
REVIEW ARTICLE
published: 26 March 2012

doi: 10.3389/fnins.2012.00033

The nervous system and metabolic dysregulation:
emerging evidence converges on ketogenic diet therapy
David N. Ruskin and Susan A. Masino*

Neuroscience Program, Department of Psychology, Trinity College, Hartford, CT, USA

Edited by:

Yuri Zilberter, INSERM U751, France

Reviewed by:

Jason B. Wu, Cedars-Sinai Medical
Center, USA
Robert W. Greene, University of Texas
Southwestern Medical Center and
Veterans Affairs Medical Center, USA

*Correspondence:

Susan A. Masino, Neuroscience
Program, Department of Psychology,
Trinity College, Life Sciences Center,
300 Summit Street, Hartford, CT
06106, USA.
e-mail: susan.masino@trincoll.edu

A link between metabolism and brain function is clear. Since ancient times, epileptic
seizures were noted as treatable with fasting, and historical observations of the therapeu-
tic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter
a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures.
This strict regimen could mimic the metabolic effects of fasting while allowing adequate
caloric intake for ongoing energy demands.Today, KD therapy, which forces predominantly
ketone-based rather than glucose-based metabolism, is now well-established as highly
successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has
been recognized as existing side-by-side with nervous system disorders – although often
with much less obvious cause-and-effect as the relationship between fasting and seizures.
Rekindled interest in metabolic and dietary therapies for brain disorders complements new
insight into their mechanisms and broader implications. Here we describe the emerging
relationship between a KD and adenosine as a way to reset brain metabolism and neuronal
activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of
a KD on cognition and recent data on the effects of a KD on pain, and explore the rela-
tive time course quantified among hallmark metabolic changes, altered neuron function
and altered animal behavior assessed after diet administration. We predict continued appli-
cations of metabolic therapies in treating dysfunction including and beyond the nervous
system.

Keywords: adenosine, epilepsy, glucose, inflammation, long-term potentiation, metabolism, pain, seizure

THE KETOGENIC DIET AND KETONE-BASED METABOLISM
Metabolism influences brain activity, and metabolic dysfunction
is associated with a wide variety of neurological disorders. The
cause-and-effect relationship between metabolic and neuronal
dysfunction is often unclear, though not in the case of epilepsy and
diet. Historical observations noted the therapeutic benefits of fast-
ing on epilepsy, but fasting is necessarily a time-limited practice.
Therapeutic benefits of the metabolic condition of fasting were
confirmed over 90 years ago when the high fat, low-carbohydrate
ketogenic diet (KD) was described as alternative to fasting which
still reduced epileptic seizures (Wilder, 1921). In turn, anticon-
vulsant drugs debuted over the next two decades, such that since
then the KD has been used mostly for inoperable and medication-
resistant epilepsy, which has been estimated to be 15% up to 45%
of cases (Picot et al., 2008; Dong et al., 2011).

Although used clinically for many decades, prescribed most
often to children, and increasing in popularity over the last
two decades, the KD’s mechanism of action remains contro-
versial. The KD was designed to produce ketosis without fast-
ing by strictly limiting carbohydrate intake (Wilder, 1921). To
make up for lost calories and augment ketosis, fat content is
increased dramatically. When carbohydrate intake is strongly lim-
ited (as during the KD or fasting), the liver increases produc-
tion of the ketone bodies β-hydroxybutyrate, acetoacetate, and
acetone from circulating fatty acids (Aoki, 1981). Because of

the β-hydroxyl substitution, β-hydroxybutyrate is not actually a
ketone, although by convention it is grouped with the other two
ketone bodies.

Ketone bodies are released into the circulation as an alternative
energy source to generate ATP (“ketolytic” metabolism) within
tissues, including the brain and spinal cord. Hallmark changes
in blood chemistry are produced reliably in rodents (Figure 1).
Formulation of the KD is calculated using a ratio of fat con-
tent to combined protein and carbohydrate content, varying in
the clinic from 5:1 to 1:1 depending on a patient’s individual
needs (Swink et al., 1997; Vining, 1999). We found that a KD-
fed ad libitum at ratio of 7:1 or 3:1 to rats produced similar
changes in blood chemistry (Figure 1). Clinically, the trend has
been to decrease the ratio where possible and thus make the
diet more palatable (including the more liberal modified Atkins
diet; Kang et al., 2007; Kossoff et al., 2008b) but more systematic
research is needed. Regarding different food types, the KD has now
been adapted for widely varying cultures and cuisines in different
countries around the world (e.g., India, Korea, United Kingdom,
Saudi Arabia, Republic of Georgia; Kang et al., 2007; Neal et al.,
2008a; Sharma et al., 2009; B. Zupec-Kania, personal communi-
cation). Understanding the mechanisms by which a diet controls
seizures, along with broader opportunities for metabolic therapies,
remains an active research topic because of accessibility, efficacy,
and economics.
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FIGURE 1 | Ketogenic diets can produce prompt and sustained ketosis

and mild hypoglycemia in experimental rodents. Here, young male
Sprague-Dawley rats were fed with one of two ketogenic diets for 19 days,
or remained fed with normal rodent chow. Both KDs, with strengths of 3:1
and 7:1 (BioServ 5140 and 3666, respectively), produced similar and
significantly increased blood ketones and reduced blood glucose within
2 days and lasting until the last test day. Number of subjects was 12–14.
*p < 0.05, **p < 0.01, ***p < 0.001, comparisons to control diet. Authors’
unpublished data.

METABOLISM, PLASTICITY, AND SYNAPTIC ACTIVITY
The KD might alleviate seizures and other pathological states par-
tially by providing elevated levels of high-energy molecules (e.g.,
ATP, phosphocreatine) and increased capacity for energy gener-
ation (increased mitochondrial number; Seyfried and Mukher-
jee, 2005; Bough and Rho, 2007; Masino and Geiger, 2008). Yet,
numerous other changes due to the KD have been hypothesized
to underlie increased inhibition and/or decreased excitation in
brain, and thus to an anticonvulsant/neuroprotective state. In nor-
mal humans fed a KD, electroencephalography and transcranial
magnetic stimulation demonstrated increased inhibition in the
cerebral cortex, with a magnitude similar to that seen after ben-
zodiazepine administration (Cantello et al., 2007). With the more
extensive investigation possible in experimental animals, a KD was
shown to enhance paired-pulse depression, shift the input/output
relationship rightward, elevate the threshold for maximal electrical

activation, and to block spreading depression-style events in the
hippocampus in vivo (Bough et al., 2003). There have been sur-
prisingly few detailed studies on detailed synaptic effects, likely
because of the difficulty in performing such studies in vivo, cou-
pled with the typical glucose-based incubation protocol for in vitro
slices; to date, a “KD” incubation protocol has not been standard-
ized, although recent work sampling cerebrospinal fluid in KD-fed
animals might provide a starting point (Samala et al., 2011).
Currently, the major proposed mechanisms for such increased
inhibition and/or decreased excitation include increased levels
of adenosine, a major inhibitory neuromodulator (Masino and
Geiger, 2008); increased levels of γ-aminobutyric acid (GABA), a
major inhibitory neurotransmitter (Yudkoff et al., 2007; Omote
et al., 2011); decreased glutamate, a major excitatory neurotrans-
mitter (Lund et al., 2009; Juge et al., 2010) and direct effects of
elevated ketone bodies on ion channels (Ma et al., 2007).

Increased inhibition or decreased excitability, if sufficiently
strong, might not only suppress seizures but also influence normal
brain function. Many types of normal brain function, as well as
recovery from injury, are thought to depend on synaptic plastic-
ity, i.e., the malleability, either temporary or long-lasting, of the
strength of neuronal communication (Davis et al., 1992; Goosens
and Maren, 2002). Long-term potentiation (LTP) is a sustained
increase in synaptic efficacy which can be observed in a number
of brain regions including its original discovery site, the hip-
pocampus (Bliss and Lømo, 1973; Bramham and Srebro, 1989;
Clugnet and LeDoux, 1990; Bonci and Malenka, 1999; Mahon
et al., 2004). Studies have linked metabolism and LTP (Potter et al.,
2010); we and our collaborators characterized the effects of a KD
on hippocampal LTP with the hypothesis that KD-related inhibi-
tion or reduced excitation might affect brain plasticity (Koranda
et al., 2011). We recorded hippocampal signals through chronically
implanted electrodes in freely moving rats. After 3 weeks on a 7:1
KD, baseline synaptic measurements were taken in the perforant
path-dentate gyrus pathway and LTP was induced with tetanic
stimulation and the response measured over the next 2 days. The
KD had no significant effects on measures of short-term plasticity
(paired-pulse depression, paired-pulse facilitation), and did not
prevent LTP induction, whereas the magnitude of the potentia-
tion was significantly smaller in KD-fed rats. The LTP magnitude
remained lower in these rats out to the longest tested time point
(48 h). As discussed below, cognitive effects of the diet are mixed
in animals and overall positive in humans. In addition, it is impor-
tant to note that 7:1 is a stronger diet ratio than that used clinically,
animals used had never had seizures, and another paper looking
at the KD on LTP in vivo in anesthetized animals did not find any
differences (Thio et al., 2010).

To test the role of adenosine in the KD’s ability to reduce
seizures, we and our collaborators recently tested the effectiveness
of a KD in a transgenic mouse with spontaneous hippocampal
electrographic seizures due to adenosine deficiency. These mice
overexpress the adenosine-metabolizing enzyme adenosine kinase
(ADK) in brain (Fedele et al., 2005), and tonic levels of the endoge-
nous inhibitor adenosine are therefore lower than normal. At base-
line, seizures recorded with chronically implanted electrodes occur
five times per hour, on average (Masino et al., 2011). After being
fed on a 7:1 KD for 3 weeks, seizure frequency dropped almost

Frontiers in Neuroscience | Neuropharmacology March 2012 | Volume 6 | Article 33 | 2

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Ruskin and Masino Ketogenic diet and nervous system

90%. This antiseizure effect depended on low glucose (seizures
were restored by a peripheral injection of glucose), and activation
of the adenosine A1 receptor subtype (A1R; seizure activity was
restored by injection of a selective A1R antagonist). Together, this
evidence suggests that the KD exerts antiseizure effects by restor-
ing adenosine levels and A1R activation via a mechanism related
to low glucose.

Further support for this idea is provided by transgenic mice
lacking A1Rs. These mice also have spontaneous electrographic
seizures in the hippocampus, but the KD has no effect on seizure
frequency in A1R knockout mice, and is partially effective in mice
heterozygous for the A1R (Masino et al., 2011). Although these
models all involve seizures induced by a lack of adenosinergic
modulation, the results are likely generalizable: adenosine has been
found to be anticonvulsive/antiseizure in virtually every seizure
model in which it has been tested (excepting A1R knockout mice –
providing further evidence for the primary anticonvulsant role of
A1Rs). Adenosine in particular, and a KD in general, might offer
more homeostatic “upstream” bioenergetic regulation of neuronal
activity, and possibly long-term benefits on brain homeostasis,
than highly specific drug therapies (Boison et al., 2011). Regarding
LTP, previous results consistent with the involvement of adenosine
in KD effects have shown that adenosine reduces LTP magnitude
when present during induction (Mitchell et al., 1993; Costenla
et al., 1999; de Mendonca and Ribeiro, 2000; Fujii et al., 2000a,b;
Tabata et al., 2001; Zhang et al., 2004; Rex et al., 2005; but see
Pascual et al., 2005) and, when applied after induction, promotes
reversal of existing LTP (Huang et al., 1999; Fujii et al., 2000a).
Yet, the lack of effects of the KD on input–output relationships
and short-term plasticity seem to argue against the tonic involve-
ment of adenosine (Koranda et al., 2011). Mechanism aside, the
KD can limit excessive neuronal activity (a class into which the
neuronal activity during an LTP induction burst certainly applies)
and perhaps reset baseline activity.

KETOGENIC DIET FOR A BRAIN SLICE: RELAXING IN
REDUCED GLUCOSE?
Compared to in vivo, in vitro paradigms can provide tighter con-
trol over experimental variables, allowing for a more thorough
characterization of mechanisms. Effects of KD feeding on base-
line excitability are inconsistent in vitro, however (Stafstrom et al.,

1999; Thio et al., 2000; Bough et al., 2006; Nylen et al., 2008).
Certainly, the metabolic state established by a KD might be dis-
rupted during tissue preparation for in vitro work. As introduced
briefly above, one of the biochemical effects associated with a KD
is an abundance of high-energy molecules (DeVivo et al., 1978;
Nakazawa et al., 1983; Pan et al., 1999; Masino et al., 2007), as well
as increased mitochondrial biogenesis, respiration, and expression
of ATP synthesis-related proteins (Noh et al., 2004; Sullivan et al.,
2004; Bough et al., 2006; Nylen et al., 2009; Balietti et al., 2010).
Several lines of evidence suggest that reduced glucose is critical for
antiseizure effects.

We modeled key aspects of the KD in vitro by maintaining
or increasing intracellular ATP while decreasing extracellular glu-
cose in individual CA3 pyramidal neurons in acute hippocampal
slices. We varied ATP (0.5–5.0 mM; 2 mM is standard) in the patch
pipet and changed glucose concentration of the bathing solution
from 11 mM (standard) to either 7 or 3 mM (Kawamura et al.,
2010). Note that 3 mM glucose is still a physiological level: in vivo
brain concentrations are near 3 mM (Hu and Wilson, 1997; Shram
et al., 1997). Moderately lowered extracellular glucose has been
reported to attenuate epileptiform activity in brain slices (Kirch-
ner et al., 2006), whereas experimental studies of pathological
hypoglycemia often remove glucose completely from the bathing
medium (aglycemia; Tromba et al., 1992; Zhu and Krnjevic, 1993).

We found that when intracellular ATP levels were adequate or
high (1.0–5.0 mM), reducing extracellular glucose provoked an
outward (inhibitory) current, with a larger current found with a
reduction to 3 mM versus to 7 mM (Figure 2). This outward cur-
rent was fully reversible on return to 11 mM glucose and had a
reversal potential near the equilibrium potential for K+, and was
blocked by the non-selective K+ channel antagonist Ba2+ (Kawa-
mura et al., 2010). If intracellular ATP levels were low (0.5 mM),
reducing glucose produced a transient inward (excitatory) current
instead (Figure 2). Therefore, moderately low extracellular glucose
can inhibit hippocampal neurons that have sufficient or abundant
energy stores. Furthermore, this inhibition was completely blocked
by application of an A1R antagonist and was not present in neu-
rons from A1R knockout mice (Figure 2; similar to observations
in vivo: Masino et al., 2011) implying increased adenosine levels
produced the inhibition (conversely, diabetic hyperglycemia seems
to be related to reduced signaling through A1Rs (Duarte et al.,

FIGURE 2 | Relationship among membrane current, intracellular ATP, and

extracellular glucose. (A) Peak currents produced by lowering extracellular
glucose from 11 to 3 mM depend on intracellular ATP concentration
(0.5–5 mM). Current is outward, except at 0.5 mM ATP. (B) Concentration-

dependence of glucose-related outward current (with 2 mM intracellular ATP).
(C) Outward current produced in low-glucose buffer reversed completely (and
became slightly inward) with the A1R antagonist DPCPX. *p < 0.05,
**p < 0.01. Adapted with permission from Kawamura et al. (2010).
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2006). A similar consistent mechanism was reflected presynap-
tically (measured as decreased spontaneous postsynaptic current
frequency); an A1R-dependent presynaptic inhibition was pro-
duced by adequate/high postsynaptic intracellular ATP combined
with low extracellular glucose (Kawamura et al., 2010). Together,
this study and Masino et al. (2011) suggest that a KD can limit
seizures (at least those involving the hippocampus) through a
mechanism dependent on low glucose and abundant high-energy
molecules and involving augmentation of adenosine levels.

In our in vitro study, we manipulated ATP only in the patched
neuron, suggesting an autocrine mechanism to increase adenosine.
How might this autoinhibition occur? ATP might be metabolized
intracellularly to adenosine, which would then be released. Load-
ing pyramidal neurons with adenosine + ATP versus ATP alone,
however, suggested that the current was not mediated by direct
adenosine release (Kawamura et al., 2010). Alternatively, ATP
might be released and then metabolized to adenosine. Cells can
release ATP by several mechanisms (Dubyak, 2009), and extracel-
lular ATP is metabolized rapidly to adenosine (Dunwiddie et al.,
1997). One prominent non-exocytotic ATP release mechanism in
neurons and glia is ATP passage through channels composed of
connexins or pannexins (Stout et al., 2002; Schock et al., 2008;
Iwabuchi and Kawahara, 2011). Through a series of physiological
and pharmacological experiments, we determined that pannexin
channels were the source of extracellular ATP. Taken together, our
data are consistent with a process by which lowered extracellular
glucose promotes release of ATP via pannexins. ATP is then con-
verted extracellularly to adenosine, which activates A1Rs coupled,
under these conditions, to KATP channels (Kawamura et al., 2010).
This pathway is likely to underlie the A1R-mediated anticonvulsant
effect produced by the KD in vivo. Certainly, mild hypoglycemia
and enhanced adenosine tone can underlie its anticonvulsant effect
(Masino et al., 2011), whereas the in vivo involvement of pannexin
channels and ATP release remains to be demonstrated directly.

KETOGENIC DIET’S EFFECT ON COGNITION AND MOOD:
NEGATIVE, THEN POSITIVE?
Altered cognition and affect in children with seizure disorders has
always been a concern. Regarding pharmacological therapies, sev-
eral authors have shown that children with epilepsy – even those
whose seizures were well-controlled with antiepileptic drugs – had
decreased cognitive function compared to their peers (Devinsky,
1995; Thompson et al., 2000; Drane and Meador, 2002). The
exact mechanism of cognitive decline is unknown: traditional
antiepileptic drugs decrease membrane excitability, increase post-
synaptic inhibition,or reduce network synchronization to decrease
excessive excitability associated with seizure development (Lor-
ing, 2005). These neurophysiological mechanisms, if sufficiently
strong, will not only suppress seizures but also impair normal
brain function. The incidence of cognitive side effects is increased
at higher dosing and with polypharmacy which might be necessary
for significant seizure control (Loring and Kimford, 2001). Thus,
the cognitive and affective state of a medicated epileptic patient
results from a balance of forces including the negative effects of the
disease state (seizures, abnormal interictal brain activity, abnor-
mal sleep), the positive effects of the anticonvulsive medication

(seizure control), and the negative side effects of the anticonvulsive
mediation (which can include sedation and/or abnormal sleep).

The KD might offer fewer chronic negative side effects than
medication, and given that it has been in use for over 90 years,
serious or systematic negative consequences would likely have sur-
faced by now. In research studies, KDs (albeit at a much stronger
ratio than used clinically) reduced brain mass in juvenile rodents
(Cheng et al., 2004; Zhao et al., 2004) and KDs can affect body
growth in children (who are typically on the diet temporarily; Liu
et al., 2003; Peterson et al., 2005; Neal et al., 2008b) but to our
knowledge negative KD effects on human brain development and
growth have not been quantified. Notably, recurrent clinical hypo-
glycemia can lead to a cumulative cognitive impairment (Langan
et al., 1991; Deary et al., 1993) – although this effect might not be
directly applicable because the hypoglycemia in these studies was
episodic and much more severe than the chronic reduced (but not
abnormal) glucose levels associated with the KD. Overall, positive
and negative short- and long-term effects of this strict diet on cog-
nition and mood remain under-examined clinically, particularly
in pediatric patients.

It is worthwhile to consider that any assessment of cognitive
or affective state associated with a KD should occur at multiple
time points, as effects of the KD (including anticonvulsive effects)
clearly evolve. There are limitations to combining data from dif-
ferent laboratories due to differing methodologies, different KDs,
etc. Yet in surveying the research literature, it seems fairly clear
that there is a biphasic effect on locomotor behavior: reduced
activity characterizes KD onset, whereas increased activity pre-
dominate after a few weeks. Effects of a KD on locomotion in
rodents (compiled informally from the literature) are shown in
Figure 3. Notably, a biphasic pattern over time after diet initiation

FIGURE 3 | Over time, KDs produce a biphasic effect on locomotor

activity based on this compilation of published rodent data. Note that
hypoactivity predominated in studies with short diet treatments (≤20 day),
whereas hyperactivity predominated with longer treatments (≥30 day).
Points were estimated from published graphs and tables in multiple
references (Zhao et al., 2004; Murphy et al., 2005; Ziegler et al., 2005;
Murphy and Burnham, 2006; Mantis et al., 2009; Oishi et al., 2010; Thio
et al., 2010).
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is found in clinical literature relating to cognition, mood, and vital-
ity. Soon after beginning a KD, subjects often complain of lethargy
(Vining et al., 1998; Lefevre and Aronson, 2000); in children, intol-
erable drowsiness is a reported side-effect that sometimes leads to
cessation of KD treatment (Neal et al., 2008a). Yet, after weeks on
the diet, subjects report heightened vitality, physical functioning,
and alertness (Hallböök et al., 2007; Mosek et al., 2009; Yancy et al.,
2009). In some cases these positive effects may be at least partially
due to reduced seizure frequency, but similar positive effects are
also described in non-epileptic subjects. This delay in beneficial
effects is reminiscent of the delay often observed in anticonvulsant
effects (Kossoff et al., 2008a).

Studies of the KD in epileptic patients rarely characterize mood,
which might understandably be poor during the initial lethar-
gic/drowsy stage. Several weight-loss studies, however, included
affective measures and found positive effects of KD on mood in
overweight subjects as early as 2 weeks into diet treatment, and
lasting many weeks (Halyburton et al., 2007; McClernon et al.,
2007; Brinkworth et al., 2009; Yancy et al., 2009). Two of these
studies provide some evidence against this result simply being a
psychological effect of weight loss (Brinkworth et al., 2009; Yancy
et al., 2009). Thus, beneficial effects on mood (as well as weight
loss) await those who conquer the early stage after KD initiation.
Studies of patients with epilepsy on the KD, including children,
have either reported improved cognition anecdotally (Sirven et al.,
1999) or reported improvements in more general measures such
as attention and social functioning (Kinsman et al., 1992; Pul-
sifer et al., 2001). It is difficult to determine if these effects are
due to reduced seizures, to concomitantly reduced medications,
or a direct action on cognition/attention. Investigations in non-
epileptic adult subjects (thus without confounding antiepileptic
medications) have more specifically addressed cognition and the
KD. One study found a transient, moderate impairment in one
cognitive task (but not two other tasks) at 1 week of diet treat-
ment but found no impairments at later time points (Wing et al.,
1995); two studies examining chronic KD treatments reported
improved processing speed and working memory lasting up to
1 year (Halyburton et al., 2007; Brinkworth et al., 2009). This pat-
tern seems to parallel the biphasic effect on activity and vitality
noted above.

A minority of animal studies have reported impairments in
learning and memory, specifically in a task of spatial reference
memory (Su et al., 2000; Zhao et al., 2004). Other studies, how-
ever, have failed to find any detrimental effect of the KD on
learning and memory in rodents in various mazes or in fear con-
ditioning (Hori et al., 1997; Todorova et al., 2000; Silva et al.,
2005; Appelberg et al., 2009; Thio et al., 2010). We tested nor-
mal mice of both sexes in a simple working memory task after
feeding on a 7:1 KD at a number of time points, up to 10 weeks,
and found no effect of the KD (though hyperactivity did appear
beginning at 2 weeks (Ruskin et al., 2011a). It is worth not-
ing that a KD not only does not impair but in fact reverses
age-related deficits in learning and other cognitive measures in
aged, but otherwise healthy, dogs and rodents (Pan et al., 2010;
Xu et al., 2010). Taken together, these results largely support
the beneficial nature of KD feeding on mood and cognition in
patients.

NOCICEPTION AND INFLAMMATION: MULTIPLE
MECHANISMS LIKELY
Converging lines of evidence suggest the utility of a KD for pain
relief. First, it has long been known that reducing glucose metabo-
lism influences pain. There is an overall increase in pain thresholds
(and thus reduced pain) when glycolytic enzymes are inhibited by
exogenous 2-deoxy-d-glucose (Bodnar et al., 1979). This effect
is mediated centrally (Bodnar et al., 1981), and might involve
increased brain/spinal cord inhibition by adenosine, the release of
which is stimulated by 2-deoxy-d-glucose (Zhao et al., 1997; Minor
et al., 2001). 2-Deoxy-d-glucose is also anticonvulsant (Garriga-
Canut et al., 2006), and while the mechanisms might not overlap
entirely with the KD (Stafstrom et al., 2009; Gasior et al., 2010)
there might be some common pathways. Second, anticonvulsant
drugs such as gabapentin, felbamate, and valproate are useful in
treating pain, particularly neuropathic pain and migraine (Johan-
nessen Landmark, 2008). These drugs typically act by decreasing
neuronal activity or excitability, and it is clear that reducing central
activity with adenosine or GABA agonists alleviates pain (Karlsten
et al., 1992; Malmberg and Yaksh, 1993; Belfrage et al., 1995; Malan
et al., 2002; Gwak et al., 2006). Thus, we predicted that the KD,
which reduces glucose metabolism and is anticonvulsant, would
reduce pain.

We fed rats a 7:1 KD in order to test the effects in the hot-
plate test. In this test, the latency to withdraw a hindpaw from
the warm surface indicates the animal’s sensitivity to painful heat.
In young rats, we found that KD feeding for 3–4 weeks increased
paw withdrawal latency (i.e., decreased the sensitivity) to plate
temperatures from 48 to 51˚C (Ruskin et al., 2009). In adult rats,
the effect seemed to be smaller in magnitude, and was signifi-
cant only at 49 and 50˚C. We recently found similar results with
a less stringent 3:1 KD (Ruskin et al., 2011b). Curiously, another
study reported increased thermal pain sensitivity (tail flick) after
12 weeks of KD feeding in young rats (Ziegler et al., 2005); method-
ological differences such as rat strain, body part (paw vs. tail), diet
composition, and stimulus strength might be factors. The differ-
ence in diet treatment length (3 vs. 12 weeks) does not seem to
explain the disparity, as subsequently we have found decreased
thermal pain sensitivity present after 10–11 weeks of feeding with
a 3:1 KD (Ruskin et al., 2011b). Thus far the specific mechanism of
altered thermal nociception in KD-fed rats is unknown, and could
involve hypoglycemia, ketosis, fatty acids, and/or adenosine.

One recently published clinical report on KD effects on “qual-
ity of life” reported that beneficial effects on self-reported general
bodily pain were at the threshold of statistical significance (Yancy
et al., 2009), suggesting that KD effects on overall pain might be
positive. This report, however, was not a dedicated study of pain,
but rather a study of overall quality of life; as such, there was no
underlying painful condition to treat. In the same study, a low-fat
diet also alleviated bodily pain. Overall, an assessment of pain in
KD-treated patients is warranted.

A better understanding of the relationship between metab-
olism and pain could help multiple and comorbid conditions,
and the KD might prove uniquely useful against diabetes and
diabetes-related neuropathy. Although work with rodents has
produced mixed results (Al-Khalifa et al., 2009, 2011; Garbow
et al., 2011; Park et al., 2011; Poplawski et al., 2011), clinical
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studies have found exclusively positive outcomes: after KD treat-
ment, patients with type I or II diabetes had improved control of
blood glucose, and many could have their medications reduced
or eliminated (Gumbiner et al., 1996; Yancy et al., 2005; West-
man et al., 2008; Dressler et al., 2010). In addition, type I diabetic
patients (and, based on one report, children with epilepsy) pre-
fer foods that are high in fat and low in carbohydrates (Amari
et al., 2007; Snell-Bergeon et al., 2009), which might be attempted
self-medication. The mixed animal results might result from the
use of very strict KDs (Garbow et al., 2011; Park et al., 2011), or
from the diabetic propensity of many laboratory rodent strains.
Thus, the KD might benefit diabetic patients both by alleviating
neuropathic pain and treating the underlying glycemic control
dysfunction.

Finally, the KD would be predicted to be effective against
inflammatory pain. Chronic inflammation is typically accompa-
nied by pain due to the release of prostaglandins and the con-
sequent sensitization of sensory neurons (Mense, 1983). Some
of the most common sources of inflammatory pain are rheuma-
toid arthritis, chronic inflammatory bowel disease, pancreatitis,
back pain, and some cancers. We found that a KD reduced experi-
mental inflammation-induced swelling and plasma extravasation
(Ruskin et al., 2009), and clinical studies describe positive effects
of a KD on liver inflammation in non-alcoholic fatty liver disease
(Tendler et al., 2007; Pérez-Guisado and Muñoz-Serrano, 2011).
Regarding mechanisms linking metabolism to inflammatory pain,
reactive oxygen species are a major component of inflammation,
and limiting reactive oxygen species should contribute to limit-
ing inflammation. Accordingly, ketone-based metabolism should
produce fewer free radicals and reactive oxygen species through
affecting the mitochondrial co-enzyme Q couple and the cyto-
plasmic glutathione couple (Veech, 2004). Indeed, as expected,
treatment with ketones reduces the level of reactive oxygen species
(Noh et al., 2006a; Kim et al., 2007, 2010; Maalouf et al., 2007;
Haces et al., 2008; Maalouf and Rho, 2008), as does KD feeding
(Sullivan et al., 2004).

Regarding inflammatory pain, by virtue of their high-fat con-
tent KDs should also activate peroxisome proliferator-activated
receptors (PPARs). These nuclear receptors bind long-chain
polyunsaturated fatty acids, and consequently induce transcrip-
tional changes that culminate in enhanced lipid metabolism
(Moya-Camarena et al., 1999; Diradourian et al., 2005; Michalik
et al., 2006). Genetic knockout of a major PPAR (the α sub-
type) augments inflammatory reactions (Cuzzocrea et al., 2006),
whereas synthetic PPAR agonists reduce experimentally induced
inflammation (Cuzzocrea et al., 2003; LoVerme et al., 2005). This
latter effect appears to involve reduced transcription of pro-
inflammatory genes (Blanquart et al., 2003) and seems to be
invoked by the KD (Jeong et al., 2011). Synthetic PPAR ago-
nists are analgesic against inflammatory pain (LoVerme et al.,
2006). In addition to these effects, PPAR activation augments
expression of the enzymes involved in ketogenesis (Cullingford
et al., 2002), promoting the shift to a ketone-based metabo-
lism, in agreement with findings of stronger ketosis with a high-
polyunsaturated fat KD (Fuehrlein et al., 2004). Although polyun-
saturated fatty acid content of the KD seems not to be important
in the diet’s anticonvulsant effect (Dell et al., 2001; Dahlin et al.,

2007), it might be a crucial characteristic for KD influence on
inflammation.

It might seem ironic that the KD is discussed here as reducing
inflammation, given that other high-fat diets and obesity are defi-
nitely linked to chronic inflammation (Thaler and Schwartz, 2010;
Ding and Lund, 2011; Laugerette et al., 2011). Those high-fat diets
that lead to obesity, including the so-called Western diet, include a
high amount of fat along with normal amounts of carbohydrate, a
crucial difference from the very low-carbohydrate KD which typi-
cally leads to weight loss (Gumbiner et al., 1996; Halyburton et al.,
2007; Tendler et al., 2007; Westman et al., 2008). Thus, the high-
fat-plus-carbohydrate diet promotes fat storage whereas the high
fat, low-carbohydrate diet promotes fat metabolism. Nevertheless,
more clinical work with the KD and inflammation is warranted,
particularly regarding long-term effects. It will be crucial to deter-
mine which of the mechanisms described above is most important
for the KD’s alleviation of inflammation. Future work on the
relationship between the KD’s hallmark changes in blood chem-
istry, ketosis and mild hypoglycemia, and its anti-inflammatory
and anti-nociceptive effects should help characterize the pertinent
mechanisms.

ATTENUATING BRAIN INJURY AND NEURODEGENERATION
Animal studies have found find that the KD protects against
seizure-induced neurodegeneration and related sequelae (such as
aberrant neurite sprouting; Muller-Schwarze et al., 1999; Noh
et al., 2003, 2005, 2006b; Linard et al., 2010). The KD is also
neuroprotective against ischemic damage (Tai et al., 2008, 2009),
hypoglycemic damage (Yamada et al., 2005), and traumatic brain
and spinal injury (Prins et al., 2005; Appelberg et al., 2009; Hu
et al., 2009a,b; Prins and Hovda, 2009; Schwartzkroin et al., 2010;
Streijger et al., 2011), and improves injury-related deficits in cog-
nition and movement after traumatic brain and spinal injury,
respectively (Appelberg et al., 2009; Streijger et al., 2011). Keto-
sis is apparently crucial to these effects as direct application of
ketones to in vitro tissue is also protective against hypoglycemia
and ischemia (Samoilova et al., 2010), oxidative stress (Kim et al.,
2007), and excitotoxicity (Massieu et al., 2003; Noh et al., 2006b;
Maalouf et al., 2007; Samoilova et al., 2010). The mechanisms are
likely to involve reduced reactive oxygen species, reduced tissue
excitability, and enhanced production of high-energy molecules.

Based on evidence for neuroprotection against acute insults,
and recognition that metabolic dysfunction accompanies chronic
neurological disease, researchers are expanding into animal mod-
els of more slowly-acting neurodegenerative diseases. Positive
effects of KD feeding have been found in models of amyotrophic
lateral sclerosis (Zhao et al., 2006), Parkinson’s disease (Cheng
et al., 2009; Yang and Cheng, 2010), and Alzheimer’s disease (Van
der Auwera et al., 2005; Mohamed et al., 2010). In addition, KD
feeding reverses aging-related impairments in brain biochemistry
in animals (Studzinski et al., 2008; Balietti et al., 2010). Direct
application of ketones is also beneficial in models of Parkinson’s
disease (Kashiwaya et al., 2000; Tieu et al., 2003) and Alzheimer’s
disease (Kashiwaya et al., 2000).

Huntington’s disease, which involves the death of neurons
in the caudate and putamen, is thought to involve excitotoxic-
ity and mitochondrial dysfunction (Estráda-Sanchez et al., 2008;
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Damiano et al., 2010). Based on findings reviewed above, we char-
acterized the effects of a strict (7:1) KD in a rapidly progressing
Huntington’s disease model, the R6/2 mouse (lifespan less than
16 weeks). KD feeding began at 6 weeks of age,when motor impair-
ments are still minor (Ruskin et al., 2011a). The KD did not
increase lifespan or alleviate motor impairments, but, importantly,
it did not negatively affect either. However, the KD did delay sig-
nificantly the onset of progressive weight loss, which is a major
problem in patients (Sanberg et al., 1981; Lanska et al., 1988). In
addition, the KD reversed a modest working memory impairment
in female mice, and working memory is known to be affected in
patients with Huntington’s disease (Lange et al., 1995; Lawrence
et al., 1996) as well as other neurological disorders and aging.

The lack of effect on lifespan or locomotor activity may signal
that beneficial effects of a KD might not be similar across neu-
rodegenerative disorders, might depend on the severity or rate of
progression, or might differ in different animal models of a disor-
der; alternatively, the KD might need to be optimized for strength
and composition for different conditions. Although it seems para-
doxical that the KD, normally associated with weight loss, might
maintain, or increase body weight under particular conditions, our
data suggest that KD feeding could alleviate Huntington’s disease-
associated cachexia, and, as noted above, in patients a higher
body mass is associated with slower disease progression (Myers
et al., 1991). Based on this finding, the KD might also deserve
consideration for treatment of other cachexias; for instance, that
associated with cancer (Colomer et al., 2007). Indeed, the KD is

beginning to be used as an anti-tumorigenic treatment (Klement
and Kammerer, 2011; Seyfried et al., 2012) and so could provide
dual benefits. If the anti-neurodegenerative effects found in ani-
mal models of Parkinson’s disease, Alzheimer’s disease, and aging
are successfully extended to humans, the KD could also have dual
benefits, delaying the primary degenerative condition and allevi-
ating the working memory problems common to these conditions
(Halyburton et al., 2007; Brinkworth et al., 2009; Ruskin et al.,
2011a).

LOOKING AHEAD
A KD offers known benefits for epilepsy, and it is apparent that
the relationship between metabolism and brain function offers
primary therapeutic opportunities. Basic and clinical research is
acutely aware that metabolic dysfunction and comorbidities pro-
mulgate lifelong impacts on nervous system function. Particularly
promising unrealized opportunities for intervention and restora-
tion of metabolic homeostasis occur during development, after
injury, and during disease progression – all windows with high
levels of plasticity and remodeling. New insight into mechanisms
could accelerate development of treatments.
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