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Investigation into the neural and computational bases of decision-making has proceeded
in two parallel but distinct streams. Perceptual decision-making (PDM) is concerned with
how observers detect, discriminate, and categorize noisy sensory information. Economic
decision-making (EDM) explores how options are selected on the basis of their rein-
forcement history. Traditionally, the sub-fields of PDM and EDM have employed different
paradigms, proposed different mechanistic models, explored different brain regions, dis-
agreed about whether decisions approach optimality. Nevertheless, we argue that there
is a common framework for understanding decisions made in both tasks, under which
an agent has to combine sensory information (what is the stimulus) with value informa-
tion (what is it worth). We review computational models of the decision process typically
used in PDM, based around the idea that decisions involve a serial integration of evidence,
and assess their applicability to decisions between good and gambles. Subsequently, we
consider the contribution of three key brain regions – the parietal cortex, the basal gan-
glia, and the orbitofrontal cortex (OFC) – to perceptual and EDM, with a focus on the
mechanisms by which sensory and reward information are integrated during choice. We
find that although the parietal cortex is often implicated in the integration of sensory evi-
dence, there is evidence for its role in encoding the expected value of a decision. Similarly,
although much research has emphasized the role of the striatum and OFC in value-guided
choices, they may play an important role in categorization of perceptual information. In
conclusion, we consider how findings from the two fields might be brought together, in
order to move toward a general framework for understanding decision-making in humans
and other primates.
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INTRODUCTION
Over the past 10 years, there has been a resurgence of interest
in the neural and computational mechanisms by which humans
and other primates make decisions under uncertainty. This work
has bridged multiple levels of description, with some researchers
focusing on the contributions of individual neurons to decision-
making, and others trying to map entire brain circuits for volun-
tary choice. Computational accounts have ranged from biophys-
ically plausible neural network models to large-scale simulations
in which the behavior of millions of neurons is captured in a
single variable. Correspondingly, the techniques involved have
included those focused on both local neuronal circuits, such as
single-cell electrophysiology or microstimulation and global brain
systems, such as functional neuroimaging, lesion studies, and
pharmacological manipulations.

Curiously however, this research program has largely been car-
ried out in two distinct but parallel streams. One stream, which
is sometimes called “perceptual decision-making (PDM),” grew
out of classical psychophysics, and is concerned with how humans
choose an appropriate action during the detection, discrimination,
or categorization of sensory information. The other stream, which
we refer to as “economic decision-making (EDM),” has asked how

humans choose among different options on the basis of their asso-
ciated reinforcement history. To date, we would argue, researchers
in either stream have been surprisingly reluctant to import con-
cepts or approaches from the other. Instead, researchers interested
in perceptual and economic choices have tended to use different
classes of computational model, focused on distinct neural circuits,
and have arrived at different conclusions about whether humans
make good choices or not.

However, we would argue that an understanding of the com-
putational neurobiology of voluntary choice would benefit from
increased cross-fertilization between the literatures concerned
with perceptual and economic decisions. It might be worth con-
sidering, for example, that all perceptual decisions are ultimately
motivated by reward (or the avoidance of loss) whereas all eco-
nomic decisions require perceptual appraisal of the alternatives
on offer. Moreover, there is a common structure to virtually all
decision-making tasks employed across the literature: an agent
is required to identify one or more stimuli in a given sensory
modality (what is it?), and then to select a response which will
maximize the probability of positive feedback or reward (what is
it worth?). In what follows, we will argue that despite the differ-
ences of approach between the two streams, one can conceive of
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the problem they seek to understand under one general conceptual
framework, in which decisions are sensorimotor acts that depend
on the integration of sensory evidence with information about
reward value.

In this review, we summarize the work of computational,
behavioral, and cognitive neuroscientists who have reached across
the divide between the sub-fields of perceptual and EDM. Some
researchers have considered, for example, how reward might influ-
ence sensory discrimination (Feng et al., 2009; Rorie et al., 2010;
Serences and Saproo, 2010; Summerfield and Koechlin, 2010; Weil
et al., 2010; Mulder et al., 2012), or how process models used to
describe perceptual decisions might be applied in the economic
domain (Basten et al., 2010; Philiastides et al., 2010; Hare et al.,
2011b; Krajbich and Rangel, 2011; Krajbich et al., 2011; Hunt
et al., 2012). In doing so, we emphasize a number of issues which
we believe to be of key interest for researchers concerned with
decision-making. In particular, we review work that has asked
how perceptual decisions are biased by economic information,
for example where the response options may have asymmetric
costs and benefits. We also consider the mechanisms by which
rewards (or informative feedback) might drive learning about sen-
sorimotor acts. These considerations prompt a discussion about
where in the primate brain information about the likely identity
of a stimulus and its likely reinforcement value are combined. In
conclusion, we aim to move toward a more general framework
for understanding the neurobiology of decision-making, drawing
upon approaches from the sub-fields of both perceptual and EDM.

PERCEPTUAL AND ECONOMIC DECISION-MAKING:
CONVERGENCE AND DIVERGENCE
It is beyond the scope of the current article to provide a compre-
hensive overview of the literatures concerned with perceptual and
economic choice, and we refer the reader instead to a number of
excellent summaries published in recent years (Gold and Shadlen,
2007; Heekeren et al., 2008; Kable and Glimcher, 2009; Rangel
and Hare, 2010; Rushworth et al., 2011). Rather, here we aim to
highlight the similarities and differences between the methods and
approaches in the two fields.

SOURCES OF UNCERTAINTY
Perceptual decision-making is concerned with the mechanisms by
which observers categorize sensory signals, and as such, tasks typ-
ically require observers to classify weak or noisy sensory informa-
tion. For example, one influential paradigm called the “random-
dot kinetogram” or RDK task (Britten et al., 1993) requires
observers to classify the net direction of motion of a cloud of
randomly moving dots. However, whilst the sensory information
in these tasks is ambiguous, the reinforcement contingencies (i.e.,
which action leads to reward, given the identity of the stimulus)
are usually clear and over-learned. Thus, it is the identity of the
stimulus that is uncertain, not the value of its associated action.
By contrast, EDM tasks tend to employ stimuli that are percep-
tually unambiguous, often in the visual domain. For example, in
classic “multi-armed bandit” tasks, agents usually view two easily
discriminable shapes or symbols, each associated with a distinct
reward statistics (Sutton and Barto, 1998; Daw et al., 2006). How-
ever, whilst perceptual uncertainty on these tasks is negligible, the

task is challenging because the reinforcement value associated with
the two options may drift or jump unpredictably across the experi-
ment (Behrens et al., 2007; Summerfield et al., 2011), or in different
situations, because the agent has to choose between two or more
assets whose value (learned prior to the experiment) is roughly
comparable (Kable and Glimcher, 2007; Plassmann et al., 2007),
and the value representations are themselves noisy. Thus, relative
value of each stimulus and/or its associated action is uncertain,
but its identity is known to the agent.

COMPUTATIONAL MODELS
Because uncertainty in PDM tasks is owing to the identity of the
stimulus itself, these experiments often take place in the “profi-
cient” stage of task performance, where the response-reward con-
tingencies have been either unambiguously instructed or learned
through extensive training. Thus, the computational models that
have been used to characterize performance have focused on the
choice period itself, rather than on any reinforcement learning that
occurs following feedback. One class of model that has attracted
a great deal of recent interest is premised on the idea that choices
depend on a serial sampling mechanism, in which evidence about
the identity of the stimulus is collected and integrated until a
criterial level of certainty is reached (Wald and Wolfowitz, 1948;
Bogacz et al., 2006; Ratcliff and McKoon, 2008). Many variants
of this model have been proposed (see Serial Sampling Models of
PDM below), but they share a common advantage, namely, the
ability to predict both choices and choice latencies (i.e., reaction
times) in judgment tasks. A major theme of research into PDM
is thus to understand the mental chronometry (i.e., the changing
information processing over time) of the choice process.

Two main classes of computational model have informed the
literature on EDM. One very successful class of model, that
draws upon a rich literature from learning theory in experimental
psychology (Rescorla and Wagner, 1972) and machine learning
(Sutton and Barto, 1998), describes the mechanisms by which
the value of stimuli or actions is learned (reinforcement learn-
ing or RL models). This model proposes that these values are
updated according to how surprising an outcome is (a “predic-
tion error”) scaled by a further parameter that controls the rate
of learning. Models of the choice process in this field have tended
to describe the weighting that agents give to different magnitudes
or probabilities of reward. The other successful account, called
Prospect Theory has been applied to decisions where the proba-
bilistic information about the choice is not learned by feedback but
explicitly instructed. Prospect Theory can account for proposed
violations of rational economic behavior, including preference
reversals, risk aversion, and susceptibility to framing effects, via
appeal to non-linear weighting functions mapping objective prob-
abilities and magnitudes of reward to their subjective, internal
counterparts (Kahneman and Tversky, 1979). However, Prospect
Theory describes human economic behavior without providing
a normative framework for understanding choice, and offers no
account of the processes that underpin decision-making. Simi-
larly, in most reinforcement learning tasks, choices are typically
modeled by assuming that agents simply choose the most valu-
able option (a “greedy” policy), or choose according to a sigmoidal
“softmax” function that privileges the most valuable option whilst
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permitting some stochasticity. Below, we argue that the near-
absence of process models in EDM is a major limitation to the
current state of the field, and that the application of serial sam-
pling models to economic choices may represent a fruitful avenue
for future research.

OPTIMALITY
A related concern in both the fields of PDM and EDM is whether
humans make good decisions or not. In EDM, the descriptive
account offered by Prospect Theory catalogs the heuristics and
biases that characterize human economic decisions, arriving at the
conclusion that humans often make poor and irrational choices.
In one classic example, it was shown that faced with an equiv-
alent alternative, humans will favor the option to save 400/600
people from a fictitious disease, but will reject an offer to allow
200/600 people to fall ill, despite the mathematical equivalence of
the two prospects (Tversky and Kahneman, 1981). Other examples
abound in the behavioral economic literature (Kahneman et al.,
1982). This contrasts sharply, however, with the approach taken in
psychophysical investigations of perceptual choice, where a strong
emphasis has been placed on the optimality of detection and cat-
egorization judgments. For example, humans integrate evidence
from different sources or modalities according to its reliability,
exactly as a statistically ideal observer should (Ashby and Gott,
1988; Ernst and Banks, 2002; Kording and Wolpert, 2004). Once
again, however, the notion that agents are optimal for perceptual
choice and suboptimal for economic choices may reflect a bias
in the approach or emphasis of researchers in the two sub-fields,
rather than a fundamental difference in the relevant computa-
tional mechanisms. For example, agents may approximate optimal
behavior in multi-armed bandit problems (Behrens et al., 2007);
on the other hand, sensory detection thresholds may typically be
set too high, leading to overly conservative or poorly adjusted
detection judgments (Maloney, 1991). Below, we consider the
possibility that agents appear to be closer to optimal for percep-
tual choices mainly because we have a clearer notion of what is
begin optimized in psychophysical judgment tasks (see Decision
Optimality in PDM and EDM).

NEURAL CIRCUITS
Researchers concerned with PDM and EDM share the goal of iden-
tifying a final common pathway for decisions, that is, a critical stage
at which all decision-relevant information has been integrated,and
options can be compared in a “common neural currency.” Nev-
ertheless, researchers in the two fields have tended to pin their
hopes on very different neural circuits. In PDM, where simple,
over-learned sensorimotor tasks are a ubiquitous tool, the focus
has been on dorsal stream cortical regions that receive inputs
from the sensory cortices, but which contain at least some neu-
rons which code information in the frame of reference of the
response. For example, researchers using RDK stimuli in conjunc-
tion with a saccadic response have focused on a lateral parietal
area that receives input from motion-sensitive extrastriate area
MT, but which contains neurons coding for spatial targets of an
eye movement (Roitman and Shadlen, 2002; Bennur and Gold,
2011). In other work, recordings have been made from frontal
cortical zones with similar properties (Kim and Shadlen, 1999;

de Lafuente and Romo, 2006). By contrast, in EDM, researchers
have focused on structures such as the dopaminergic midbrain or
orbitofrontal cortex (OFC), where neurons respond directly to the
reinforcing properties of food or money (Schultz, 1986; Critchley
and Rolls, 1996; O’Doherty et al., 2001), and on the structures such
as the striatum or anterior cortex, where neuronal responses scale
with reward prediction errors (Schultz et al., 1997; Matsumoto
et al., 2007). These predilections might seem a natural reflection
of the different sources of uncertainty typically manipulated in
PDM and EDM tasks (about the identity of the stimulus, presum-
ably determined in cortical circuits; and about the value of the
stimulus, presumably determined in subcortical and limbic cir-
cuits and interconnected structures). However, there may also be
strong reasons to suspect the involvement of cortical regions, such
as the parietal cortex, in representing the expected value of a choice
(Sugrue et al., 2004), as well as evidence that the OFC and BG play
an important role in discrimination and categorization judgments
even in the absence of explicit reward (Eacott and Gaffan, 1991;
Ashby et al., 2010). Below, we review this evidence, with a view to
providing an integrated account of the neural systems underlying
decision-making in primates.

In summary, thus, researchers interested in perceptual and eco-
nomic choices have made different assumptions, used different
approaches, focused on different models and neural circuits, and,
not surprisingly, drawn different conclusions. However, we can
conceive of the decisions made in both perceptual and economic
choice tasks under a common framework – the agent must (i)
disambiguate one or more stimuli, and (ii) estimate their worth.
Whilst we know much from the PDM and EDM literatures about
the neural and computational mechanisms underlying these two
processes separately, we know very little about how perceptual and
reward information is integrated in the primate brain. In other
words, we have as yet no general understanding of the mechanisms
by which primates make decisions.

COMPUTATIONAL APPROACHES
A renewed interest in the computational mechanisms underly-
ing decision-making has enriched the field in recent years. In this
section, we focus on the sequential sampling framework, the most
prominent computational theory in PDM. Crucially, however, we
also point to successful applications of serial sampling models
in accounting for economic choices, and argue that such models
may be promising candidates for inclusion in a unified theory of
choice. We start this section with a general introduction on sequen-
tial sampling models (SSMs) of PDM, and motivate their use in
theorizing value-guided behavior. We continue our discussion by
contemplating computational accounts of how decision-relevant
information is fed into the decision process. Finally, we attempt
to provide a mechanistic overview of the decision process with
regards to optimality.

ORIGINS OF THE SEQUENTIAL SAMPLING FRAMEWORK
Two prominent frameworks have been proposed to account for
the psychology of PDM: signal detection theory (SDT; Green and
Swets, 1966) and SSMs (Laming, 1968; Ratcliff, 1978; Vickers,
1979). While SDT assumes that a decision is settled on the basis
of a single sample of information, SSMs suggest that multiple
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samples of evidence are integrated across time up to a critical
level of certainty. Because SSMs are dynamic, they have predictive
power unavailable to static SDT accounts, allowing us to model not
only choice behavior but also the full time-course of the deliber-
ation process. Theoretical research in the field has explored these
models’ relation to statistically optimal inference (Bogacz et al.,
2006; Bogacz, 2007), and used both behavioral and neural record-
ings to validate and compare between models (Ratcliff et al., 2007;
Kiani et al., 2008; Ditterich, 2010; Tsetsos et al., 2011). On the
contrary, in EDM the focus has not been placed on developing
explanatory mechanisms of the deliberative process but on ad hoc,
descriptive modifications of the normative theory (Von Neumann
and Morgenstern, 1944) in order to account for choice biases and
apparently paradoxical behavior (Kahneman and Tversky, 1984;
Gilovich et al., 2002). The absence of process models in EDM
stands in sharp contrast with the state-of-the-art in PDM and
poses a serious challenge for the development of a unified theory
of choice. However, the recent development of dynamical models
of preference formation, which build upon the tradition of SSMS,
promises to establish a theoretical link between PDM and EDM
(Busemeyer and Townsend, 1993; Usher and McClelland, 2004;
Johnson and Busemeyer, 2005; Otter et al., 2008). We next provide
an overview of serial sampling models of PDM and subsequently
motivate their use in EDM.

Serial sampling models of PDM
In mathematical statistics, the optimal solution to the problem
of disambiguating two competing hypotheses given a series of
noisy information is provided by the sequential probability ratio
test (Wald, 1947; Gold and Shadlen, 2001). For a fixed error rate,
SPRT uses the minimum possible amount of evidence in order to
generate a categorical decision (Wald and Wolfowitz, 1948). This
is achieved by updating at each sampling step the log likelihood
ratio of the evidence given the two alternative hypotheses, until
it exceeds a pre-defined threshold, at which point the process is
terminated and a decision occurs favoring the hypothesis with the
larger likelihood. This simple, optimal process explains fundamen-
tal aspects of human choices, such as the speed-accuracy trade-off
(SAT), whereby higher decision thresholds, and thus more pro-
longed sampling, leads to more accurate choices (Johnson, 1939).
However, although the SPRT has proved able to capture many
aspects of human binary choices, it assumes that the observer has
perfect prior knowledge of the distributions of evidence. Thus,
psychological models of PDM have attempted to approximate the
sequential sampling process in more psychologically plausible and
computationally feasible ways.

Two different broad classes of SSM of PDM have been proposed
in the literature. The first class encompasses accumulator or race
models (Figure 1A) that assume the independent integration of
pieces of sensory evidence toward a common response criterion,
analogous to a race among athletes running on independent tracks
(Vickers, 1979; Townsend and Ashby, 1983; Brown and Heathcote,
2008). This mechanism contrasts with that of the diffusion model
(Figure 1B), in which the net difference in evidence favoring either
option is accumulated (Laming, 1968; Ratcliff, 1978; Ratcliff and
McKoon, 2008). Thus, we can differentiate among PDM mod-
els according to whether the input to the decision process is an

absolute or a relative signal (see Decision Input). A third class
of PDM models has also emerged, building on mechanisms of
existing mathematical models but also on principles of neural
computation, such as the leaky competing accumulator model or
LCA (Usher and McClelland, 2001) and the Wang model (Wang,
2002; Figure 1C). These models share with the race framework
the idea that the absolute evidence for each alternative is inte-
grated. However, similar to the diffusion, they induce competition
among the alternative hypotheses in the form of lateral inhibition
at the response level (see Decision Processes and their Relation to
Optimality).

Serial sampling models of EDM
Most PDM tasks require the observer to categorize noisy evidence
presented in series. Serial sampling thus provides a natural mech-
anism for optimizing decisions, by averaging out the noise-driven
fluctuations over time and steadily enhancing the signal-to-noise
ratio. In EDM tasks, however, stimuli tend to be static and per-
ceptually unambiguous. What benefit might be conferred by serial
sampling in EDM tasks, and what might be accumulated? In EDM
tasks, uncertainty is derived from variability in internal informa-
tion about the expected value of each option. A growing consensus
indicates that dedicating more processing time to an economic
choice confers similar benefits as in PDM tasks, as if the partici-
pants were “accumulating” internal information about economic
value, rather than averaging over external noise. For example,
subjective values may be sampled stochastically from long-term
memory, allowing a subjective value representation to be actively
constructed on the basis of past experience (Sigman and Dehaene,
2005; Milosavljevic et al., 2010). These samples could be defined
either with respect to the immediate context (i.e., how good is
an option compared to the other alternatives), or in relation to
memory contents (how good is an option relative to other similar
options encountered in the past; Stewart et al., 2006). Whether
this covert sampling process is governed by similar principles and
mechanisms to the mental process that underlies PDM remains an
open question.

One important model, called Decision Field Theory (DFT; Buse-
meyer and Townsend, 1993; Johnson and Busemeyer, 2005) argues
that sampling of competing options is biased in part by expected
reward, so that more valuable sources are sampled more frequently.
In DFT, different attributes of a percept or good are sampled in
turn according to where attention is oriented, such the decision
variable (DV) corresponds to the attention-weighted sum of the
sampled information. Attention might be oriented stochastically,
or directed preferentially to a subset of the information, such as
the most valuable option. DFT is able to explain preference rever-
sals in economic behavior, such as the Allais paradox (Johnson
and Busemeyer, 2005), and contextual effects in multi-attribute
choice (Roe et al., 2001). A related account, Decision by Sampling
(DbS), proposes that utilities are constructed afresh through sam-
pling attribute values from both the immediate context and the
long-term memory, and considering the rank of the target value
within the current set of samples (Stewart et al., 2006). By assum-
ing that the contents of memory reflect the real world distribution
of decision-relevant quantities, DbS explains a range of biases
such as aversion to losses, overestimation of small probabilities
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FIGURE 1 | Computational architecture (middle panels) and

representative activation trajectories (right panels) of the race (A),

diffusion (B), and LCA (C) models in a motion discrimination task (left

panels). Middle panels: black lines with arrowheads represent excitatory
connections, and red lines terminating in filled circles correspond to inhibitory
connections. Gray circles represent units encoding left (L) and right (R)
responses or their difference (R-L). Blue “tears” stand for activation leakage.
Right panels: representative activation over time (x -axis) in L (gray) and R

(black) units, or a unit encoding their difference of activation (black, part B
only). Bounds on activation level, at which a choice is initiated, are indicated
by the dashed line signaled with lowercase letter a (or – a, part B only).
Vertical cyan line, estimated reaction time for the representative trial. In the
race model, the two options race independently toward a common upper
decision boundary. In the diffusion model, choice is determined by which
boundary is first reached (upper or lower). In the LCA model, the two options
compete against each other toward a common response criterion.

and underestimation of large probabilities, and hyperbolic tem-
poral discounting. These models contrast with more descriptive
accounts such as Prospect Theory (Kahneman and Tversky, 1979),
that simply assume that these principles are primitives of decision
behavior, rather than explaining how they occur in a plausible
computational framework.

SSM summary
The serial sampling approach has been applied with success to
PDM tasks where evidence is noisy and sequential. One might
argue that this approach is tailored to the serial nature of the
PDM tasks. However, the recent success of SSMs to explain clas-
sic puzzles and paradoxes in EDM suggests that they may offer a
domain-general mechanism by which uncertainty can be reduced
in decision-making, irrespective of whether that uncertainty arises
from the sensory or value representation. In the next subsection

we discuss what information might serve as input to the decision
process, and we then overview computational accounts of how this
process might work.

DECISION INPUT
In the PDM literature a major controversy is whether decisions are
settled on the basis of the relative or the absolute amount of the
accumulated evidence. Race models (Figure 1A), which assume
independence among the accumulated tallies of evidence, offer
prima facie neurobiological plausibility, and have the virtue of
being easy to extend to decisions between more than two alter-
natives (Bogacz et al., 2007; Furman and Wang, 2008; Tsetsos
et al., 2011). By contrast, accounts based on the SPRT, such as
the diffusion model (Figure 1B), offer closer approximations to
statistically optimal choice behavior, and are also supported by
neurophysiological evidence (see Orbitofrontal Cortex below).
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Paradoxically, the same question has provoked a major debate
in the field of behavioral economics over the last 60 years, but with
converse claims about optimality. There, expected utility theory,
the cornerstone of theories of rational choice, argues that utilities
are derived in absolute terms, independent of the context, whereas
relativist theories appear to provide a better empirical descrip-
tion of human choice behavior (see Vlaev et al., 2011 for a review).
Early psychological theories proposed that the normative expected
utility is modified in several ways during choice. For example,
Prospect Theory assumes that values are calculated with respect to
a reference point, or status quo, and introduces non-linearities to
value and probability functions. Crucially however, these theories
conserve the notion that the value of an option is independent
of other available options (Kahneman and Tversky, 1979; Keeney
and Raiffa, 1993). By contrast, relative theories of decision-making
propose that option values are computed afresh in the context of
each decision (Tversky and Simonson, 1993; Parducci and Fabre,
1995; Gonzalez-Vallejo, 2002). Thus, the value assigned to an
option reflects not only its properties but also those of the other
available alternatives. On the empirical front, context effects such
as preference reversal (Simonson, 1989; Roe et al., 2001; John-
son and Busemeyer, 2005) and prospect relativity (Stewart et al.,
2003) have supported the notion of relative valuation. Consider
for example a hypothetical choice between two laptop computers;
one is expensive and very light (A) while the other one is heavy and
cheaper (B). Paradoxically, an initial tendency to favor B can be
reversed by the appearance of a third option, (C) which is similar
in weight to A but more expensive. This asymmetric dominance
effect (Huber et al., 1982; Simonson, 1989) is representative of a
class of contextual preference reversals that pose a serious chal-
lenge to independent valuation theories, which would predict that
the valuation of A and B is a function of their attribute values only
and that irrelevant alternatives, like option C, should not affect
this valuation. This question of whether decision-relevant brain
regions encode value in an absolute (“menu-invariant”) or relative
framework is a major concern in neuroscientific studies of EDM
(see Orbitofrontal Cortex and Absolute Stimulus Value below).

Therefore, a central question for both literatures is whether the
input to the decision process is an absolute or a relative quan-
tity. Interestingly, debate has focused on how the information is
transformed before being processed by the decision mechanism,
under the assumption that all available information is utilized. An
alternative approach posits that the sampling process is biased by
selective attention or endogenous factors (e.g., preference states).
In what follows we review the literature, drawing attention to the
distinction between unbiased and biased sampling of information.

Biased sampling
In most PDM tasks, choices are typically made on the basis of a
single stimulus feature or dimension, and observers are instructed
to hold fixation steady (but see Siegel et al., 2008 for an exception).
It is thus implicitly assumed that fluctuations in visual attention
are controlled for, such that information is sampled evenly for all
alternatives. However, choices are known to be biased by atten-
tional factors, such as where observers place their gaze (Russo and
Rosen, 1975; Russo and Leclerc, 1994; Payne, 1976; Glockner and
Herbold, 2011). This phenomenon was investigated recently on

an economic decision task, in which eye movements were mea-
sured whilst hungry observers chosen between two food items
displayed visually on either side of the screen (Krajbich et al.,
2011). The authors compared the ability of variants of the drift-
diffusion model (DDM) to account for choices and choice latencies
made in the experiment, reporting that the winning model was
one in which the gain of accumulation was modulated multi-
plicatively by the value of the currently fixated item. A follow-up
study demonstrated comparable effects for trinary choices, using a
multi-alternative version of the DDM (Krajbich and Rangel, 2011).
The modeling aspects of the work demonstrate the applicability
of serial sampling models to EDM, and highlight the importance
of recognizing the capacity-limited nature of the choice process,
something which has been notably absent particularly from PDM
models, which prefer to emphasize that decisions are made in a
strictly optimal fashion (Bogacz et al., 2006; Bogacz, 2007; van
Ravenzwaaij et al., 2012). The specific interpretation of the data
offered by the authors, that economic preferences depend on a sto-
chastic sampling of the (external) world via attention, is intriguing,
but another possibility is that the sampling process itself is biased
by the observers’ preferences (Svenson and Benthorn, 1992; Jonas
et al., 2001; Doll et al., 2011; Le Mens and Denrell, 2011). For
example if the decision maker is leaning toward one alternative,
she might sample from it more often, seeking for confirmatory evi-
dence. This would be consistent with the more general observation
that agents seek to confirm, rather than to disconfirm, hypothe-
ses that they already entertain, and would suggest that momentary
preference states could strongly bias the input to the evidence accu-
mulation process in a bidirectional fashion (Holyoak and Simon,
1999; Shimojo et al., 2003).

In EDM problems whose structure is more complex, with each
option varying along several dimensions, the selective allocation of
resources to a subset of the choice information is more imperative.
Empirical research in this area has attempted to track the regulari-
ties in information acquisition and identify what strategies people
might use in order to compare options (e.g., within-option evalu-
ation across all attributes, or across options evaluation attribute by
attribute; Russo and Rosen, 1975; Dhar et al., 2000; Fellows, 2006;
Glockner and Herbold, 2011). One possibility, attributable to DFT
(Roe et al., 2001) is that people switch their attentional focus back
and forth from attribute to attribute (Tversky, 1972). The subjec-
tive attribute values for each option are accumulated across time
and a decision is initiated once a threshold is breached. This pro-
posal is appealing as it provides a generic framework of integration
across attributes, even if these attributes are incommensurate and
thus cannot be represented in a “common currency.” For example,
DFT has applied a similar attention switching approach to address
how people’s decisions about sensory information are biased by
rewards, under the assumption that observers switch their atten-
tion between sensory evidence and information about the likely
payoffs (Diederich and Busemeyer, 2006; see Decision Optimality
in PDM and EDM). Finally, another plausible case where biased
sampling might be critical is when people are faced with multi-
alternative problems either in PDM or EDM tasks (Krajbich and
Rangel, 2011). These problems might be broken down into a mul-
titude of binary comparisons which can be based on the similarity
of the items in the decision space (Russo and Rosen, 1975). Further
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empirical work is needed to identify how people allocate their
attention when confronted with a large number of options, for
example when dining at a restaurant with an extensive menu.

DECISION PROCESSES AND THEIR RELATION TO OPTIMALITY
We describe above the current debate regarding what information
consists the input to the decision process. In this subsection we
consider how this process works, namely what mechanisms are in
play for transforming input into decisions. A central question in
both PDM and EDM is whether the decision mechanism reflects an
optimized process. However, while in PDM optimality is defined
in statistical terms (optimization of SAT) in EDM it is defined as
the maximization of the reward rate. In the next section we review
recent attempts that examine how these two different notions of
optimality are combined when making decision; and what aspects
of the choice mechanisms are responsible for suboptimal biases.
We next turn to another important aspect of the decision mech-
anism, temporal weighting, and its relation to choice optimality.
Temporal weighting is often considered to be a suboptimal prop-
erty leading to order effects and biases. We argue that in special
cases overweighting early or late information might result in better
decisions. Finally we consider response inhibition as being respon-
sible for conflict in difficult choice problems, and we discuss the
computational and descriptive merits of this mechanism.

Decision optimality in PDM and EDM
Humans’ choice behavior obeys a simple principle by which the
advantages of speed and accuracy are traded off against one
another (Johnson, 1939; Wickelgren, 1977; Bogacz et al., 2010).
Within the sequentially sampling framework this SAT is controlled
by a single parameter, the height of the decision bound (Laming,
1968); a low bound implies that decisions will be fast but overly
influenced by noise fluctuations while a high bound produces
accurate but delayed responses (Figure 2A). For fixed rewards
rates there exists a specific response criterion value that optimizes
this trade-off, and most PDM work has focused on identifying
this bound or testing whether human behavior respects it (Bogacz
et al., 2006). However, in both the real world and the lab, responses
are often associated with unstable, asymmetric rewards, raising the
question of how people maximize simultaneously their accuracy
and the reward rate. For example, a radiographer examining med-
ical scans might have to impose alternately a liberal or conservative
criterion for identifying an atypicality, such as an incipient tumor,
depending on the relative costs and benefits of missing the first
signs of disease, or inconveniencing the patient with more tests
(Diederich and Busemeyer, 2006; Feng et al., 2009; Summerfield
and Koechlin, 2010; Gao et al., 2011). In such cases, participants
exhibit a bias toward the high-reward option (Figures 2B,C), but
the computational mechanisms by which this occurs is a topic of
ongoing research. One possibility is that a higher reward changes
the way the sensory evidence for the high-reward hypothesis is
perceived, by increasing the drift rate (i.e., slope) of the corre-
sponding accumulator (Figure 2B). An alternative hypothesis is
that the way the input is processed remains unaffected but it is the
starting point of the accumulation for the high-reward hypothesis
that is shifted closer to the decision bound (Figure 2C). Specific
behavioral patterns observed in humans and other primates, such

FIGURE 2 | Representative activation trajectories from the diffusion

model with noise (black traces) and without noise (dashed red traces).

Decision bounds are signaled by the dashed line marked with lowercase
letter a or −a). In part (A), the speed-accuracy trade-off is determined by
the height of the response boundary with lower boundaries resulting in
faster and less accurate decisions (and vice versa for higher boundaries).
(B,C) Choice can be biased by the presence of asymmetric rewards. This is
achieved either by increasing the rate of evidence accumulation (high drift
trajectory in (B) for the high-reward option or by increasing its initial
activation, prior to the onset of accumulation (C). Vertical cyan lines show
RTs for representative trials under conditions where speed or accuracy are
emphasized (A) or where decisions are biased by reward (B,C).

as fast errors when the high-reward option was incorrect, could be
captured only by the latter hypothesis (Summerfield and Koechlin,
2010; Gao et al., 2011). This shift of the starting point, prior to the
onset of evidence, is independent of the decision bound and the
SAT of the observer. Other accounts emphasize that human par-
ticipants try to find a compromise between the perceived benefits
of accuracy and overt reward (Bohil and Maddox, 2003; Simen
et al., 2009).

Thus, although PDM tasks have emphasized the optimiza-
tion of accuracy, observers are swayed by factors that change
the underlying reward rate (Summerfield and Koechlin, 2010;
Gao et al., 2011). In EDM, optimality has tended to refer to the
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maximization of reward within the timeframe of the experiment, a
tradition owing to neoclassical economics, where the agent is fully
informed about all available alternatives and her behavior is ratio-
nal when it maximizes reward rate. Failure to maximize rewards
is typically considered to be irrational. In real world, however,
information about the environment is not provided but must be
actively sampled, leading to a trade-off between exploiting cur-
rent resources and exploring new alternatives. Thus, although any
organism that optimizes its fitness should jointly maximize reward
and information, traditional interpretation of laboratory findings
failed to consider optimality in this broader perspective. Although
phenomena such as hyperbolic delay-discounting (Loewenstein
and Thaler, 1989) and loss-aversion (Tversky and Kahneman,
1991) are trademarks of irrational behavior within behavioral eco-
nomics, there may be circumstances in the wild where it is optimal
to demonstrate such behavior – for example, losses can have fatal
consequences for an organism, whereas gains may be short-lived.
These concerns have been addressed in EDM by the research pro-
gram of ecological rationality highlighting that choice optimality
should not be assessed independently of the environmental struc-
ture and the way it influences the tradeoff between information
and reward acquisition (Oaksford and Chater, 1996; Gigerenzer
and Selten, 2001; Shanks et al., 2002; Behrens et al., 2007).

Temporal weighting
When people make decisions on the basis of sequential evidence,
they often weigh information differentially according to its posi-
tion in the sequence. For example, a judge may arrive at a hasty
conclusion on the basis of the first witness (primacy bias), or a
voter may judge a politician on his or her most recent debating
performance (recency bias). Such order effects have been encoun-
tered in both PDM (Usher and McClelland, 2001; Kiani et al., 2008)
and EDM tasks (Hogarth and Einhorn, 1992; Newell et al., 2009).
The PDM literature has focused on mechanistic models where the
temporal weighting of information emerges from the dynamics
of evidence integration (Usher and McClelland, 2001). On the
other hand, in EDM order effects have been captured mostly in a
descriptive fashion, with different weights being assigned to differ-
ent pieces of information (Anderson, 1981; Hogarth and Einhorn,
1992). It is important for decisions theorists to clarify what aspects
of the generic (domain-independent) decision mechanism gener-
ate order effects. An appealing possibility has been put forward
in biologically inspired models of PDM. There, depending on dif-
ferent value parameters the decision mechanism can overweight
(i.e., attractor dynamics) or downweight early information (i.e.,
leaky integration, see also (Bogacz et al., 2007) for an extensive
discussion).

What is the merit of weighing information differently at differ-
ent times? Applying stronger weights to early information (attrac-
tor dynamics and primacy) is a useful mechanism that prevents
endless procrastination when the information is weak or ambiva-
lent (see also next subsection). In these cases the choice will be
determined by random noise fluctuations early on, ensuring that
the decision maker does not engage in excessively prolonged delib-
eration (Usher and McClelland, 2001). On the other hand, over-
weighting late information (recency) is useful when the sensory
environment is volatile, because forgetting early information and

emphasizing on the latest status of the world results in faster adap-
tation to changes that occur to the underlying statistical structure
of the environment. Thus, whereas biased temporal weighting
of information (either perceptual or economical) might appear
suboptimal from the pure perspective of accuracy maximization,
it confers benefits on reward-maximization if the decisions are
challenging or if the environment is unstable.

Conflict and response competition
Choosing among two alternatives that are similar in terms of value
or sensory evidence will result in response conflict, longer decision
times (Laming, 1968; Ratcliff, 1978; Usher and McClelland, 2001),
and less confidence associated with the final decision (Vickers,
1979; Pleskac and Busemeyer, 2010). The prolongation of delib-
eration in such cases might occur because the decision bound is
raised to allow a clear winner to emerge among closely matched
alternatives. However, adjusting the bound to the decision input
requires either a priori knowledge about the difficulty of decision
problem or the online adjustment of the criterion as the input
unfolds. A more plausible way to produce longer decision times
for more difficult problems is by introducing competition between
the alternatives. In PDM this competition can be incorporated in
two ways: in the diffusion model it takes place at the input level
(section Decision Input and Figure 1B), while in accumulator
models where the decision inputs are assumed to be indepen-
dent (like in race models, Figure 1A), competitive interactions
are achieved via lateral inhibition at the response level (Usher
and McClelland, 2001; Wang, 2002), as illustrated in Figure 2C.
Response inhibition in PDM brings some computational advan-
tages in multi-alternative problems, where the activation in favor
of poor options will be early suppressed and the decision process
will continue evaluating only the strong or informative options
(Bogacz et al., 2007). Additionally, response inhibition results in
attractor dynamics (discussed in Temporal Weighting) which can
facilitate resolving difficult decisions problems within reasonable
time (Wang, 2002; Bogacz et al., 2007).

In EDM, conflict is captured in relative valuation models of
preference by assuming that the input is transformed according to
the value of its rivals (similar to the PDM diffusion, see also Biased
Sampling). Typically the actual integration of the transformed
input does not involve competitive interactions among alterna-
tives. One exception is encountered in SSM of multi-attribute
decision-making, like DFT (Roe et al., 2001) and LCA for value-
based choice (Usher and McClelland, 2004), where it is assumed
that different alternatives compete via response inhibition. It
is noteworthy that in DFT a type of local, distance-dependent
response inhibition is the key mechanism that explains a series of
preference reversal effects (e.g., the asymmetric dominance effect,
see Decision Input for an example). According to this account,
alternatives that are similar to each other in the decision space
compete more strongly while dissimilar alternatives do not inter-
act with each other [see also (Tsetsos et al., 2010) and (Hotaling
et al., 2010) for discussion of this mechanism].

COMPUTATIONAL MODELS: SUMMARY
PDM models assume that choice is the result of the accumula-
tion of sequentially sampled sensory evidence. By contrast, EDM
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models have sought to define deviations from rationality but said
little about the underlying mental process. The advent of process
models of economic preference that capitalize on the serial sam-
pling property of PDM, promises to provide an improved and
mechanistic understanding of EDM (see Serial sampling mod-
els of EDM). In the preceding section we provided an overview
of currently debated mechanistic aspects of PDM and EDM.
We first reviewed how information is transformed before being
processed by the decision mechanism (relative vs. absolute input,
see Decision Input), highlighting also the possibility that these
quantities might be actively sampled, subject to exogenous (e.g.,
visual attention) or endogenous (e.g., preference states) biases.
We then discussed how the relevant input is transformed into a
decision (see Decision Processes and their Relation to Optimal-
ity). In parallel to describing specific computational elements of
choice (e.g., temporal weighting, response competition) we also
discussed their relation to optimality. Although traditional views
state that EDM is suboptimal while PDM optimal, we propose
that this contradiction may have arisen because each literature has
defined optimality in a different way.

NEURAL APPROACHES
A number of different brain regions have been proposed as key
components of the circuit underlying simple decisions about
visual stimuli. In the primate, three of the clearest candidates are (i)
dorsal stream cortical circuits, such as the parietal and premotor
cortices, (ii) the striatum and related circuitry of the basal gan-
glia, and (iii) the medial and lateral OFC. Other regions, such as
the anterior cingulate cortex (ACC) and prefrontal cortex (PFC)
clearly play important roles in decision-making too; for exam-
ple, the ACC may be important for learning the value of actions
(Rushworth and Behrens, 2008), and the PFC for integrating infor-
mation over multiple time scales in the service of action selection
(Koechlin and Summerfield, 2007). However, in the interests of
brevity, we do not consider these in detail, referring the reader
instead to other reviews that have considered these regions more
comprehensively (Summerfield and Koechlin, 2009; Rushworth
et al., 2011). Below, we consider the role of parietal/premotor,
basal ganglia, and orbitofrontal structures in the decision process,
with a specific focus on how each region might contribute to the
processing and integration of perception and reward.

PARIETAL CORTEX
The parietal cortex has long been implicated in the mechanisms
by which sensation is converted to action, within initial debates
concerning whether parietal neurons encode spatial information
in the frame of reference of the stimulus or the response (Colby
and Goldberg, 1999). Patients with unilateral lesions of the parietal
cortex fail to orient saccades or other actions to the contralesional
side of space (Robertson and Halligan, 1999), and bilateral dam-
age provokes an inability to combine information from multiple
spatial locations, for example to permit accurate judgments of
similarity or dissimilarity (Friedman-Hill et al., 1995). Prominent
theories of the parietal cortex suggest that it combines information
across visual features (Treisman and Gelade, 1980) to generate a
map of the relative salience of different locations of external space
(Gottlieb, 2007). However, the parietal cortex also seems to be

important for combining information across time. This is clear
from neuropsychological studies, in which recently encoded spa-
tial information is rapidly lost (Husain et al., 2001), and from
neuroimaging studies which highlight increased in parietal blood-
oxygen (BOLD) signals during visual short-term memory main-
tenance, for example in studies requiring detection of change in
sequential arrays (Xu and Chun, 2006). Integration of information
across a cluttered visual scene is facilitated by repeated sampling of
the scene with saccadic eye movements, whose generation depend
on dedicated regions of the parietal cortex (Gottlieb and Balan,
2010).

Parietal cortex and evidence integration
However, it is single-cell research conducted over the past ten years
that has generated the most prominent evidence in favor of the
idea that parietal neurons act as cortical integrators, and that has
emphasized a role in PDM. During viewing of noisy stimulus such
as an RDK,neurons in lateral intraparietal area LIP whose receptive
fields (RFs) overlap with one of two saccadic choice targets exhibit
firing rates that accelerate with a gain proportional to level of
evidence (motion coherence) in the stimulus favoring a response
at that target (Roitman and Shadlen, 2002). Initial investigations
were at pains to demonstrate that activity in these cells was not a
mere reflection of the sensory input, or the motor response (Gold
and Shadlen, 2007). For example, the signal grows during constant
stimulation, persists after the stimulus has been extinguished, and
deviates from zero even when there is no motion signal in the stim-
ulus (0% coherence trials). Similarly, the parietal activity does not
predict the motor parameters of the eventual response (e.g., sac-
cadic latency, velocity, or precision), suggesting that it is not a mere
motor preparatory signal. However, more recent work in which
sensory and oculomotor codes are dissociated demonstrated has
demonstrated that LIP responses are more heterogenous, with
some neurons responding to the motion direction, and others
to the saccadic choice (Bennur and Gold, 2011). Nevertheless, at
least some parietal neurons encode decision-relevant information
it the frame of reference of the selected action.

One interpretation of this stereotyped increase in firing rate
during perceptual judgment is that unlike earlier visual regions
that encode the instantaneous sensory information, parietal neu-
rons represent information that is integrated across a tempo-
ral window extending for many hundreds of milliseconds. The
integration of serial samples of evidence is critical to optimiz-
ing a decision process, because repeated sampling of a noisy
stimulus enhances the precision of the estimated information
in well-described mathematical fashion. It is this intuition that
informs serial sampling models of the decision process described
above, and prompted the suggestion that parietal neurons might
implement the accumulation-to-bound process that is known to
describe decisions and decision latencies on a wide variety of per-
ceptual choice tasks. Indeed, after an initial burst, the firing rates
of neurons whose RFs overlap with the alternative, disfavored
target tend to decrease with a gain proportional to the motion
coherence, seemingly favoring one class of serial sampling models
over all others – the DDM, in which accumulators are coupled by
mutual inhibition, such that the DV represents a scalar quantity
corresponding to the relative evidence in favor of either choice (see
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Serial Sampling Models of PDM; see though (Huk and Shadlen,
2005) p.3027 for a discussion on the possibility of attractor models
(Wang, 2002 to better explain LIP responses). Moreover, response-
locked analyses show that the parietal activity drops off sharply
about 70 ms prior to saccade initiation, at a criterial firing rate
that does not depend on the level of information in the stimulus.
This satisfies another important prediction of most serial sampling
models, namely that a decision is made when a criterial evidence
level is reached. This work has generated a great deal of excitement,
and prompted the claim that the parietal cortex plays a key role
in the decision processes that underlie sensorimotor control, by
integrating evidence up to a choice threshold, at which point an
appropriate response is generated (Gold and Shadlen, 2007).

Cortico-cortical plasticity and reward-guided learning
One question that has received less attention, however, is how
the reinforcement value of the options is integrated into the DV
during perceptual choice tasks such as motion discrimination.
In the experiments described above, the monkey is working to
receive a liquid reward following each correct saccadic movement,
but recordings are typically made during proficient performance
of the task, where the monkey has been trained on many thou-
sands of trials over which the reward contingencies have remained
unchanged. Recall that most of the relevant parietal neurons
encode the information in the frame of reference of the choice
that will eventually be made, even when this is dissociated from the
sensory information in the stimulus. In other words, the strength
of synapses linking the visual and parietal cortical representations
must be adjusted during training to encode information about the
likely reinforcement value of each sensorimotor pairing. Recent
work has shown that the improvement in perceptual performance
on psychophysical tasks such as the random-dot kinetogram is
better explained by plastic changes in the parietal and prefrontal
regions than those in sensory cortex (Law and Gold, 2008; Kahnt
et al., 2011), and that the trajectory of learning is well-described
by a reinforcement learning scheme in which visuo-parietal con-
nection weights are gradually updated according to a prediction
error signal (Law and Gold, 2009). This leads to a steeper gain
of accumulation after repeated feedback-mediated learning, and
consequently, more sensitive perceptual judgments. However, it
remains unknown whether this prediction error is computed at
the cortex, or is dependent on processing of the subsequent reward
in subcortical regions (Kahnt et al., 2011). One study suggests
that during perceptual categorization of options that can change
unpredictably, requiring constant tracking of category statistics,
both cortical and subcortical mechanisms are employed. How-
ever, systems based in the striatum and medial PFC underlie
optimal decisions in stable environments, whereas the dorsolat-
eral PFC mediates decisions in fast-changing situations, where it
is useful to base decisions on recently buffered information (Sum-
merfield et al., 2011). In general, however, these mechanisms have
been explored in considerably less detail for perceptual than for
economic choices.

Parietal cortex and perceptual decisions biased by reward
Perceptual learning experiments chart the gradual improvement
to performance that comes with extensive training and feedback.

However, the costs and benefits associated with different types of
perceptual error can sometimes change rapidly and unpredictably,
on the basis of instructions or other contextual factors. Thus,
another line of research has attempted to characterize the neural
and computational mechanisms by which perceptual decisions
are biased by instructions or cues that signal the relative outcomes
associated with each response. As outlined above, serial sampling
models in which asymmetric rewards bias the starting point of the
accumulation process – an additive, a priori bias in favor of the
more valuable response – fit observers’ performance better than
models in which the bias influences accumulation rate in a mul-
tiplicative fashion (Whiteley and Sahani, 2008; Feng et al., 2009;
Pleger et al., 2009; Simen et al., 2009; Summerfield and Koech-
lin, 2010; Mulder et al., 2012). Correspondingly, there is evidence
from single-cell recordings that the responses of parietal neurons
reflect an outcome-related bias as an additive increase in firing
at or before the moment of stimulus onset (Platt and Glimcher,
1999; Rorie et al., 2010). This occurs during both challenging per-
ceptual discriminations, for example of the RDK stimulus (Rorie
et al., 2010), as well as during choices based on perceptually con-
spicuous information (Platt and Glimcher, 1999). Similar results
have also been observed in the premotor cortex. Consistent with
this finding, model-based fMRI studies have revealed that an addi-
tive reward-mediated bias is correlated with the BOLD signal in
the lateral parietal cortex during signal detection (Fleming et al.,
2010; Summerfield and Koechlin, 2010).

Relatedly, the responses of parietal neurons track the evolving
value of an option in n-armed bandit and other economic choice
tasks in which rewards are learned by feedback (Dorris and Glim-
cher, 2004; Sugrue et al., 2004, 2005). For example, LIP signals
during a value-based choice task are well-described by a proba-
bilistic choice model (akin to an RL model) that engages in a leaky
integration of information across recent trials, producing classi-
cal “matching” behavior typically observed in bandit and reversal
learning tasks (Sugrue et al., 2004). More recently, LIP neurons
have been observed to correlate both with the delay-discounted
value of an offer shortly after its onset, before coming to code for
a choice in the build-up to action (Louie and Glimcher, 2010).
These and other findings have led some authors to propose that
the signal-dependent build-up of activity observed during view-
ing of the RDK stimulus reflects a growing expectation that an
eye movement into the target field will be rewarded, an expecta-
tion that builds faster on high coherence trials, and is normalized
by the value of other options (Kable and Glimcher, 2009). Thus,
like brain regions classically implicated in economic choices (see
below), parietal signals can adapt rapidly to reflect the changing
expected value associated with a choice (Sugrue et al., 2005).

Parietal cortex: summary
There is good evidence, thus, that the parietal cortex is involved
in integrating sensory information during deliberation, and that
this integration occurs largely in the frame of reference of the
action. However, the relevant sensorimotor contingencies are
most likely learned via a reinforcement learning mechanism; and
parietal signals reflect the relative reward of different perceptual
alternatives, even when their value changes rapidly and unpre-
dictably. In other words, although much work has focused on the
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parietal contribution to integration of evidence in PDM, single-
cell responses there are strongly biased by the expected economic
value of the choice-relevant response, and reward-guided visuo-
motor learning rescales the responses of parietal neurons, leading
to faster accumulation for more practiced choices. In subsequent
sections, we contrast the involvement of the parietal cortex in the
decision process to that of other candidate structures, such as the
basal ganglia.

THE BASAL GANGLIA NUCLEI
The basal ganglia are a family of interconnected subcortical nuclei
that have been implicated in a complex array of overlapping cog-
nitive and motor behaviors. A detailed review of the functional
architecture of the basal ganglia is beyond the scope of this review;
we refer the reader to excellent accounts elsewhere (Alexander
and Crutcher, 1990; Chevalier and Deniau, 1990; Doll and Frank,
2009; Redgrave et al., 2011). However, we begin by highlighting
two architectural features of the basal ganglia that are of particular
relevance to our understanding of their contribution to decision-
making. Firstly, the striatum receives inputs from a number of
cortical regions, including those concerned with processing both
sensory and motor information, as well as receiving information
about reward from the ventral midbrain (Alexander and Crutcher,
1990). Moreover, its neurons show gradually accelerating firing
rates in response to a noisy RDK stimulus, “ramping” activity that
is similar in many respects to that observed at the cortex (Ding
and Gold, 2010). It is thus ideally placed to contribute to sensori-
motor integration and reward-guided learning during perceptual
choice tasks. Secondly, information passing through the basal gan-
glia is routed via one of two major conduits, known as the direct
and indirect pathway, that have opposing inhibitory and disin-
hibitory control over the thalamus and thus on subsequent cortical
motor structures such as the premotor area or superior colliculus.
Striatal inputs can thus lead to selective disinhibition of the rel-
evant motor area, a hallmark of any system engaged in efficient
selection of one action over two or more competing alternatives
(Chevalier and Deniau, 1990; Redgrave et al., 1999). Additionally,
neuropsychological evidence also attests to the importance of the
striatum in reward- and feedback-guided sensorimotor learning.
Caudate lesions impair the ability to learn new visuo-motor asso-
ciations from feedback (Packard et al., 1989), a phenomenon also
observed following degeneration of the nigro-striatal pathway in
Parkinson’s Disease (Ashby et al., 2003), whereas disconnection of
all visual cortical outputs except those to the striatum spares visuo-
motor discrimination (Eacott and Gaffan, 1991). In other words,
sensory input to the striatum seems to be both necessary and
sufficient for the learning mechanisms that lead to accurate per-
ceptual category judgments. Together, these considerations point
to the basal ganglia playing a key role in the mechanisms by which
actions are selected, on the basis of integrated sensory and reward
information.

Cortico-striatal plasticity and sensorimotor learning
Information from cortical integrators, such as those LIP neurons
that exhibit ramping activity during discrimination judgments
about randomly moving dots, is subsequently routed to the stria-
tum (Pare and Wurtz, 2001). A consensus holds that Hebbian

synaptic plasticity at the striatum depends on the presence of
phasic dopaminergic inputs arising in midbrain regions sensitive
to reinforcement (Wickens, 1993). Dopamine signaling from the
ascending nigro-striatal pathway thus gates cortico-striatal plas-
ticity, such that rewards occurring in a window lasting for a few
seconds after an action strengthen synapses linking sensory infor-
mation to the relevant action (Kerr and Wickens, 2001). The sign,
amplitude and timing of these dopaminergic inputs are tightly
correlated with those of hypothetical “prediction error” signals
that guide simulated reinforcement learning. Intriguingly, there
is evidence that both the presence and absence of dopamine
is functionally significant at the striatum. Increased dopamine
uptake at D1 receptors promotes potentiation of sensorimotor
responses that evoke positive outcomes, whereas decreased uptake
at a separate, D2-receptors mediated mechanism leads to reduced
sensorimotor efficacy where the relevant pairing is followed by a
punishment (Doll and Frank, 2009). Thus, patients with Parkin-
son’s disease, where DA signaling is chronically lowered, tend to
learn better from negative than positive outcomes, and may even
learn about punishment more effectively than controls (Frank
et al., 2004). These “go” and “no-go” signals may be routed to
the thalamus via separate direct and indirect pathways that exert
inhibitory and disinhibitory control over the thalamus respec-
tively (Frank, 2005). Thus, the architecture of the basal ganglia is
well disposed to allow learning about the value of responding (or
of inhibiting a response) in a given sensory context to proceed
in a supervised fashion, via integration with information about
unexpected reward from the ventral midbrain.

One consequence of enhanced responsiveness of cortico-
striatal synapses could be to effectively reduce the level of cortical
activity required to elicit a response in the striatum, and thus a
disinhibition of the relative output neurons in the cortex or supe-
rior colliculus. Cortico-striatal plasticity has thus been proposed
as a plausible neurobiological mechanism by which the decision
threshold (for example, the “bound” in the DDM) could be low-
ered in order to bias responding by reward (Ito and Doya, 2011),
or to adapt response times to optimize reward rate under differ-
ent conditions that emphasize speed or accuracy (Bogacz et al.,
2010), as discussed above. This account draws support from bio-
logically realistic network simulations of threshold modulation
in the random-dot motion task, in which dopamine-mediated
cortico-striatal plasticity determines the threshold level that must
be achieved for an all-or-none disinhibition of choice-appropriate
neurons in the superior colliculus mediating the required saccadic
response (Lo and Wang, 2006).

Cortico-striatal plasticity and decisions biased by reward
However, one caveat to this account is that adaptation of synap-
tic efficacy might not occur fast enough to mediate the rapid
switching between speed- and accuracy-based responding, or to
accommodate situations in which the rewards associated with two
perceptual alternative reverse rapidly, as is required by labora-
tory tasks (Furman and Wang, 2008). Nevertheless, dopaminergic
inputs might also act to bias action selection via direct exci-
tatory inputs to the striatum. For example, when choosing a
saccadic response conditioned on the spatial location of a tar-
get, the responses of striatal neurons reflect the integration of the
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action and its expected value (Hikosaka, 2007). Striatal signals
reflecting a bias toward a more valuable option can be seen even
in the period before stimulation begins, and thus are good can-
didate substrates for the offset in the accumulation of evidence
toward a more rewarded choice in serial decision models such as
the DDM (Lauwereyns et al., 2002; Ding and Hikosaka, 2007).
However, selective dopaminergic receptor blockade abolishes the
striatal responses with a corresponding effect on reaction times
(Nakamura and Hikosaka, 2006), suggesting that the influence
of reward on the choice process depends on direct inputs from
the dopaminergic system (but see Choi et al., 2005). In a similar
vein, the observed functional connectivity occurring when speed
is emphasized over accuracy might reflect a selecting boosting of
striatal activity by phasic input from cortical structures such as
the supplementary motor area, rather than slow plastic changes at
cortico-striatal synapses (Bogacz et al., 2010). In humans, support
for this view is offered by the finding that cortico-striatal func-
tional (Harsay et al., 2011) and structural (Forstmann et al., 2010)
connectivity both predict individual differences in the extent to
which a motivating stimulus enhances choice performance.

Response competition and action inhibition
Selectively lowering the threshold for one course of action (deci-
sion bound) is one candidate mechanism by which an economi-
cally favorable action might be privileged over other alternatives.
As described above in section “Conflict and Response Compe-
tition” above, however, another possibility is that active compe-
tition occurs between rival options coupled by local inhibitory
connections. This competition is proposed by several compu-
tational models of perceptual choice, including those that have
attempted to describe decisions among three or more options,
such as the Wang model (Wang, 2002; Wong and Wang, 2006),
the LCA model (Usher and McClelland, 2001), and the MSPRT
(Bogacz and Larsen, 2011). When choice alternatives conflict, an
ideal observer will prolong deliberation in order to increase the
chances that a single clear winner will emerge. Indeed, faced with
the choice between two highly valued options, humans deliberate
for longer than when choosing between a high- and a low-valued
option, apparently inhibiting the impulse to respond rapidly on
the basis of prior reinforcement (Ratcliff and Frank, 2012). At
least two models propose that this inhibition depends on compu-
tations occurring as information flows through the basal ganglia.
Bogacz and colleagues (Bogacz and Gurney, 2007; Bogacz and
Larsen, 2011) suggest that restraining responses according to the
cumulative evidence in favor of the alternatives might be one func-
tion of the indirect basal ganglia pathway, whereas Frank (Frank
et al., 2007; Doll and Frank, 2009) has convincingly argued that
this function is the province of a third, hyper-direct pathway
through the basal ganglia, which links the cortex to the basal gan-
glia output nuclei via the subthalamic nucleus (STN). For example,
patients undergoing disruptive deep-brain stimulation of the STN
will respond impulsively on choices between two highly valued
options, unlike healthy controls (Frank et al., 2007). Recent evi-
dence suggests that the STN may act to raise the decision threshold
under conditions of response competition by modulating activity
in the medial PFC (Cavanagh et al., 2011). This consistent with
a study implicating of the anterior cingulate cortex in threshold

modulation, during decisions about visual stimuli linked by fixed
transitional probabilities (Domenech and Dreher, 2010).

Basal ganglia: summary
There is thus compelling evidence that the basal ganglia con-
tribute to sensorimotor learning, via dopamine-gated changes in
cortico-striatal plasticity. Potentiated cortico-striatal connections
might be one mechanism by which an economically advantageous
alternative might be favored in a perceptual choice task such as
the RDK paradigm. Relatedly, basal ganglia structures such as
the STN might act to raise the decision threshold, particularly
in the immediate post-stimulus period, when several competing
responses simultaneously appear promising (Ratcliff and Frank,
2012). Finally, direct excitatory inputs from cortical or subcorti-
cal structures might provoke a pre-stimulus bias toward a more
rewarding option that is visible in baseline levels of activity in
striatal neurons, a factor that can account for the influence of
reward-mediated bias on reaction times in serial sampling models
such as the DDM. In the following section, we consider how we
might reconcile these findings with the suggestion that parietal
signals are also modulated by expected value during PDM (Sug-
rue et al., 2005), or that cortico-cortical plasticity is an important
substrate for sensorimotor learning (Balleine et al., 2009).

COMPARING THE CONTRIBUTIONS OF THE CORTEX AND BASAL
GANGLIA TO DECISION-MAKING
The work described in sections “Parietal Cortex” and “The Basal
Ganglia Nuclei” above suggests that both the parietal cortex and
the basal ganglia make an important contribution to the integra-
tion perceptual evidence about the identity of a stimulus with
information about its economic value. For example, (i) both pari-
etal and striatal neurons seem to act as integrators during noisy
perceptual decision tasks such as the RDK paradigm; (ii) cortico-
cortical and cortico-striatal plasticity both seem good candidates
for mediating reward-guided learning mechanisms during percep-
tual discrimination and categorization judgments, and (iii) biases
toward a more economically valuable option seem to be reflected in
an additive offset to pre-stimulus activity in both the parietal cor-
tex and striatum. How can we reconcile these two accounts? Might
it be that evolution has equipped primates with two mechanisms
for learning the value of sensorimotor acts, and if so, why?

Complementary control systems in the striatum and neocortex
According to classic accounts, cortical and subcortical regions con-
tribute to decisions over distinct timescales, with explicit action
planning about novel response contingencies occurring in the cor-
tex, before being consolidated to more phylogenetically ancient
subcortical circuits implicated in habit-based behaviors (Dickin-
son and Balleine, 2002). For example, one computational model
suggests that long-run average action values are “cached” in a
dorsolateral striatal territories, providing a stable but inflexible
representation of the value of actions that is immune to noise-
driven fluctuations in the value of different actions, in contrast
to more labile representations in the PFC (Daw et al., 2005).
According to this and many similar proposals, slow “model-free”
RL processes depend on the basal ganglia, whereas the neocor-
tex and hippocampus provide the agent with an explicit model
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of the world that can be used to control behavior in a cognitively
sophisticated, “model-based” fashion (Glascher et al., 2010).

However, experimental evidence suggests that the learning in
the basal ganglia can, in fact, occur quite rapidly. For exam-
ple, in neurophysiological recordings (Schultz et al., 1997) and
functional neuroimaging studies (O’Doherty et al., 2003), ventral
midbrain or striatal responses are found to track choice values
even when they change over just tens of trials. Although this
is slower than the moment-by-moment contextual control over
action selection demonstrably afforded by the dorsolateral PFC
in humans following explicit instructions (Koechlin et al., 2003),
it is much faster than the practice-driven cortico-cortical changes
observed in incremental perceptual learning studies. Correspond-
ingly, although both the cortex and the striatum are the targets
of ascending dopaminergic signals presumed to carry reward
prediction errors, only in the striatum does dopamine reuptake
occur rapidly (Cragg et al., 1997). By contrast, the neocortical
dopamine response to a single reward, such as a food pellet, can
still be detected many minutes later (Feenstra and Botterblom,
1996). This presumably allows striatal dopamine to reinforce
punctate sensorimotor events, rather than prolonged tasks or
episodes.

Thus, one possibility is that during perceptual discrimination
tasks, supervised, dopamine-gated reinforcement learning occurs
relatively rapidly at the striatum, allowing information about more
rewarding stimuli a greater opportunity of flowing through the
basal ganglia loops to drive motor output structures back in the
cortex. Simultaneously, cortico-cortical learning proceeds in an
unsupervised fashion, allowing sensory and motor representations
that are frequently reinforced and linked through the circuitry of
the basal ganglia to be associated via Hebbian principles. One way
of thinking about this is that if we wish to term the subcortical sys-
tem“habitual,”then this cortico-cortical system is“super-habitual”
(M. J. Frank, personal communication). This theory, proposed in
a number of guises over recent years (Houk and Wise, 1995; Ashby
et al., 2007) and incorporated into leading models of basal ganglia
function (Frank, 2005; Bogacz and Larsen, 2011) draws upon the
idea familiar from theories of memory that new associations are
consolidated to the cortex, providing complementary flexible and
stable control over behavior (Norman and O’Reilly, 2003). The
most compelling evidence in favor of this view comes from single-
cell recordings in the striatum and PFC during reversal learning,
which have revealed that responses in the caudate adapt earlier
than in the cortex – within as little as five trials of an unpre-
dicted switch (Pasupathy and Miller, 2005). Effective connectivity
analyses of fMRI data in humans performing a discrimination task
also suggest that the instantiation of connectivity between sensory
regions and the frontal cortex depends on the mediating influ-
ence of the basal ganglia (den Ouden et al., 2010). Finally, a recent
perceptual learning experiment demonstrated that while practice-
driven gain enhancements to the gain of encoding of the DV in
parietal cortex and ACC were predicted by an RL model, predic-
tion error signals generated by the model correlated with activity
in the ventral striatum (Kahnt et al., 2011). These latter studies
point to striatal prediction error signals as a ubiquitous mecha-
nism by which the cortex might learn slowly about appropriate
sensorimotor contingencies, irrespective of whether they lead to

explicit incentives (as in EDM) or merely informative feedback (as
in PDM).

One attractive feature of this account is that it explains one
dissociation (familiar from computational models) between how
slow-practice-driven changes, and fast, context-dependent biases
influence reward-guided choices. Perceptual learning experiments
have suggested that practice enhances the gain of the DV (increased
drift rate in serial sampling models), a phenomenon that is cap-
tured by a steeper slope of evidence accumulation in LIP (Law
and Gold, 2009) and reflected in the scaling of the BOLD signal in
corresponding regions (Kahnt et al., 2011) after extensive training
on discrimination tasks. This would be a natural consequence of
increased synaptic weights between sensory and higher cortical
regions, such as MT and LIP during discrimination of the RDK
stimulus, following a dopaminergic “teaching” signal from sub-
cortical regions. By contrast, when the value of a choice is biased
by a pre-stimulus cue or other local context, converging neural
and computational evidence suggests the offset to accumulation
tends to be additive, rather than multiplicative. In the context of
computational models of the decision process, this is represented
as a bias to the origin of the sampling process, which leads to more
fast errors but does not increase discrimination sensitivity (Ratcliff
and Rouder, 1998). This would be consistent with a fast, excita-
tory boosting of activity in parietal neurons, either by throughput
from the basal ganglia or via the modulatory influence of other
regions, such as the prefrontal or orbitofrontal cortices. However,
more work is required to confirm this distinction.

ORBITOFRONTAL CORTEX
Given the nature of the RDK task, it is hardly surprising that
researchers have focused on understanding activity in a network of
interconnected regions involved in motion perception and oculo-
motor control. However, whilst dorsal stream cortical sites might
be the recipients of information about visual motion, it is less clear
that they are involved in identifying and comparing complex visual
objects, such as the food items whose value we might want to judge
when shopping at the local supermarket (although see Toth and
Assad, 2002). Rather, complex visual objects tend to be processed
in ventral stream sites along the temporal lobe, from where infor-
mation is routed to limbic structures in the medial temporal lobe
and OFC (Price, 2007). Below, we discuss current understanding
of the OFC’s contribution to decision-making, and compare it to
the circuits described above.

Orbitofrontal cortex and absolute stimulus value
An influential theory has argued that the OFC is responsible for
encoding the value of sensory stimuli, and that it plays a direct
role in modulating voluntary choice on the basis of absolute (or
“menu-invariant”) stimulus values, via its interconnectivity with
the ventral striatum (Kable and Glimcher, 2009). This theory
has been bolstered by a wealth of imaging studies (O’Doherty
et al., 2001; Plassmann et al., 2007) and a smaller number of
highly influential single-cell recording studies (Padoa-Schioppa
and Assad, 2006, 2008; Kennerley et al., 2009) demonstrating that
neural signals in the OFC encode the subjective value of a prospect
or gamble. For example, in some well-discussed examples, it has
been shown that fMRI signals in the medial OFC scale with the
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monetary value that hungry participants are willing to pay for a
food item (Plassmann et al., 2007) or the subjective reward asso-
ciated with an erotic image (Prevost et al., 2010), and that cells
in the OFC track the combined and relative value of two liquid
rewards on offer (Padoa-Schioppa and Assad, 2006). Lesions stud-
ies in the non-human primate (Dias et al., 1997) and in human
neuropsychological patients (Fellows and Farah, 2003) have appar-
ently shown deficits of reward-guided learning, for example in
reversal learning tasks and also decision-making tasks (Fellows
and Farah, 2007).

Importantly, because OFC signals seem to be scaled by both the
probability and magnitude of the potential reward associated with
a choice (Knutson et al., 2005), in a fashion that is in turn mod-
ulated by a discount factor reflecting how far into the future the
reward will be received (Kable and Glimcher, 2007) and an incor-
porating other well-known behavioral biases such as a sharper
scaling for losses than gains (Tom et al., 2007), it has been argued
that the OFC encodes stimulus values in a“common currency”that
allows for comparison between assets whose value is in different
dimensions or domains. For example, such a mechanism could
be important for choosing between two courses of action, one
with a low probability of a high-reward, and the other with a high
probability of a low reward; or to compare consumer items that
may have incommensurate advantages and disadvantages, such as
a small house in a desirable neighborhood and a large house in
a less sought-after area. Once value information is represented
with a common metric, it can presumably be combined with an
appropriate action in the striatum, in much the same way as was
discussed above for simpler sensory information, such as evidence
about the direction of moving dots.

Orbitofrontal cortex and goal value
However compelling this account may be, a number of recent
results suggest that we might exercise caution in assuming that
the OFC simply houses a bank of cells responsible for learning the
value of stimuli. One important consideration is that the OFC may
not be functionally homogenous. For example, the anterior and
posterior OFC have been found to respond to the value of money
and erotic stimuli, respectively (Sescousse et al., 2010). Secondly,
the medial and lateral OFC differ sharply in their pattern of inter-
connectivity with the rest of the brain, and whilst it is the lateral
OFC that enjoys monosynaptic links with ventral stream areas, it
is the medial portion that projects to the ventral striatum (Haber
et al., 2006) and that tends to be activated in concert with sub-
jective value in fMRI studies of value-guided choice. Importantly,
careful lesion studies in primates have shown that although lesions
to the lateral OFC do incur a learning deficit, monkeys lacking the
medial OFC learn new values normally (Noonan et al., 2010; Wal-
ton et al., 2010, 2011). Moreover, the sensitivity of the medial OFC
BOLD signal to reward seems to depend on the parameters of the
task. For example, fMRI correlations with willingness-to-pay evap-
orate when the participant views food items, but makes a choice
that instructed by the computer (Plassmann et al., 2007). Simi-
larly, when the choices are made by another agent, the observer’s
medial OFC seems to track the values of that agent’s choice, even
when the observer has no direct stake in the game (Cooper et al.,
2010). These argue against a simple role in absolute stimulus value

encoding. Indeed, medial OFC BOLD signals (as well as a subset
of neuronal activity) seem to reflect the relative value of the option
that is chosen and that which is not (Boorman et al., 2009). For
example, when observers are responding according to the learned
value associated with a stream of visual stimuli, the medial OFC
signals are correlated not only to the relative value of the stimuli,
but with the relative BOLD signal in visual regions encoding these
stimuli (Philiastides et al., 2010). Moreover, monkeys with medial
OFC lesions provoke a subtle pattern of deficits in which choices
between two favored options are can be disrupted by the value
of a third, lower-valued option (Noonan et al., 2010). These find-
ings seem to point more toward a more active role in the choice
process itself, rather than an automatic valuation procedure that
feeds into a subsequent decision stage. Rushworth and colleagues
have argued thus that the medial OFC may be involved in compar-
ative decisions by focusing attention on the relevant dimensions of
a choice, in the pursuit of a long-term goal (Rushworth et al., 2011).
This account diverges from other views, in which the OFC learns
stimulus values in a “menu-invariant” fashion, uninfluenced by
the value of choice alternatives, and comparative choices involve
the more dorsal cortico-cortical and cortico-subcortico-cortical
circuits discussed above (Kable and Glimcher, 2009).

Further support for this view comes from a recent fMRI study
that builds upon work described above, in which participants were
free to make eye movements as they chose between food items, and
their choices were found to be described by a diffusion model in
which drift rates were multiplicatively scaled by the value of the
currently fixated option (Krajbich et al., 2010). In the fMRI scan-
ner, medial OFC and ventral striatal signals were found to correlate
positively with the value of an option that was currently cued for
fixation, and negatively with the value of the option that was not,
suggesting that these regions are either involved in orienting atten-
tion to relevant attributes in turn, or are downstream from such
regions (Lim et al., 2011). We might assume that one contribu-
tion of the parietal cortex is to orient attention in concert with
the cue, and indeed, BOLD signals were enhanced contralateral to
the cued side in this study. Intriguingly, neuropsychological evi-
dence has revealed that when patients with medial OFC damage
make decisions about stimuli based on multiple attributes, such
as choosing which apartment to rent, they use a suboptimal strat-
egy that involves comparing attribute values within rather than
between stimuli, as if they were unable to engage in an active
comparison process across attributes (Fellows, 2006).

Thus, as outlined above another way in which choices among
perceptual stimuli might be biased by economic information is
through preferred sampling of the favored option. This idea is cen-
tral to DFT, the first serious attempt to understand the influence
of reward on perceptual choice with a process model (Busemeyer
and Townsend, 1993). In primates, the evidence above supports
the view that this mechanism depends on the medial OFC. The
fact that this region is thought to be phylogenetically relatively
new (Hill et al., 2010) might relate to the fact that preferred
sampling of choice-relevant information is most useful when max-
imizing value over the long-term, for example in pursuit of a
complex goal. For example, focusing on the healthiness of a food
item might necessitate representation of an abstract, long-term
goal, such as losing weight, rather than allowing more immediate
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considerations, such as tastiness, to guide choice. Accordingly, sig-
nals in the medial OFC scale better with health value ratings when
healthiness is emphasized, as if the health dimension were sampled
more thoroughly in the comparison process (Hare et al., 2011a).

CAVEATS AND CONTROVERSIES
Much has been learned in recent years about how humans and
other primates make decisions. But much remains to be under-
stood. In this section, we point to some issues that remain
controversial, and outline suggestions for future research.

LINKING COMPUTATIONAL MODELS AND NEURAL ACTIVITY
In our view, key issue for future research will be to establish more
convincing links between the computational mechanisms pro-
posed by process models of learning and choice (e.g., the DDM)
and neural activity recorded during voluntary choice tasks. Steps
toward this goal have been made by the single-cell research in
LIP in conjunction with the RDK paradigm, in which neural
recordings have been used to arbitrate among competing serial
sampling models of choice, such as the DDM and the LCA (Beck
et al., 2008; Kiani et al., 2008; Churchland et al., 2011). Other
valuable contributions have been made by using more realistic
models to make predictions about patterns of observed behav-
ior in disease, under pharmacological manipulations or during
deep-brain stimulation (Doll and Frank, 2009). In this review, we
have highlighted some promising new theories proposed by oth-
ers, including the idea that cortico-striatal plasticity might control
the decision bound (Lo and Wang, 2006), or that dopaminergic
inputs might control baseline levels of excitability in the striatal
integrators as a means of modulating the origin of an evidence
accumulation process (Hikosaka, 2007). Similarly, the STN might
provide a separate means to inhibit responding on the basis of
response conflict among multiple alternatives (Frank et al., 2007),
or the medial OFC might bias the sampling of decision-relevant
information and thereby modulate the gain of accumulation of
competing options (Lim et al., 2011).

However, attempts to use serial sampling models to make pre-
dictions about large-scale changes in BOLD activity across the
cortex have relied on more speculative assumptions. For exam-
ple, competing assumptions about whether evidence integration
regions should scale positively (Basten et al., 2010) or negatively
(Heekeren et al., 2004) with the uncertainty in the choice process
have led to very different regions being implicated in this function
in fMRI studies. Several recent authors have proposed that under
the assumptions of the DDM, fMRI signals should correlate pos-
itively with uncertainty, because in free-response tasks the total
integrated neuronal activity up to the choice will be greater when
sensory signals are weak or ambiguous (Basten et al., 2010; Liu
and Pleskac, 2011); indeed, parietal BOLD signals do behave in
this way. But this assumption has not been subjected to rigorous
investigation. For example, this view makes the strong prediction
that parietal BOLD signals should vary inversely with uncertainty
when viewing time is limited by the experimenter. This hypothesis
remains to be tested.

A more conceptual issue concerns proposals that neural
activity provides insights into the content of decision-relevant
“representations” – for example, that medial OFC or parietal

neurons encode the “expected value” of a choice. Applying pre-
dictions from a biophysically plausible neural network model of
perceptual choice (Wong and Wang, 2006) to an economic task
in which observers integrated the probability and magnitude of
reward, Hunt and colleagues observed oscillatory neural activity
with putative sources in the parietal and medial orbitofrontal cor-
tices whose amplitude scaled with offer and choice value (Hunt
et al., 2012). However, as they note, under the assumptions of
their model the stronger oscillations for higher-valued stimuli was
driven by more frequent network transitions in the face of these
stimuli, not because a larger fraction of neurons were active in
the relevant regions. A major goal for the future should thus be to
establish a consensus about the predictions that successful compu-
tational models of choice make about neural activity, and subject
these to systematic empirical investigation.

WHERE IN THE BRAIN ARE DECISIONS MADE?
Decisions about percepts or assets involve an irrevocable commit-
ment to one course of action over its competitors. One question
that researchers interested in both PDM and EDM are anxious
to address, thus, is where in the brain’s decision circuitry this
commitment occurs. At this point it might be worth pausing to
ask what properties, exactly, one might expect neurons in such
a region to exhibit. One possibility is that neurons involved in
making definitive choices might show activity that scales with the
choice-relevant evidence, up to a decision threshold, such as puta-
tive integrator cells in the parietal cortex (Roitman and Shadlen,
2002) and caudate (Ding and Gold, 2010). However, it is not clear
that the rapid fall-off in activity that occurs about 70 ms prior
to a saccade is a signal that exerts direct control over a down-
stream region. Rather, it seems more likely that during evidence
accumulation, the activity levels in the integrators are being con-
stantly read out in downstream decision regions – and ultimately,
in motor structures such as the superior colliculus – that show
more dichotomous responses consistent with a commitment to
choice (Sparks, 2002). Parietal integrators seem to equivocate, rep-
resenting the decision-relevant evidence in a graded fashion that
varies incrementally in a noise- and signal-driven manner, and
is incommensurate with a winner-takes-all decision mechanism.
The silencing of these cells immediately before a response might
thus reflect corollary feedback that resets the integrators in time
for a subsequent decision.

An alternative view is that neurons in regions that make deci-
sions begin by encoding the value of an offer early on in a trial,
but later come to encode the choice that the animal will eventu-
ally make. Above, we referred to neurons in the parietal cortex
and medial OFC that exhibit this property (Padoa-Schioppa and
Assad, 2006; Louie and Glimcher, 2010; Hunt et al., 2012). How-
ever, without a precise understanding of how information flows
through the brain during perceptual or economic choices, it is
hard to draw strong conclusions from this finding. For example,
information about a stimulus and its corresponding action in the
cortex might be sent to subcortical circuits, linked with value infor-
mation, and fed back to the cortex in a manner that predicts the
choice that will be made shortly after. Alternatively, other recur-
rent mechanisms may take place which allow the best option to
be uncovered via a combination of prior information and sensory
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evidence (Friston, 2005). Continued careful investigation of firing
properties of neurons in key decision regions, as well as measure-
ment of their relative timing, will be required to elucidate precisely
how an offer is turned into a choice.

CONCLUSION
In conclusion, we have tried to highlight research that has com-
bined those techniques and concepts classically employed in the
literatures concerned with perceptual and EDM. We have reviewed
computational models of the decision process, mostly inspired by
visual psychophysics, and described research that has attempted
to apply these models to economic choices. We then focused

on three brain regions – the parietal cortex, basal ganglia, and
OFC – that have been implicated in decision-making by single-cell,
neuroimaging, and other work, and detailed our current under-
standing of their relative contributions to voluntary choice. We
have attempted to link key model parameters from these mod-
els – such as the decision bound, baseline evidence levels, response
conflict, or biased sampling – to candidate neural substrates.
Finally, we hope that this review will prompt researchers con-
cerned with economic choices to seek new inspiration from the
process models offered by PDM, and those concerned with per-
ceptual decision-making to look beyond elementary sensorimotor
circuits to understand voluntary choices.
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