainly more sophisticated and
has other features not considered here, such as learning, synaptic
complexity, stochastic, and molecular computations, and more.

In order to compare the effective performance capability of
Frame-Constraint versus Frame-Free hardware, the most objec-
tive criteria is to compare their “connections/second” capability, as
shown in the bottom of Table 3. However, these numbers should
also not be judged as strictly equivalent, because while the Frame-
Free version computes connections/sec on active pixels only, the
Frame-Constraint version has to compute connection/s for all pix-
els thus introducing an extra overhead. This overhead depends on
the statistical nature of the data.

4. CONCLUSION
We have presented a comparison analysis between Frame-
Constrained and Frame-Free Implementations of ConvNet Sys-
tems for application in object recognition for vision. We have
presented example implementations of Frame-Constrained FPGA
realization of a full ConvNet system, and partial convolution
processing stages (or combination of stages) using spiking AER
convolution hardware using either VLSI convolution chips or
FPGA realizations. The differences between the two approaches
in terms of signal representations, computation speed, scalability,
and hardware multiplexing have been established.

REFERENCES
Azadmehr, M., Abrahamsen, J., and

Häfliger, P. (2005). “A foveated AER
imager chip,” in Proceedings of the
IEEE International Symposium on
Circuits and Systems. (ISCAS) (Kobe:
IEEE Press), 2751–2754.

Azevedo, F. A., Carvalho, L. R., Grin-
berg, L. T., Farfel, J. M., Ferretti, R. E.,
Leite, R. E., Jacob Filho, W., Lent, R.,
and Herculano-Houzel, S. (2009).
Equal numbers of neuronal and
nonneuronal cells make the human
brain an isometrically scaled-up pri-
mate brain. J. Comp. Neurol. 513,
532–541.

Boahen, K. (1999). “Retinomorphic
chips that see quadruple images,” in
Proceedings of the International Con-
ference Microelectronics for Neural,
Fuzzy and Bio-Inspired Systems
(Microneuro) (Granada: IEEE Press),
12–20.

Boser, B., Säckinger, E., Bromley, J.,
LeCun, Y., and Jackel, L. (1991).
An analog neural network proces-
sor with programmable topology.
IEEE J. Solid State Circuits 26,
2017–2025.

Camuñas-Mesa, L., Acosta-Jiménez, A.,
Zamarreño-Ramos, C., Serrano-
Gotarredona, T., and Linares-
Barranco, B. (2011). A convolution
processor chip for address event
vision sensors with 155ns event
latency and 20Meps throughput.

IEEE Trans. Circuits Syst. 58,
777–790.

Camuñas-Mesa, L., Zamarreño-Ramos,
C., Linares-Barranco, A., Acosta-
Jiménez, A., Serrano-Gotarredona,
T., and Linares-Barranco, B. (2012).
An event-driven convolution
processor module for event-driven
vision sensors. IEEE J. Solid State
Circuits 47, 504–517.

Chan, V., Liu, S.-C., and van Schaik, A.
(2007). AER EAR: a matched sili-
con cochlea pair with address event
representation interface. IEEE Trans.
Circuits Syst. Part I 54, 48–59.

Chen, S., and Bermak, A. (2007). Arbi-
trated time-to-first spike CMOS
image sensor with on-chip his-
togram equalization. IEEE Trans.
VLSI Syst. 15, 346–357.

Chicca, E., Whatley, A. M., Lichtsteiner,
P., Dante, V., Delbrück, T., Del Giu-
dice, P., Douglas, R. J., and Indiveri,
G. (2007). A multichip pulse-based
neuromorphic infrastructure and its
application to a model of orientation
selectivity. IEEE Trans. Circuits Syst.
Part I 54, 981–993.

Choi, T. Y. W., Merolla, P., Arthur, J.,
Boahen, K., and Shi, B. E. (2005).
Neuromorphic implementation of
orientation hypercolumns. IEEE
Trans. Circuits Syst. Part I 52,
1049–1060.

Cloutier, J.,Cosatto,E.,Pigeon,S.,Boyer,
F., and Simard, P. Y. (1996). “Vip:

an fpga-based processor for image
processing and neural networks,”
in Proceedings of the Fifth Interna-
tional Conference on Microelectron-
ics for Neural Networks and Fuzzy
Systems MicroNeuro’96 (Lausanne:
IEEE Press), 330–336.

Costas-Santos, J., Serrano-Gotarredona,
T., Serrano-Gotarredona, R., and
Linares-Barranco, B. (2007). A con-
trast retina with on-chip calibra-
tion for neuromorphic spike-based
AER vision systems. IEEE Trans.
Circuits Syst. I Reg. Papers 54,
1444–1458.

Culurciello, E., Etienne-Cummings, R.,
and Boahen, K. (2003). A biomor-
phic digital image sensor. IEEE J.
Solid State Circuits 38, 281–294.

Delbrück, T. (2005). http://jaer.wiki.
sourceforge.net

Delbrück, T. (2008). “Frame-free
dynamic digital vision,” in Proceed-
ings of International Symposium on
Secure-Life Electronics, Advanced
Electronics for Quality Life and Soci-
ety (Tokyo: University of Tokyo),
21–26.

Hadsell, R., Sermanet, P., Erkan, A., Ben,
J., Han, J., Flepp, B., Muller, U., and
LeCun, Y. (2007). ‘On-line learning
for offroad robots: using spatial label
propagation to learn long-range tra-
versability,” in Proceedings of Robotics
Science and Systems ’07, MIT Press,
Cambridge.

Hadsell, R., Sermanet, P., Scoffier, M.,
Erkan, A., Kavackuoglu, K., Muller,
U., and LeCun, Y. (2009). Learning
long-range vision for autonomous
off-road driving. J. Field Robotics 26,
120–144.

Huang, F.-J., and LeCun, Y. (2006).
“Large-scale learning with svm and
convolutional nets for generic object
categorization,” in Proceedings of
Computer Vision and Pattern Recog-
nition Conference (CVPR’06) (New
York: IEEE Press).

Jarrett, K., Kavukcuoglu, K., Ranzato,
M., and LeCun, Y. (2009). “What
is the best multi-stage architecture
for object recognition?,” in Proceed-
ings of International Conference on
Computer Vision (ICCV’09) (Kyoto:
IEEE).

LeCun, Y., Boser, B., Denker, J. S., Hen-
derson, D., Howard, R. E., Hub-
bard, W., and Jackel, L. D. (1990).
“Handwritten digit recognition with
a back-propagation network,” In
NIPS’89, MIT Press, Denver.

LeCun, Y., Bottou, L., Bengio, Y., and
Haffner, P. (1998a). Gradient-based
learning applied to document recog-
nition. Proceedings of the IEEE 86,
2278–2324.

LeCun, Y., Bottou, L., Orr, G., and
Muller, K. (1998b). “Efficient back-
prop,” in Neural Networks: Tricks of
the Trade, eds G. Orr, and K. Muller
(Springer).

www.frontiersin.org April 2012 | Volume 6 | Article 32 | 11

http://jaer.wiki.sourceforge.net
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Farabet et al. Comparison: frame vs. spiking convNets

Leñero-Bardallo, J. A., Serrano-
Gotarredona, T., and Linares-
Barranco, B. (2010). A five-decade
dynamic-range ambient-light-
independent calibrated signed-
spatial-contrast AER retina with
0.1ms latency and optional time-
to-first-spike mode. IEEE Trans.
Circuits Syst. I Reg. Papers 57,
2632–2643.

Leñero-Bardallo, J. A., Serrano-
Gotarredona, T., and Linares-
Barranco, B. (2011). A 3.6μs latency
asynchronous frame-free event-
based dynamic vision sensor. IEEE
J. Solid State Circuits 46, 1443–1455.

Lichtsteiner, P., Posch, C., and Delbrück,
T. (1998). A 128Ã – 128 120db 15us
latency asynchronous temporal con-
trast vision sensor. IEEE J. Solid State
Circuits 43, 566–576.

Lyu, S., and Simoncelli, E. P. (2008).
“Nonlinear image representation
using divisive normalization,” in
Computer Vision and Pattern Recog-
nition, IEEE, Anchorage.

Massari, N., Gottardi, M., Jawed, S.
A., and Soncini, G. (2008). A
100uw 64×128-pixel contrast-based
asynchronous binary vision sensor
for wireless sensor networks. IEEE
ISSCC Dig. Tech. Papers 588–638.

Neubauer, C. (1998). Evaluation of con-
volution neural networks for visual
recognition. IEEE Trans. Neural
Netw. 9, 685–696.

Osadchy, R., Miller, M., and LeCun,
Y. (2005). “Synergistic face detec-
tion and pose estimation with
energy-based model,” in Advances in
Neural Information Processing Sys-
tems (NIPS 2004) (Vancouver: MIT
Press).

Oster, M., Yingxue, W., Douglas, R., and
Shih-Chii, L. (2008). Quantification
of a spike-based winner-take-all vlsi
network. IEEE Trans. Circuits. Syst.
Part 1 55, 3160–3169.

Pérez-Carrasco, J. A. (2011). A Sim-
ulation Tool for Building and Ana-
lyzing Complex and Hierarchically
Structured AER Visual Processing
Systems. Ph.D. thesis, IMSE-CNM-
CSIC, Universidad de Sevilla, Sevilla.

Pinto, N., Cox, D. D., and DiCarlo, J.
J. (2008). Why is real-world visual
object recognition hard? PLoS Com-
put. Biol. 4, e27. doi:10.1371/jour-
nal.pcbi

Posch, C., Matolin, D., and Wohlge-
nannt, R. (2010). “A QVGA 143dB
DR asynchronous address-event
PWM dynamic vision and image
sensor with lossless pixel-level video
compression and time-domain
CDS,” in ISSCC Digest of Technical
Papers, San Francisco, in press.

Ranzato, M., Huang, F., Boureau, Y., and
LeCun, Y. (2007). “Unsupervised
learning of invariant feature hier-
archies with applications to object
recognition,” in Proceedings of Com-
puter Vision and Pattern Recognition
Conference (CVPR’07) (Minneapo-
lis: IEEE Press).

Ruedi, P. F., Heim, P., Gyger, S., Kaess, F.,
Arm, C., Caseiro, R., Nagel, J.-L., and
Todeschini, S. (2009). “An soc com-
bining a 132db qvga pixel array and
a 32b dsp/mcu processor for vision
applications,” in IEEE ISSCC Digest
of Technical Papers, San Francisco,
46–47, 47a.

Ruedi, P. F., Heim, P., Kaess, F., Grenet,
E., Heitger, F., Burgi, P.-Y., Gyger,
S., and Nussbaum, P. (2003). A
128×128, pixel 120-db dynamic-
range vision-sensor chip for image
contrast and orientation extraction.
IEEE J. Solid State Circuits 38,
2325–2333.

Säckinger, E., Boser, B., Bromley, J.,
LeCun, Y., and Jackel, L. D. (1992).
Application of the ANNA neural
network chip to high-speed charac-
ter recognition. IEEE Trans. Neural
Netw. 3, 498–505.

Serrano-Gotarredona, R., Oster, M.,
Lichtsteiner,P.,Linares-Barranco,A.,
Paz-Vicente, R., Gómez-Rodríguez,
F., Camuñas-Mesa, L., Berner, R.,
Rivas-Pérez, M., Delbrück, T., Liu,
S.-C., Douglas, R., Häfliger, P.,
Jiménez-Moreno, G., Ballcels, A.
C., Serrano-Gotarredona, T.,Acosta-
Jiménez, A. J., and Linares-Barranco,
B. (2009). CAVIAR: a 45k neu-
ron, 5M synapse, 12G connects/s
AER hardware sensory-processing-
learning-actuating system for high-
speed visual object recognition and
tracking. IEEE Trans. Neural Netw.
20, 1417–1438.

Serrano-Gotarredona, R., Serrano-
Gotarredona, T., Acosta-Jiménez,
A., and Linares-Barranco, B. (2006).
A neuromorphic cortical-layer
microchip for spike-based event

processing vision systems. IEEE
Trans. Circuits Syst. I Regul. Papers
53, 2548–2566.

Serrano-Gotarredona, R., Serrano-
Gotarredona, T., Acosta-Jiménez,
A., Serrano-Gotarredona, C., Pérez-
Carrasco, J. A., Linares-Barranco,
B., Linares-Barranco, A., Jiménez-
Moreno, G., and Civit-Ballcels, A.
(2008). On real-time AER 2-D
convolution hardware for neu-
romorphic spike-based cortical
processing. IEEE Trans. Neural
Netw. 19, 1196–1219.

Serrano-Gotarredona, T., Andreou, A.
G., and Linares-Barranco, B. (1999).
AER image filtering architecture
for vision processing systems. IEEE
Trans. Circuits Syst. Part I Fundam.
Theory Appl. 46, 1064–1071.

Serre, T. (2006). Learning a Dictio-
nary of Shape-Components in Visual
Cortex: Comparison with Neurons,
Humans and Machines. Ph.D. thesis,
MIT, Boston.

Shepherd, G. (1990). The Synaptic Orga-
nization of the Brain, 3rd Edn.
Oxford: Oxford University Press.

Sivilotti, M. A. (1991). “Wiring con-
siderations in analog VLSI sys-
tems, with application to field-
programmable networks,” in Tech-
nical Report, California Institute of
Technology, Pasadena.

Teixeira, T., Culurciello, E., and
Andreou, A.G. (2006). “An address-
event image sensor network,” in
IEEE International Symposium on
Circuits and Systems, ISCAS ’06
(Kos: IEEE), 4467–4470.

Thorpe, S., Fize, D., and Marlot, C.
(1996). Speed of processing in the
human visual system. Nature 381,
520–522.

Vernier, P., Mortara, A., Arreguit, X.,
and Vittoz, E. A. (1997). An inte-
grated cortical layer for orientation
enhancement. IEEE J. Solid State
Circuits 32, 177–186.

Vogelstein, R. J., Mallik, U., Culurciello,
E., Cauwenberghs, G., and Etienne-
Cummings, R. (2007). A multi-
chip neuromorphic system for spike-
based visual information processing.
Neural Comput. 19, 2281–2300.

Zaghloul, K. A., and Boahen, K. (2004).
Optic nerve signals in a neuro-
morphic chip: parts 1 and 2. IEEE
Trans.Biomed. Eng. 51, 657–675.

Zamarreño-Ramos, C. (2011). Towards
Modular and Scalable High-Speed
AER Vision Systems. Ph.D. thesis,
IMSE-CNM-CSIC, Universidad de
Sevilla, Sevilla.

Zamarreño-Ramos, C., Serrano-
Gotarredona, T., Linares-Barranco,
B., Kulkarni, R., and Silva-Martinez,
J. (2011a). “Voltage mode driver
for low power transmission of
high speed serial aer links,” in
Proceedings of IEEE International
Symposium on Circuits and Systems
(ISCAS 2011) (Rio de Janeiro),
2433–2436.

Zamarreño-Ramos, C., Serrano-
Gotarredona, T., and Linares-
Barranco, B. (2011b). An instant-
startup jitter-tolerant manchester-
encoding serializer/deserializar
scheme for event-driven bit-serial
lvds inter-chip aer links. IEEE Trans.
Circuits Syst. Part I 58, 2647–2660.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 28 October 2011; accepted: 21
February 2012; published online: 12 April
2012.
Citation: Farabet C, Paz R, Pérez-
Carrasco J, Zamarreño-Ramos C,
Linares-Barranco A, LeCun Y, Culur-
ciello E, Serrano-Gotarredona T and
Linares-Barranco B (2012) Com-
parison between frame-constrained
fix-pixel-value and frame-free spiking-
dynamic-pixel convNets for visual
processing. Front. Neurosci. 6:32. doi:
10.3389/fnins.2012.00032
This article was submitted to Frontiers in
Neuromorphic Engineering, a specialty of
Frontiers in Neuroscience.
Copyright © 2012 Farabet , Paz, Pérez-
Carrasco, Zamarreño-Ramos, Linares-
Barranco, LeCun, Culurciello, Serrano-
Gotarredona and Linares-Barranco. This
is an open-access article distributed under
the terms of the Creative Commons Attri-
bution Non Commercial License, which
permits non-commercial use, distribu-
tion, and reproduction in other forums,
provided the original authors and source
are credited.

Frontiers in Neuroscience | Neuromorphic Engineering April 2012 | Volume 6 | Article 32 | 12

http://dx.doi.org/10.1371/journal.pcbi
http://dx.doi.org/10.3389/fnins.2012.00032
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	Comparison between frame-constrained fix-pixel-value and frame-free spiking-dynamic-pixel convNets for visual processing
	1. Introduction
	2. Structure of generic ConvNets
	2.1. Filter bank layer -F
	2.2. Non-linearity layer
	2.3. Feature pooling layer

	3. Frame-Free Spiking-Dynamic-Pixel ConvNets
	3.1. Software Simulator
	3.2. VLSI Implementation
	3.3. FPGA Implementation
	3.4. Example System and Operation
	3.5. Frame-Constrained Fix-Pixel-Value ConvNets
	3.6. Comparison between Frame-Constrained and Frame-Free Spiking ConvNets

	4. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

