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The present study investigates two aspects of decision making that have yet to be explored
within a dynamic environment, (1) comparing the accuracy of cue-outcome knowledge
under conditions in which knowledge acquisition is either through Prediction or Choice,
and (2) examining the effects of reward on both Prediction and Choice. In the present
study participants either learnt about the cue-outcome relations in the environment by
choosing cue values in order to maintain an outcome to criterion (Choice-based deci-
sion making), or learnt to predict the outcome from seeing changes to the cue values
(Prediction-based decision making). During training participants received outcome feedback
and one of four types of reward manipulations: Positive Reward, Negative Reward, Both
Positive + Negative Reward, No Reward. After training both groups of learners were tested
on prediction and choice-based tasks. In the main, the findings revealed that cue-outcome
knowledge was more accurate when knowledge acquisition was Choice-based rather than
Prediction-based. During learning Negative Reward adversely affected Choice-based deci-
sion making while Positive Reward adversely affected predictive-based decision making.
During the test phase only performance on tests of choice was adversely affected by hav-
ing received Positive Reward or Negative Reward during training.This article proposes that
the adverse effects of reward may reflect the additional demands placed on processing
rewards which compete for cognitive resources required to perform the main goal of the
task. This in turn implies that, rather than facilitate decision making, the presentation of
rewards can interfere with Choice-based and Prediction-based decisions.
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INTRODUCTION
The main objective of the present study is to build on the par-
adigms developed in the decision sciences in order to explore
insights from work in the neurosciences on the role of reward.
Based on the presentation of different types of reward outcomes,
the present study examines the accuracy of cue-outcome knowl-
edge when learning about a dynamic environment either through
Choice-based decisions or Prediction-based decisions. A broader
aim of this article is to elucidate the philosophical issues raised
from work investigating decision making exclusively using behav-
ioral techniques as compared to work using neuropsychological
techniques.

Imagine a scenario in which we have recently installed a new
energy monitoring system as a way of trying to reduce our fuel bill.
In order to achieve this goal we need to learn about the relationship
between cues (the devices in our home) and outcomes (energy
use), while also taking into account our basic living require-
ments. We might decide that the best way to go about learning
the cue-outcome relationships is by first choosing to make regular
interventions on cues (varying which devices to use, varying the
length of time of using the devices, and the time of use of various
devices) and then examining their effects on the outcome (billing
of fuel consumption). This is an example of Choice-based decision
making in which cue-outcome relations are acquired via cue-
intervention. Alternatively, by first monitoring the changes in cues
(i.e., what devices are being used, and when) and then observing

the changes in the outcome (energy use as indicated on the mon-
itor) we might decide to predict the changes in the outcome from
the changes in cue values. This is an example of Prediction-based
decision making in which cue-outcome relations are acquired
via estimates of the expected outcome value. Thus, both Choice-
based decision making and Prediction-based decision making are
methods of acquiring cue-outcome knowledge.

In order to achieve the intended goal, which is to ultimately to
reduce our fuel bill, we would need to implement cue-outcome
knowledge (acquired by either method – prediction/choice) in
order to decide how we might change our future behavior to reduce
our energy consumption. By implementing cue-outcome knowl-
edge, over time we would be able to track the relative success of
our decisions (positive reward, i.e., discovering that there was a
decrease in the fuel bill) and the relative failure of our decisions
(negative reward, i.e., discovering that there was an increase in the
fuel bill). This form of updating, often referred to as reinforcement
learning/reward learning is a way of associating rewards to the out-
comes of decisions, which in turn influences how cue-outcome
knowledge is implemented and modified.

What the above example illustrates is that, when we try to learn
what variables that cause changes in a dynamic environment, we
need to learn about cue-outcome relations, and we can do this
through Choice-based decision making or Prediction-based deci-
sion making. Choice-based decision making involves refining the
decisions that will help utilize the value functions associated with
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an outcome in order to reduce the discrepancy between a target
(goal) and the outcome (Wörrgötter and Porr, 2005). Alterna-
tively, we can learn what variables generate changes in a dynamic
environment via Prediction-based decision making. This involves
a process that refines the decisions that will determine the expected
value function associated with an outcome (Wörrgötter and Porr,
2005). Either form of decision making will enable an incremental
build-up of cue-outcome knowledge through a series of decision
(prediction or choice). This means that future actions reflect the
process of adapting and updating the cumulative changes experi-
enced in the environment (Osman et al., 2008; Osman, 2008a,b,
2010a).

While neuropsychological research has made considerable
advances in understanding the ways in which rewards are
processed under different conditions (i.e., when the rewards occur
and how often), very little work has focused on comparing the
effects of different types of rewards on Prediction-based and
Choice-based decision making, particularly in task environments
that involve dynamic decision making (hereafter DDM) of the
kind described in the example. Similarly, only recently has there
been any work in the Judgment and decision making domain
which directly compares the accuracy of cue-outcome knowledge
gained via Prediction-based and Choice-based decision making in
a dynamic environment (Osman and Speekenbrink, in press).

Osman and Speekenbrink (in press) showed that generally cue-
outcome knowledge acquired either through Prediction-based or
Choice-based decision making was sufficiently flexible to enable
successful transfer to tests of choice and prediction. Moreover,
these findings are generally consistent with reinforcement learn-
ing models that would claim that prediction errors are the source
of cue-outcome learning, which can be generated either through
Choice or Prediction. The key issue, and the focus of the present
study, is to bring together the work from the decision sciences and
the neuropsychological domain in order to investigate an unex-
plored question: What are the effects of different types of rewards
on cue-outcome learning (i.e., Prediction-based, Choice-based
decision making) in a DDM environment?

Broadly, both Prediction-based decisions and Choice-based
decisions should lead to an estimate of what will happen to the
outcome following a change in a cue variable, in other words a pre-
diction is generated. Moreover, Reinforcement learning/Reward
based learning models (Montague et al., 1996; Schultz et al., 1997)
also claim that cue-outcome knowledge is acquired via error-
based learning, that is, an error (prediction error) is generated
by a comparison between an action (cue-intervention) and the
actual outcome that occurs (reward; i.e., Choice-based decision).
Alternatively an error can occur based on a comparison between
an expected outcome from a choice and the actual outcome (i.e.,
Prediction-based decision). Thus, prediction errors are the source
of learning – or fine tuning cue-outcome knowledge, and this is
because the magnitude of the deviation between prediction/cue-
intervention and the actual outcome indicates the accuracy of
cue-outcome knowledge. The models predict that changes in the
rate of learning reflect changes in the reward outcomes (i.e., success
or failure of a decision reflected in the outcome itself).

Reinforcement learning models have enjoyed much success
in the neuropsychological domain in which there is amassing
evidence that the processing of rewards corresponds to phasic

activity of mid-brain dopamine neurons (Schultz et al., 1997;
Schultz, 2006; Rutledge et al., 2009). The pattern of activation
of these neurons differs according to the different types of reward
outcomes that occur. That is, dopaminergic neurons show short
phasic activation in the presence of unexpected rewarding out-
comes (e.g., presentation of food, presentation of money), and
in the course of learning the phasic response shifts to indica-
tors (i.e., cues) of rewarding outcomes (e.g., lights, tones, smiley
faces, money). Similarly, in the presence of unexpected nega-
tive outcomes (e.g., loss of reward) there is a corresponding
decrease in activation (Hollerman and Schultz, 1998). In addi-
tion, event-related brain potential (ERP) studies have reported
that performance feedback generates ERP waveforms that are typ-
ically observed as a negative-going component peaking between
250 and 300 ms after feedback is presented (Holroyd and Coles,
2002; Hajcak et al., 2007; Peterson et al., 2011). The amplitude
of the feedback negativity is determined by the impact of pha-
sic dopamine signals (Holroyd and Coles, 2002). The amplitude
of feedback negativity indicates the interaction between feedback
valence and expectedness, so that unexpected negative feedback
produces greater feedback negativity relative to unexpected posi-
tive feedback, which is typically associated with smaller negativity
signals (Hajcak et al., 2007).

In addition, neuropsychological research on decision making
has examined different properties of rewards (e.g., reward prob-
abilities, reward structures; e.g., Daw et al., 2006; Behrens et al.,
2007; Boorman et al., 2009; Jocham et al., 2009). Brain imaging
data (O’Doherty, 2004; Sailer et al., 2007) has shown that there
is greater brain activation in the orbital frontal cortex (OFC),
caudate nucleus, and frontal polar areas when participants experi-
ence positive rewards (gains) rather than negative rewards (losses).
This suggests that reward outcomes themselves are processed dif-
ferently. Also, cortical activation can also reflect differences in
reward probabilities, as well as changes in the reward probabilities
over time (Cohen, 2006; Schultz, 2006; Sailer et al., 2007; Schultz
et al., 2008). Moreover, during cue-outcome learning, activation
increases in the OFC and putamen when experiencing losses, and
activation decreases following gains; this is consistent with evi-
dence from EEG studies (e.g., Cohen et al., 1996) and fMRI studies
(e.g., Cohen et al., 2008).

Two recent neuropsychological studies contrasting Prediction-
based learning (making judgments of expected rewards from
actions, alternatively Prediction-based decision making) with
action-based learning (choosing a cue that will bring about a
reward, alternatively Choice-based decision making) suggest that
there may in fact be underlying neurological differences between
these two forms of learning (Hajcak et al., 2007; Peterson et al.,
2011). The task in Hajcak et al.’s (2007) ERP study involved select-
ing from four doors the one which was likely to have a prize
behind it (i.e., choice). Prior to each choice participants were
told the objective probability of reward [i.e., the prize is behind 1
(P = 0.25),2 (P = 0.50),or 3 (P = 0.75) doors]. The key manipula-
tion involved participants guessing (i.e., predict) “yes” or “no” that
they would win just before their choice (Experiment 1), or just after
their choice (Experiment 2). Hajcak et al. (2007) found that consis-
tent with reinforcement models, there was no difference between
the two conditions based on behavioral measures of prediction
and choice. There was however an effect on the correspondence
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between feedback negativity amplitude and subjective estimates
of success. Feedback negativity tracked predictions of outcomes
after people made their choices, but not before. It was speculated
that the process of actively making a selection involved estimating
the success of each choice, and then selecting the option with the
highest subjective reward outcome. Thus, this evaluative method
strengthened and stabilized predictions, whereas before a choice
was made the prediction was based on few evaluations of the
expected outcomes, and therefore weakened the strength of the
predictions.

Using a different design, Peterson et al.’s (2011) study also sep-
arated prediction from action using an incremental learning task.
Participants were either free to select a cue (one of four pictures)
that yielded the highest expected pay off (choice trials), or were
instructed to select a particular cue (instructed trials). Generally,
the findings from the neurophysiological data suggested that pre-
diction error magnitudes were lower for choice trials compared
to instructed trials, but that only in choice trials did the error
magnitude became substantially lower over the course of learn-
ing. Peterson et al. (2011) claimed that expectations are in closer
alignment with feedback when feedback itself results from actions
that are under volitional control, and this is based on the specu-
lation that in Choice-based trials people can actively choose the
option with the highest payoff where as for instructed trials people
do not have volitional control.

The implication of Peterson et al. (2011) and Hajcak et al.’s
(2007) findings is that active choice (i.e., Choice-based deci-
sion making) is an important factor in reward learning, and
may involve different neural activity as compared to non-choice-
based decisions (e.g., prediction, classical conditioning), but that
there is no corresponding difference in behavioral measures of
choice and prediction. The main reason for focusing on Haj-
cak et al. (2007) and Peterson et al. (2011) studies is that both
make strong claims about reward learning in choice-based and
prediction-based decision making. Moreover, in both studies the
claim is made that reward differentially effects neurological behav-
ior associated with prediction and choice, but that there is no
corresponding behavioral differences (i.e., performance on tests
of prediction and choice are no different). The problem is that
without directly testing prediction and choice under the same
task environment, unless one first establishes the presence or
absence of behavioral differences, there are no secure ground for
claiming that there are neurological differences but not behav-
ioral differences. It is not clear why there would be differences
at the neurological level and not at the behavioral level, which
poses a number of questions concerning the kinds of inferences
that can be drawn from neurological data to behavioral data, and
vice versa.

What can we infer about the relationship between brain and
behavior given that the changes detected at the neurophysiological
level do not correspond with any observable changes in behavior at
the psychological level? These findings raise important issues with
respect to making inferences about the neurological mechanisms
that support different forms of decision making. First, although
in Hajcak et al.’s (2007) study predictions were made either before
or after choices, both decisions were made on each trial. A cleaner
design would have been to block trials in which people either

predicted the success of a choice, or actually made a choice. In this
way a comparison of prediction only and choice only trials would
be free from potential order effects which were not examined in
the study. Peterson et al. (2011) did in fact separate the trials in
which choices and non-choices were made, but since participants
were not explicitly required to make a subjective judgment about
expected reward, the critical comparison was not between predic-
tion and choice, but between choice and no-choice. Peterson et al.
(2011) argued that their method of estimating prediction error
magnitude from their reinforcement learning model was a more
sensitive method than simply relying on verbal reports. Taken
together, these methodological factors may explain the reported
differences in neural activity and the absence of a difference at a
behavioral level. However, both EGGs studies of choice and pre-
diction are consistent with behavioral findings from Osman and
Speekenbrink’s (in press) study showing that the accuracy of cue-
outcome knowledge is similar regardless of whether it was gained
through prediction or choice. Though crucially in Osman and
Speekenbrink’s study there was no presentation of rewards dur-
ing learning, only outcome feedback. Thus, the issue remains, to
what extent can we extrapolate from neuropsychological findings
to behavioral findings given that the differences are only present
neurologically?

These issues will be revisited in the Section “General Discus-
sion,” but for now the key point is that evidence suggesting that
choice and prediction may in fact be supported by different neu-
rological processes has been demonstrated in simple forced choice
tasks. The methodological concerns raised here may limit the
extent to which the findings can be generalized to more complex
decision making contexts. Therefore, given that behavioral studies
comparing prediction and choice-based decision making do not
include reward manipulations along the lines of Peterson et al.
(2011) and Hajcak et al.’s (2007), and given that both these studies
are problematic, the aim of the present study is to: (1) address the
methodological issues raised here, (2) explore the generalizability
of their findings to a DDM task by incorporating reward manip-
ulations, and (3) explore the generalizability of their findings to
a task which is commonly described as cognitively demanding
(Brehmer, 1992).

Previous studies using DDM tasks directly comparing the
effects of learning via prediction and learning via Choice-based
decisions have shown that accuracy of cue-outcome knowledge is
unaffected by mode of learning (Osman and Speekenbrink, in
press). However, in the DDM tasks used previously, only out-
come feedback was presented. This is different from the typical
reward outcomes used in choice tasks in the neuropsychological
domain. These tasks tend to incorporate salient reward outcomes
(i.e., tones, lights, smiley faces) which have been shown to impact
on performance. Therefore, the DDM task used in the present
study incorporated reward outcomes during learning. Participants
received outcome feedback, and were also presented with informa-
tion as to the relative success of their decisions over time (indicated
by a thumbs up sign and a smiley face – positive feedback), and the
relative failure of decisions over time (indicated by a thumbs down
sign and a sad face – negative feedback). In addition, the present
study incorporated experimental procedures from Peterson et al.
(2011) study and Hajcak et al.’s (2007) studies to make the DDM
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task comparable to their studies. In the prediction-based learning
condition participants were presented with pre-selected cues (akin
to Peterson et al., 2011 study) and were given the opportunity of
guessing what the outcome value would be on each trial (akin to
Hajcak et al., 2007 study).

By incorporating these methodological features into the present
study, the aim is to align Peterson et al. (2011) and Hajcak
et al.’s (2007) tasks to a paradigm examining decision making
processes which is commonly referred to as cognitively demand-
ing (Osman, 2010a), and is often described as externally valid
(Funke, 2001). In so doing, the present study examines Hajcak et
al.’s (2007) and Peterson et al.’s (2011) claim that Choice-based
decisions rather than Prediction-based decisions facilitate closer
correspondence between subjective expectations and feedback.
They propose that, compared with Prediction-based decisions,
Choice-based decisions reflect a process of volitional control over
an action. The action itself is informed by an evaluative process
in which each choice option is weighted and the one with the
highest subjective reward is selected. This in turn would sug-
gest an advantage for those making Choice-based decisions rather
than Prediction-based decisions. However, this generates a dis-
cernable difference in neurophysiological behavior, but not in
behavioral measures of performance. A null effect is also predicted
from a reinforcement learning perspective. If experiencing the
effects of one’s predictions or choices cumulatively in a dynamic
environment leads to the same prediction error, then regard-
less of the mode of learning, cue-outcome knowledge should be
equally accurate in Prediction-based and Choice-based learning
conditions.

EXPERIMENT 1
The experiment is designed to address the following empirical
question: Are there behavioral differences between Choice-based
and Prediction-based dynamic decision making under reward based
learning? To answer this, the present study employed a DDM par-
adigm that incorporated a reward based structure similar to the
simple choice tasks used in the neuropsychological domain dis-
cussed above. In one version of the DDM task, from trial to trial
participants were required to learn the probabilistic cue-outcome
associations by using the cue values to predict the outcome value
(Prediction-based learners). The other version involved the same
cue-outcome task structure, but in this case participants were
required to control the outcome value by manipulating the cue
values to reach and maintain a specific outcome value (Choice-
based learners). To match the two versions as closely as possible,
the learning histories experienced by both types of learners were
identical, but the critical difference between the two was that
Choice-based learners set the cue values (choice under volition),
whereas the cue values were preset for Prediction-based learners
(non-volitional cue manipulation). This was achieved by using a
yoked design. In this way, Prediction-based learners were matched
to Choice-based learners’ learning trials, and so the cue-outcome
values that were experienced were identical to those chosen by
Choice-based learners. To examine the effects of the different
modes of learning on the accuracy of cue-outcome knowledge,
all participants were presented with two tests of control, and two
tests of prediction.

METHODS
Participants
Ninety-six graduate and undergraduate students from Univer-
sity of London volunteered to participate in the experiment for
reimbursement of £5. The assignment of participants to the
four conditions was semi-randomized. There were a total of
eight groups (Choice-based learning Positive Reward, Choice-
based learning Negative Reward, Choice-based learning Both
Positive + Negative Reward, Choice-based learning No Reward,
and Prediction-based learning Positive Reward, Prediction-based
learning Negative Reward, Prediction-based learning Both Pos-
itive + Negative Reward, Prediction-based learning No Reward),
with 12 participants in each. Pairs of participants (Choice-based
learners and yoked Prediction-based learners) were randomly allo-
cated to one of the four types of reward based conditions (Positive
Reward, Negative Reward, Both Positive + Negative Reward, No
Reward). Participants were tested individually.

DESIGN
The experiment used a 2 × 4 design. It included two between
subject manipulations, namely learning mode (Prediction-based
vs. Choice-based) and type of reward (Positive Reward, Negative
Reward, Both Positive + Negative Reward, No Reward). Success
of learning performance was measured using two types of tests
(Control Test 1, 2; Predictive Tests 1, 2).

The task environment consisted of the following: Positive
cue = x1, Effect of positive cue = b1 = 0.65, Negative cue = x2,
Effect of negative cue = b2 = −0.65. Random perturbation = et,
(the random perturbation component, is normally distributed,
with a mean of 0), Outcome value = y(t ), Previous outcome
value = y(t − 1). Thus, there were three cues and one outcome.
One of the cues increased the outcome, and one of the cues
decreased the outcome. The third cue had no effect on the out-
come. More formally, the task environment can be described as in
the following equation

y(t ) = y(t − 1) + 0.65 x1(t ) − 0.65 x2(t ) + e(t )

in which y(t ) is the outcome on trial t, x1 is the positive cue,
x2 is the negative cue, and e a random noise component, nor-
mally distributed with a zero mean and SD of 81. The null cue
x3 is not included in the equation as it had no effect on the
outcome.

The DDM task included a total of 112 trials, divided into two
phases. The structure of the entire experiment was as follows:
Learning phase (40 trials), Test Phase – Two tests of Controlling
the Outcome (20 trials each) interleaved with Two test of Pre-
dicting Cue and Outcome values (16 trials each). The order of
presentation of the tests was as follows, Control Test 1, Prediction
Test 1, Control Test 2, Prediction Test 2.

1The assignment of noise to the system was first piloted in order to generate High
variance (16 SD) and low variance (4 SD). Osman and Speekenbrink (in press)
includes two studies which varied the random perturbation component, In Exper-
iment 1, 16 SD was found to be difficult as reflected in choice performance and
predictive performance, while 4 SD was considerably easier. In Experiment 2, 8 SD
was moderately difficult, and on this basis was chosen in order investigate the effects
of reward on Choice-based and Prediction-based learning in the present study.
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BEHAVIORAL TASK
The visual layout of the screen, cover story, and the main
instructions were identical for Prediction-based and Choice-based
learning groups. Participants were presented with a story about a
newly developed incubator designed especially for babies with an
irregular state of health (a global measure based on heart rate,
temperature, blood pressure)2. Using this type of context ensured
that participants were highly motivated to learn the task. Choice-
based learners were informed that as a trainee maternity nurse
they would be trying to regulate the health of a newborn girl called
“Molly.” They would be regulating the levels of three parameters
(air pressure, oxygen, and humidity) with the aim of maintaining a
specific safe healthy state. The system was operated by varying the
cue values which would affect the baby’s state of health. Prediction-
based learners were assigned the same role, but instead they were
told that they would see the nurse regulating the incubator para-
meters and that their role would be to predict the subsequent
change in a global measure of health. The screen included three
cues which were labeled (air pressure, oxygen, and humidity), and
the outcome (healthy state) which was presented in two ways, as a
value in the middle right of the screen, and also on a small progress
screen in which a short trial history (five trials long) of outcome
values was presented. Both Prediction-based and Choice-based
learning groups were shown the current state of health, new value
of the state of health after manipulation and the target value of
the healthy state. Prediction-based learners were also shown the
result they predicted in the form of a dashed line on the progress
screen. The task was self-paced. Figure 1 shows an example of the
environment participants were required to interact with.

Rewards
Rewards based stimuli were presented during the learning phase
only. The rewards did not correspond to money or points, but
rather they were simple characters that indicated an increase (smi-
ley face and a thumbs up sign) or decrease (sad face and a thumbs
down sign) in performance. Participants in the No Reward (No
Reward) condition received no reward, only outcome feedback.

2It was made clear to participants at the start of this experiment, that they were
taking part in a simulation, and that there was no real baby in an incubator.

Outcome feedback was provided in the form of a value that
changed on a progress screen indicating graphically the differ-
ence between the target value and the achieved outcome value (for
Choice-based learners), or the predicted outcome value and the
achieved value (for the Prediction-based learners). In addition the
outcome value and target value were also listed on the side of the
progress screen.

Participants in the positive reward condition (Positive Reward)
observed a picture of a smiley face and a thumbs up on trials in
which the discrepancy between their achieved outcome value and
the target value was smaller than the previous trial (for Choice-
based learners), or the discrepancy between expected and actual
outcome was smaller than the previous trial (for the Prediction-
based learners). Participants in the negative reward condition
(Negative Reward) observed a picture of sad face and a thumbs
down on trials in which discrepancy between the achieved out-
come and target outcome was greater than the previous trial
(for Choice-based learners), again a similar logic was applied
to Prediction-based decisions (for the Prediction-based learn-
ers). Participants in Positive + Negative reward condition (Both-
Rewards) received positive and negative rewards on trials adhering
to the conditions specified above. Rewards were only presented
during the learning phase. During the Test phase, for control
tasks all participants received outcome feedback, and for tests of
prediction no feedback was presented.

Learning phase
Choice-based learners. During each trial participants had to
interact with the system by changing the value of the cues using a
slider corresponding to each. Each slider had a scale that ranged
from 0 to 100. On the start trial, the cue values were set to “0,” the
outcome value was 178, the target value throughout was 62, and
a safe range (±10 of the target value) was given. When partici-
pants made their decision they clicked a button labeled “Submit”
which deactivated the cues and revealed on the progress screen
the effects of their decisions on the outcome. The effects on the
outcome value were cumulative from one trial to the next, and so
while the cue values were returned to “0” on the next trial, the out-
come value was retained from the previous trial. After completing
the learning phase, participants then proceeded to the test phase.

FIGURE 1 | Screen shots of a control-learning trial and a predict-learning trial.
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Prediction-based learners. The procedure was identical to
Choice-based learners, with the following exceptions. Once pre-
sented with the cue values, they predicted the outcome value by
adjusting a slider that was placed alongside the outcome progress
screen; this would move a line on the progress screen to indicate
the outcome value. Once they made their decision, they clicked
a button labeled “Submit,” which deactivated the outcome value
slider and revealed the actual outcome value as well as their pre-
dicted outcome value. The button “Continue” was then pressed
to proceed to the next trial. The start of the next trial triggered
the outcome value slider to become activated and the presentation
of new cue values. The predicted value of the previous trial was
omitted from the progress screen, but the trial history of the last
five actual outcome values remained.

Test phase
Control tests. After the learning phase, all participants were
examined on their ability to control the system to a criterion (out-
come value = 62, and safe range ±10 of the target value). Test 1
involved the same procedure that the Choice-based learners were
following during the learning phase, but consisted of only 20 trials.
For the Prediction-based learners this was the first occasion they
could manipulate the cues. To examine the ability to control the
system to a different goal, all participants were then presented with
Test 2 in which they followed the same procedure as Test 1, with the
following exceptions. In the Test 2 participants were informed that
they needed to be even more careful in reaching and maintaining
the outcome value (outcome value = 74), and that staying within
the safe range (±5 of the target value) was of particular impor-
tance. The starting value of Test 1 was 178, and was set to 156 in
Test 2. In the Test 2 Choice-based learners and Prediction-based
learners had no experience of the new criterion value, and so they
would have to base their decisions on acquired knowledge of the
system in order to control the new outcome value.

Predictive tests were designed to examine explicit cue-outcome
knowledge. Each test included 16 trials which were divided in
the following way. Participants were required to predict the value
of a cue (Positive, Negative, Null) based on the given value of
the outcome and the other cues (e.g., predicting the Positive cue
value, based on the values of the Negative, Null, and Outcome
values), or they were required to predict the outcome value given
the value of the other three cues. Participants were not told that
the test involved a mixture of eight old trials and eight new tri-
als. Old trials were divided accordingly: 2 × Positive cue value,
2 × Negative cue value, 2 × Null cue value, 2 × Outcome value).
These trials were randomly selected from the initial learning phase
(for Choice-based learners these were trials that they had gener-
ated themselves, for Prediction-based learners these were the same
yoked learning trials in which they predicted the outcome value).
The 8 new trials were divided accordingly: 2 × Positive cue value,
2 × Negative cue value, 2 × Null cue value, 2 × Outcome value.
Neither group had prior experience of them. All participants were
presented with the same set of new trials; these were predeter-
mined prior to the experiment. The presentation of the 16 trials in
each set of Predicting Cue and Outcome values Tests was random-
ized. For each trial the predictive value was recorded along with
the response time.

Dependent measures
Predictive performance was measured by an error score Sp(t ) cal-
culated as the absolute difference between predicted and expected
outcome values:

Sp(t ) = ∣
∣P(t ) − y(t − 1) − 0.65 x1(t ) + 0.65 x2(t )

∣
∣ ,

in which P(t ) is a participant’s prediction on trial t. We chose to
compare predictions to expected rather than actual outcomes as
the latter are subject to random noise.

Choice performance was measured as the absolute difference
between the expected achieved and best possible outcome:

Sc(t ) = ∣
∣G(t ) − y(t − 1) − 0.65 x1(t ) + 0.65 x2(t )

∣
∣ ,

in which G(t ) is the goal on trial t: either the target outcome
if achievable on that trial, or the closest achievable outcome. To
illustrate, choice performance was based on how much partici-
pants’ cue manipulations deviated from the optimal cue settings
(the same principle applies to predictive performance except the
deviation was from expected outcome values on each trial). In the
choice tasks used here, for a given (previous) outcome value and
goal, the optimal cue settings define a line in a two-dimensional
plane. For example, if the deviation between the previous out-
come and goal is 50, then the optimal cue settings are all values
for the positive cue x1 and negative cue x2 such that 50 = 0.65
x1 − 0.65 x2, for instance a value of x1 = 77 and x2 = 0, or x1 = 78
and x2 = 1, x2 = 87 and x2 = 10, etc. Thus, choice performance
was computed as the (shortest) distance between a participant’s
actual settings for these two cues and the line defining the optimal
cue settings.

RESULTS
The participants’ patterns of learning were first examined sep-
arately for Choice-based learners and Prediction-based learners.
Comparisons between conditions could not be conducted at this
stage as the optimality scores were incomparable (one based on
the difference between achieved and best possible outcome value,
and the other between predicted and expected outcome value).
The Test Phase was the first occasion in which both conditions
were directly compared for the participants’ ability to reach and
maintain the outcome to a specific criterion (Tests of Controlling
the Outcome), and their ability to predict cue values from the state
of the outcome, or predict the outcome from the pattern of cue
values (Test of Predicting Cue and Outcome values).

Learning phase: choice-based learning
The learning phase was divided into two blocks of 20 trials
each (Learning first half; Learning second half), and Control
optimality scores were averaged across each block, for each par-
ticipant. The following analyses were based on the mean error
scores by block, presented in Figure 2. To examine the success of
learning, 2 × 4 repeated measures ANOVA was conducted using
Block (Learning first half; Learning second half) and Reward
(No Reward, Both-Rewards, Positive Reward, Negative Reward).
Overall, with more exposure to the task, Choice-based learn-
ers showed general improvements in their ability to control
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FIGURE 2 | Choice-based error scores and prediction-based error scores during the learning phase for all four reward groups (SE±).

FIGURE 3 | Choice-error scores during the test phase control test 1, control test 2, for each reward group and condition (SE±).

the outcome to criterion as revealed by a main effect of Block
[F (1,44) = 44.019; P < 0.0005, η = 0.527]. There was a significant
main effect of Reward [F (2,44) = 3.443; P < 0.05, η = 0.202]. A
Bonferroni post hoc tests revealed that Negative Reward led to
poorer control performance as compared to those receiving Both-
Rewards (19.147, P < 0.05) and compared to those receiving No
Reward (19.389, P < 0.05).

Learning phase: prediction-based learning
In order to examine predictive accuracy during learning Pre-
dictive optimality scores were subjected to 2 × 4 repeated mea-
sures ANOVA with Block (Learning first half; Learning sec-
ond half) and Reward (No Reward, Both-Rewards, Positive
Reward, Negative Reward). The analysis revealed a main effect
of Block [F (1,44) = 26.278; P < 0.001, η = 0.374], confirming the
pattern of behavior presented in Figure 2 indicating that pre-
dictive accuracy improved with more practice. There was also a
Block × Reward interaction [F (3,44) = 3.064; P < 0.05, η = 0.173].
Bonferroni post hoc test failed to reach significance. There was
also a significant main effect of Reward [F (3,44) = 3.010; P < 0.05,
η = 0.170]. Bonferroni post hoc tests revealed that receiving

Positive Reward led to poorer predictive accuracy as compared
to Both-Rewards (12.237, P < 0.03).

Test phase: control
Control optimality scores were averaged across participants in
each group for each of the two Tests of Controlling the Out-
come and are presented in Figure 3. An ANOVA using Con-
dition (Choice-based learners, Prediction-based learners) and
Reward (No Reward, Both-Rewards, Positive Reward, Negative
Reward) × Test (Control Test 1, Control Test 2) was conducted.
Generally all participants improved in their control performance
in Test 2 as compared to Test 1, suggesting the presence of prac-
tice effects, as revealed in a main effect of Test, [F (1,88) = 14.020;
P < 0.0001, η = 0.137]. A main effect of Condition suggested that
Choice-based learners were more accurate in their control per-
formance compared to Prediction-based learners [F (1,88) = 8.293;
P < 0.005, η = 0.086]3. There was also a main effect of Reward
[F (3,88) = 9.506; P < 0.0005, η = 0.245]. To examine this further,

3Bonferroni correction was applied.
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control optimality scores were collapsed across Test and Condition
and Bonferroni tests were carried out on Feedback. The tests
revealed those receiving No Reward during learning showed more
accurate control performance as compared with Positive Reward
(16.007, P < 0.01), and Negative Reward (22.756, P < 0.001). Also,
receiving Negative Reward led to poorer control performance as
compared to receiving Both-Rewards (18.87, P < 0.001). No other
comparisons were significant. It appears that in tests of control,
those receiving no reward during training tended to show the most
accurate control performance.

Test phase: prediction
Tests of Predicting Cue values and Outcome values provided
the opportunity to examine the extent to which the cue-
outcome knowledge gained by Choice-based learners was suf-
ficiently flexible to equivalent levels of accuracy as Prediction-
based learners. Prediction optimality scores for Test 1 and Test
2 are presented in Figure 4. The scores were collapsed across
the Tests, since an ANOVA with Test (Predictive Test 1, Pre-
dictive Test 2) × Condition (Choice-based learners, Prediction-
based learners) and Reward (No Reward, Both-Rewards, Pos-
itive Reward, Negative Reward) failed to show any differences
in patterns of predictive accuracy between tests. Cue (Pos-
itive, Negative, Outcome) × Familiarity (Old trials, New tri-
als) × Condition (Choice-based learners, Prediction-based learn-
ers) × Reward (No Reward, Both-Rewards, Positive Reward, Neg-
ative Reward) were used as factors in an ANOVA. A main effect
of Familiarity [F (1,176) = 21.464; P < 0.0005, η = 0.196] was sig-
nificant. In general all participants were more accurate in their
predictions for trials they had experienced previously during
learning as compared to unfamiliar trials. There was a Famil-
iarity × Cue interaction [F (2,176) = 3.902; P < 0.05, η = 0.042].
Paired t -tests revealed that compared with new trials, there was
greater predictive accuracy for old trials when predicting the
value of the positive cue [t (95) = 3.708, P < 0.0004] and the
negative cue [t (95) = 5.433, P < 0.00004]. There was no differ-
ence in predictive accuracy between old and new trials when
predicting the outcome. No other effects or interactions were
significant.

GENERAL DISCUSSION
The main objective of this study was to investigate the follow-
ing question: Are there behavioral differences between Choice-based
and Prediction-based dynamic decision making under reward based
learning? In general, the evidence from the present study cor-
roborates the pattern of neuropsychological evidence from ERP
studies (Hajcak et al., 2007; Peterson et al., 2011), but not the
behavioral evidence from these studies. The present study shows
that active involvement generates more accurate cue-outcome
knowledge than non-volitional learning of cue-outcome relations.
Though reward based learning led to differences in performance
between Choice-based and Prediction-based learning, the effects
of reward were unexpected. Compared to participants that were
not presented with reward,on the whole the presentation of reward
tended to impair learning and transfer of cue-outcome knowl-
edge. Therefore, the findings demonstrate behavioral differences
between Prediction-based and Choice-based decision making in a
DDM task were the result of the presentation of reward.

More specifically, the findings from this study show that during
learning Negative Reward severely impaired Choice-based perfor-
mance, while Positive Reward severely degraded predictive accu-
racy. Moreover, Positive Reward and Negative Reward generally
impaired performance in Learning and Test when compared with
participants receiving No Reward or Both-Rewards. In addition,
Choice-based learners showed an overall advantage in later tests of
control. This suggests that volitional control over cue manipula-
tions during learning facilitated later ability to control an outcome
to different criteria. Moreover, Choice-based learning also facili-
tated successful transfer of cue-outcome knowledge to Predictive
tests. The present discussion focuses on two main issues: (1) the
detrimental effects of reward on decision making, and (2) the
broad philosophical issues that are raised by neuropsychological
research on choice and prediction.

WHY DID REWARD BASED FEEDBACK IMPAIR DDM?
Kluger and DeNisi’s (1996, 1998) review of the effects of feedback
on skill based learning (low level motor and perceptual learn-
ing as well as high level problem solving and decision making)
suggest that unless the task is simple, feedback will lead to no

FIGURE 4 | Prediction error scores (SE±) during the test phase collapsed across prediction test 1 and prediction test 2, for each reward group.
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additional benefits in most cases, and in extreme cases impair
learning (e.g., Hammond and Summers, 1972; Salmoni et al.,
1984). They claimed that the effectiveness of feedback depends
on the type of goal that that the learner is pursuing. More recently,
Harvey (2011) has proposed a cognitive resources account as a
way of explaining the differential effects on performance through
feedback as a function of task difficulty. He proposes that tasks,
such as DDM, are examples in which the knowledge needed to
achieve success is not easily identified from the outset, and so the
process of information search makes high demands on executive
functions. As a result, the provision of feedback (e.g., cognitive
feedback, reward outcomes) is problematic in these tasks for the
reason that it is a source of additional information that needs to
be processed in order to be usefully incorporated into the perfor-
mance of the main task. The more demanding the task is, the more
likely it is that feedback will interfere because processing feedback
competes with performing the main task.

In fact, many have argued that DDM tasks are examples of
complex problem solving tasks (Funke, 2010; Osman, 2010a), and
have been used as methods of indexing IQ (Joslyn and Hunt,
1998; Gonzalez, 2005; Funke, 2010). Therefore, there are good
grounds for assuming that the kind of decision making process-
ing that goes on in DDM tasks is cognitively expensive. This is
because decision making involves tracking cue-outcome relations
in a dynamic environment. At any one time a decision maker is
still uncertain as to the generative causes of changes in an observed
outcome in a DDM task. The reason being that the observed
changes to the outcome can result from endogenous influences
(i.e., cue manipulations in the DDM task) or exogenous influences
on those outcomes (i.e., functions of the system itself/noise), or a
combination of both endogenous and exogenous influences.

It may be the case that feedback (cognitive feedback, reward
outcomes) may impair decision making processes such as those
involved in DDM tasks because additional processing resources
are needed to evaluate feedback in order to use it to adapt and
update decision making behavior (Harvey, 2011). For simple
forced choice tasks (e.g., Hajcak et al., 2007; Peterson et al., 2011),
the learner possess the relevant knowledge for making a deci-
sion from the outset, and learning simply reflects the efficiency
in implementing that knowledge. Therefore, providing feedback
in forced choice tasks does not compete with processing demands
made from performing the main task. By extension, when con-
trasting the simple forced choice task used by Hajcak et al. (2007)
and Peterson et al. (2011) and the DDM task in the present study,
reward based learning may have adversely affected performance
because DDM task is more cognitively demanding than forced
choice tasks.

To explore this, separate analyses were conducted comparing
the optimality scores of the Choice-based learning No Reward
condition and the Prediction-based learning No Reward condi-
tion in the Control tests, and the findings revealed that there were
no difference in performance between conditions [F (1,22) = 0.07;
P = 0.785, η = 0.003; see text footnote 3]. Furthermore, this result
replicates the findings from Osman and Speekenbrink’s (in press)
study (Experiment 2). When the same analysis was conducted
collapsing across the three remaining reward based conditions,
more accurate performance was found for Choice-based learners

receiving feedback as compared to Prediction-based learners
receiving feedback, [F (1,70) = 9.47; P < 0.005, η = 0.119]. Though
caution should be exercised in drawing any firm conclusions
from this result, it certainly is supportive of the proposal that
in the case of DDM tasks, reward infers with DDM, more specif-
ically, active based decision making in which cue-interventions
are made. Moreover, the inference may result from the fact
that DDM tasks are cognitively demanding and so processing
rewards competes for the same limited resources available to
perform the main task. This may also explain why the presenta-
tion of rewards does not appear to impair performance in forced
choice tasks.

Clearly this has implications for reinforcement learning models
(Schultz et al., 1997; Schultz, 2006), at two levels, given that fun-
damentally, Choice-based and Prediction-based decisions should
lead to equivalent cue-outcome knowledge, why is it that a dif-
ference in performance at test was found? Second, reinforcement
learning models would predict differential effects on performance
based on different types of reward, but why is it that rewards dif-
ferentially affected performance of Prediction-based and Choice-
based conditions during the learning? In response to these issues,
it might be worth considering the informational content of the
outcome feedback for Choice-based and Prediction-based learn-
ers. On each trial during learning, outcome feedback could be
used to indicate the deviation of the expected outcome value from
the achieved outcome value (comparison 1 – prediction error)
and the deviation of the achieved outcome value from the tar-
get value (comparison 2). This was the case in the present study
and in Osman and Speekenbrink (in press). Osman and Speeken-
brink’s (in press) findings suggest that both Prediction-based and
Choice-based learners were using comparison 1 and compari-
son 2 interchangeably during learning, because this enabled both
Prediction-based and Choice-based learners to perform control
and prediction tasks equally well at test. In the present study, the
introduction of reward may have prevented Choice-based and
Prediction-based learners from attended to both comparison 1
and 2. Instead the presence of reward made salient comparison
1 for Prediction-based learners, and made salient comparison 2
for Choice-based learners. This may have resulted in the advan-
tage found in Choice-based learners in later tests of control. The
equivalent cue-outcome knowledge found in Prediction-based
and Choice-based learners in tests of prediction suggest that either
comparison 1 or 2 generates sufficient cue-outcome knowledge to
perform the test.

This would be consistent with the speculation that volitional
control over setting the cue values during learning encouraged
Choice-based learners to evaluate each cue-outcome relation-
ship, whereas the evaluation process was not as exhaustive during
Prediction-based learning (Hajcak et al., 2007; Peterson et al.,
2011). The differential effects of reward on Prediction-based deci-
sions and Choice-based decisions may reflect a difference in the
magnitude of the effects of gains and losses for different types of
decisions (Schultz et al., 1997; Sailer et al., 2007). However, this
is still speculative and given that to date, no previous study has
examined the effects of feedback on Choice-based and Prediction-
based decisions in a DDM task, further work is needed to explore
the possible influences of reward on decision making.
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PHILOSOPHICAL ISSUES RAISED BY NEUROPSYCHOLOGICAL
RESEARCH ON CHOICE-BASED AND PREDICTION-BASED DECISION
MAKING
A question asked at the start of this article based on the implica-
tion of Peterson et al. (2011) and Hajcak et al.’s (2007) findings
was: What can we infer about the relationship between brain and
behavior given that the changes detected at the neurophysiological
level do not correspond with any observable changes in behavior at
the psychological level? The same question will now be tackled with
respect to philosophical issues concerning the inferences that this
and present study can make about the neurological mechanisms
that support different forms of decision making.

The virtue of neuroscience is that it allows us to gain access to
processes that were once inaccessible to psychologists. The ratio-
nal usually follows along the lines of: If brain region X is active,
then cognitive process Y will be active. For this rational to work,
there also has to be an assumption that the causal arrow goes in
the direction of brain to behavior. Detractors of this position can
make the argument that there is a lack of functional specificity of
regions in the brain which undermines any strong inferences that
can be made from neuroimaging data to behavioral measures (Pol-
drack, 2006). As a case in point, while Peterson et al. (2011) and
Hajcak et al.’s (2007) are not neuroimaging studies, nevertheless,
their critical findings concern differences neurophysiologically but
not behaviorally. So what can be inferred from such findings?
Given that the logical of many neuropsychology studies involves
detecting a change in the pattern of activation in certain brain
regions and then inferring cognitive processes from observable
changes in behavioral measures, it is perhaps even more prob-
lematic to make inferences about the association between brain
regions and cognitive processes when the differences lie only in
neurophysiological data.

Also, if, like many psychologists and neuroscientists, materi-
alism (in which ever flavor is adopted) is the favored position,
because if behavior is reducible to regions in the brain, then one is
interested in discovering the etiology of human behavior by exam-
ining the processes in the brain. The rational here follows along the
lines of: If my study manipulates cognitive process Y, then given
what I know from work conducted in the neurosciences, brain
region X should be activated. So long as neurophysiological and
behavioral data converge, there are no problems in developing an
explanatory account of a cognitive process based on the patterns
of data at both level. The problem that is posed here is deciding
what the appropriate level of explanation for prediction-based and
choice-based decision making given that behavioral data imply one
type of account, and neurophysiological data suggest an alterna-
tive account. As a case in point, the findings from Peterson et al.
(2011) and Hajcak et al.’s (2007) studies pose this problem. The
experimental manipulations in both studies were designed to pit
two cognitive processes (i.e., choice and prediction) against each
other. While the behavioral data from both studies implies a sin-
gle mechanism that supports Choice-based and Prediction-based
decisions through the generation of prediction errors, the neu-
rophysiological data suggests there might be different underlying
mechanisms that correspond to the cognitive processes.

Where as the issues discussed above concern problems in
interpreting neurophysiological and behavioral data, a more

general issue is that there may well be limitations in extrapolating
from simple tasks to more complex task in designed to simulate
real world situations (Osman, 2010b). The issue comes down to
scalability. The argument concerning the practice of transform-
ing higher-level cognitive behaviors observed in the real world
to detectable lower-level neurobiological phenomena takes many
forms (Bickle, 2006, 2007; Craver, 2007; Sullivan, 2009); though
for simplicity this discussion will focus on two: Internal and Exter-
nal validity. External validity refers to the correspondence between
results implying a causal relationship between variables in a labo-
ratory to variables of the same kind existing outside of it (Guala,
2003). Elegant simple choice tasks used in neuropsychological
research may not be sufficient tools for studying complex behav-
iors if they cannot adequately explain or predict complex behavior
in the real world. Internal validity refers to the success of an
experimental result that establishes a causal relationship between
variables found to operate in the context of a laboratory. If there is
not a general convergence of reductive practices in neuropsycho-
logical experiments in establishing causal relationships between
high level behaviors and cellular/molecular processes, then men-
tal functions are ultimately not reducible to cellular/molecular
processes.

To a large extent, pragmatic factors (i.e., the investigative aims
of the researcher) determine which type of validity is prioritized
when developing an experiment (Sullivan, 2009). But, pragmatism
does not necessarily lead to any unity in the way in which phenom-
ena (e.g., Prediction-based vs. Choice-based decision making) are
examined in a cognitive psychology laboratory or an EEG labo-
ratory. However, philosophers such as Craver (2007) would argue
that the same mechanism (decision making) is being examined
in at different levels in neuroscientific and cognitive science cir-
cles. There is a: (a) specialized level in the nature (e.g., neural
activity) of the components of the mechanism are being exam-
ined (intralevel) – and (b) a more expansive level in which the
interventions are made in order to examine the function of the
components of the mechanism (interlevel). Unity is achieved
when researchers refer to and try and integrate findings from
both intralevel and interlevel experiments. By the same token, the
behavioral differences found presently between Prediction-based
and Choice-based decision making, and the differences in neural
activity between the two reported in Hajcak et al.’s (2007) and
Peterson et al.’s (2011), could be viewed as examples of findings
from studies at intralevel and interlevel. However, the convergence
of general findings at the different levels still creates a prob-
lem, because there are more still differences in the methodologies
between the present study and the aforementioned EEG studies,
and so this still compromises the possibility of drawing broad
conclusions that the differences between prediction and choice
essentially is based on volitional control.

CONCLUSION
The resent study used a DDM task to investigate the accuracy
of cue-outcome knowledge when learning in dynamic environ-
ment was Prediction-based or Choice-based. In addition, the
influence of reward on both was examined. To this end, the evi-
dence suggests that Choice-based decision making leads to more
accurate cue-outcome knowledge than Prediction-based learning.

Frontiers in Neuroscience | Decision Neuroscience March 2012 | Volume 6 | Article 35 | 10

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Osman Reward in dynamic decision making

However, the inclusion of reward adversely effected decision mak-
ing during learning and at test. The type of DDM task included
in the present study is cognitively more demanding than the typ-
ical choice tasks used in neuropsychological studies examining
reward learning. The present article argues that the processing
of rewards places an additional burden on cognitive resources
that are already stretched when performing DDM tasks. The
competition for resources leads to general decrements in deci-
sion making performance as compared to when no rewards are
present. Though the general findings from this study are compat-
ible with recent evidence from the neuropsychological domain,
large differences in methodology prevent any strong conclusions
being drawn with respect to supporting the claim that differences
between prediction and choice are based on the level of volitional

control. A number of philosophical arguments are considered with
respect to generalizing evidence from neuropsychology to psy-
chology and vice versa, in particular the inferential fallacies that
are made, and the pragmatic constrains on the way studies are
conducted.
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