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Recent studies have begun to elucidate the neural correlates of evidence accumula-
tion in perceptual decision making, but few of them have used a combined modeling-
electrophysiological approach to studying evidence accumulation. We introduce a multi-
variate approach to EEG analysis with which we can perform a comprehensive search
for the neural correlate of dynamics predicted by accumulator models. We show that the
dynamics of evidence accumulation are most strongly correlated with ramping of oscilla-
tory power in the 4–9 Hz theta band over the course of a trial, although it also correlates
with oscillatory power in other frequency bands. The rate of power decrease in the theta
band correlates with individual differences in the parameters of drift diffusion models fitted
to individuals’ behavioral data.
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1. INTRODUCTION
Every day we make thousands of decisions, and modeling work
has attempted to describe the nature of these decision processes
(e.g., Ratcliff, 1978; Usher and McClelland, 2001). With the advent
of cognitive neuroscience there has been a growing interest in
its neural correlates. Here we introduce a novel approach to
studying decision dynamics with human electrophysiology. By
using model-predicted decision dynamics as regressors, we per-
form a comprehensive search for oscillatory features of elec-
troencephalographic (EEG) activity that could reflect evidence
accumulation.

There exist two main approaches to analyzing EEG data: look-
ing at the raw potential, averaged time-locked to an event of
interest (“event-related potentials”) or looking at periodic activity
or oscillations (not necessarily averaged). The presence of oscil-
lations in EEG measurements indicates that neurons in a region
have more synchronized synaptic and membrane activity (Wang,
2010). Through being synchronized, oscillations become strong
enough in power to be detectable on the scalp. Synchronization
is thought to allow groups of neurons to communicate with each
other (Womelsdorf et al., 2007; Fries, 2009). Synchronized activity
is crucial for plasticity and learning in the brain (STDP; Wang,
2010). The brain also appears to use oscillations in conjunction
with spikes to encode specific information. Certain phases of oscil-
lations often show an increased level of spiking relative to their
baseline (Fries et al., 2007). A clear example of how the brain
makes use of that oscillation-related change in excitability is phase
coding, in which the phase of an oscillation at which a neuron
fires encodes the spatial location of an animal (O’Keefe and Recce,
1993; Fries et al., 2007).

Without attempting to review the oscillations literature in full,
we point out here a few relevant findings of this literature (see

Buzsáki, 2006; Wang, 2010, for a more complete review). Prob-
ably the most-discussed oscillations are those in the 28–90 Hz
gamma band, which have been studied extensively in the context
of attention tasks. A prominent finding is that attention increases
the amplitude of occipital 28–90 Hz gamma oscillations (e.g., Fries
et al., 2007). Yet some studies have shown that oscillations of lower
frequency are also important for attention and perception. For
example Busch and VanRullen (2010) found that stimuli are better
perceived at certain phases of the on-going 4–9 Hz theta oscilla-
tion than at other phases. This has led to the idea that so-called
sustained attention is not uniformly sustained, but rather has an
oscillating quality. Moreover, it suggests that in addition to hip-
pocampal theta oscillations, which have primarily been associated
with memory (e.g.,Kahana et al.,2001) and spatial navigation (e.g.,
O’Keefe and Burgess, 1999), there exist cortical theta oscillations
that are relevant to, among other things, perception.

In fact, it has also been suggested that cortical theta oscillations
are crucial for the coordination of multiple sources of activity at
decision points (Womelsdorf et al., 2010), and for combining vari-
ous pieces of evidence (van Vugt et al., in press). Theta oscillations
have also been found to covary with decision certainty (Jacobs
et al., 2006) and prediction errors in decision making (Cavanagh
et al., 2010). This suggests that theta oscillations could have a fun-
damental role in perceptual decision making and specifically in
the accumulation of evidence. Nevertheless, other sources suggest
that evidence accumulation is correlated with higher frequency
oscillations in the beta and gamma bands (e.g., Donner et al.,
2009).

The aim of this study is therefore to use a data-driven approach
to find oscillatory correlates of evidence accumulation. To be able
to do so, we need precise predictions for the dynamics of evi-
dence accumulation provided by mathematical models. Probably
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the most-discussed model for evidence accumulation is the Drift
Diffusion Model (DDM; Ratcliff, 1978). This model posits that to
make a decision, a person accumulates information until it reaches
a threshold, at which time they make the response that corresponds
to that threshold. Their response times (RTs) can be predicted by
adding a fixed non-decision time to the time it takes to reach the
threshold to account for sensory and motor latencies. The speed
with which one accumulates evidence on average is referred to
as the “drift rate” of the accumulation process. The height of the
decision threshold reflects response caution. This model, and vari-
ants of it, is capable of explaining complete RT distributions, not
just average RTs like most other models of cognition (Ratcliff and
Smith, 2004).

In this study we examine what frequency bands of brain oscilla-
tions best reflect evidence accumulation as predicted by accumula-
tor models. We also test whether the dynamics of the thus-selected
oscillations covary with individual differences in DDM parameters
estimated on the basis of participants’ behavioral data. This work
not only furthers our understanding of human decision making,
but may eventually allow us to distinguish different implementa-
tions of the DDM that cannot be disentangled based on behavioral
data alone (Ditterich, 2010).

2. MATERIALS AND METHODS
2.1. TASK
Participants performed a perceptual decision making task in which
they judged the direction of motion (left or right) of a display of
randomly moving dots of which a percentage moved to the left or
the right. These random dot kinematograms were similar to those
used in a series of psychophysical and decision making exper-
iments with monkeys as participants (e.g., Britten et al., 1992;
Shadlen and Newsome, 2001; Gold and Shadlen, 2003). Stim-
uli consisted of an aperture of ∼7.6 cm diameter viewed from
∼100 cm (∼4˚ visual angle) in which white dots (2× 2 pixels)
moved on a black background. A subset of dots moved coherently
either to the left or to the right on each trial, whereas the remainder
of dots jumped randomly from frame to frame. Motion coherence
was defined as the percentage of coherently moving dots. Dot den-
sity was 17 dots/square degree, selected such that individual dots
could not easily be tracked. Tracking was further discouraged by
using three interleaved sets of dots of equal size, each of which
was used in every three successive video frames. Therefore each set
of dots returned only after three frames, with a random displace-
ment. The speed of the dots was∼7˚/s. Participants indicated their
responses by pressing the “Z” key with their left index finger for
left-ward motion or the “M” key with their right index finger for
right-ward motion.

Participants also performed a control task in which they did
not need to integrate motion evidence (non-integration condi-
tion). In this condition, each trial started with entirely random
(0% coherence) dot-motion, followed by an arrow indicating the
direction to which a participant should respond. The arrow onset
time was calibrated (based on RTs in previous blocks of the non-
integration condition) such that the dot-motion-viewing times in
these trials mirrored the response time distribution of the dots
trials. This was done by taking the RT distributions from previ-
ous blocks, and subtracting from that the average time required

for pressing a button in response to a stimulus (“signal detection
trials”).

The experiment presentation code was written in PsychTool-
box (Brainard, 1997). Dots were presented with PsychToolbox
extensions written by J. I. Gold1.

2.2. PARTICIPANTS
Twenty-three participants (12 female; 21 right-handed; mean age
25; range 18–38) participated in our experiment in exchange
for payment. The experiment was approved by the Institutional
Review Board of Princeton University. Participants engaged in
three separate hour-long training sessions in which they became
familiar with the task. At the beginning of these training sessions,
performance on a psychometric block (with fixed viewing times of
1000 ms and five different coherence levels) was used to determine
the coherences at which they performed at ∼70 and 90% correct.
These coherence levels were used for the remainder of the session,
and the coherences from the last training session were used for the
two EEG sessions.

2.3. RECORDING METHODS
We recorded EEG data from 128 channels using Neuroscan EEG
caps with a Sensorium EPA-6 amplifier. Data were digitized at
1000 Hz and band-pass filtered from 0.02 to 300 Hz; all imped-
ances <30 kΩ. Acquisition was controlled by Cogniscan soft-
ware. All data were referenced to the left mastoid and off-line
rereferenced to an average reference after automatic bad-channel
removal (Friederici et al., 2000; Hestvik et al., 2007). We wavelet-
transformed the data in six standard frequency bands (delta
(2–4 Hz), theta (4–9 Hz), alpha (9–14 Hz), beta (14–28 Hz), low
gamma (28–48 Hz), and high gamma (48–90 Hz); van Vugt et al.,
2010) using six-cycle Morlet wavelets. Morlet wavelets have an
optimal trade-off between temporal- and frequency resolution for
EEG data (van Vugt et al., 2007) and six cycles are often used for
the analysis of EEG data (e.g., Caplan et al., 2001).

2.4. GENERAL LINEAR MODEL FOR EEG
To find neural correlates of the dynamics of decision making in
EEG data, we developed a General Linear Model (GLM) method,
in which we correlated the predicted accumulator dynamics with
the EEG time series. GLMs are a type of regression that is generally
used with functional magnetic resonance imaging (fMRI) to find
voxels that display a hypothesized pattern of activation, such as
“high” when an object is presented and “low” when a scrambled
object is presented. Here we used a similar technique with EEG
data, to detect electrodes that display a pattern of activation that
is predicted by the DDM.

For every trial, we modeled a ramp of activity starting at stim-
ulus onset and ending at the response. This “upramp” had a height
of one, and its slope was constrained by the response time for that
trial (see Figure 1 for examples). We compared the correlations
of the ramp regressors to those of regressors reflecting the alter-
native hypotheses of neural activity that is “on” during the trial
(“boxcar”) and of neural activity that reflects a transient initial

1http://code.google.com/p/dotsx/
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FIGURE 1 | Sample regressors. Pictured are, from top to bottom: upramp,
downramp, stimulus regressor, response regressor, and eyeblink regressor.
X -axis represents time in samples, y -axis regressor amplitude in arbitrary
units.

response slowly decreasing over the trial duration (“downramp”).
Evidence accumulation activity extracted with the upramp regres-
sor should look clearly different from these alternative hypotheses.
We did not employ separate regressors for left- and right-ward
dot-motion. In other work (van Vugt et al., in revision), we have
similarly detected lateralized readiness potentials, but these depart
from baseline much later than the theta band activity discussed
below, and we believe they are primarily motor (response) related.

We created a set of parallel upramps, downramps, and boxcars
for the arrow control task, which had the same height as the dots
ramps (i.e., a unit height), and also started at dots onset and ended
at dots offset. Note, however, that in that case the arrows appeared
somewhere in the middle of the interval between dots onset and
offset, and the response followed fairly promptly thereafter.

We compared the fits of these regressors to an alternative model
that did not take trial-by-trial variation in response time (RT)
into account. In that model, we created regressors with a slope
and height modulated by the individual’s drift rate and threshold,
respectively. In addition, the slope did not depart from baseline
until T0 (non-decision time) milliseconds after stimulus onset.
We created one such regressor for the low-coherence condition,
and a second for the high-coherence condition. We inserted in
each trial the respective regressor shape. Importantly, these regres-
sors did not covary with individual trial RTs (see Figure 2). As a
result, the DDM model only has five parameters (low- and high-
coherence drift rates, low- and high-coherence non-decision times,
and decision thresholds), whereas the RT model has as many para-
meters as there are trials (namely, the RT for every trial). The DDM
parameters were obtained by fitting the pure DDM (i.e., a DDM
without variability in starting point, non-decision time, and drift
rates) to each participant’s behavioral data with the DMA toolbox
(VandeKerckhove and Tuerlinckx, 2007, 2008).

In addition to these regressors of interest, we created a set of
nuisance regressors that modeled transient neural responses to
stimulus onset and button press, as well as eye activity. These

nuisance regressors are used to remove those sources of vari-
ance from the EEG signal, such that only the signal of interest
remained. To determine the transient response to a stimulus, we
first looked at the grand average of stimulus-related EEG activity
(Figure 3A), from which we chose a time window to plot a topo-
graphical distribution (Figure 3B). Although this topography does
not exhibit a single clear maximum, we chose to use electrode Cz
to compute for every participant individually the stimulus-related
average. We then inserted this average waveform (from 0 to 300 ms
post-stimulus) in the regressor at any time point where a stimulus
was presented (“stimulus regressor”).

Similarly, we examined the grand average response-locked ERP
(Figure 3C) to define a time window for which to compute a
topographical plot (Figure 3D) which was then used to define
a response-related electrode. We chose CPz (Cz is slightly more
anterior than CPz). We then used the average response-locked
waveform from−200 to 0 ms in CPz to model the transient neural
response to a button press (“response regressor”). See Figure 3 for
an illustration of the locations of Cz and CPz. Response-related
ERP peaks typically exhibit their maximum more posteriorly than
stimulus-related ERP peaks. CPz and Cz are two central electrodes
that show peak responses to stimulus presentation and button
presses, respectively. The eye blink regressor was created from the
activity of the eye channel. We focused exclusively on eye blinks
and not on horizontal eye movements because we only collected
eye movements from a single eye electrode placed underneath the
left eye. We set the eye blink regressor to zero outside the eye blink
episodes detected with an amplitude threshold to ensure that no
random fluctuations in the eye channel could distort our results.

A major problem in GLM analyses of EEG data is the poor
signal-to-noise ratio (SNR). To improve the SNR we created fea-
tures (independent variables in the regression) that only consisted
of the trials themselves. This thus excluded the inter-trial time in
which participants may have moved or been engaged in unspec-
ified cognitive processes such as contemplating their lunch). We
padded the trials with 300 ms before the stimulus and after the
response. The reason for including this extra-trial time is that the
neural activity of interest should display the hypothesized ramping
behavior during the trial, but should also be relatively quiet outside
this period, since at that time no evidence is being accumulated,
and participants’ attention will not yet have wandered very far
away just after the trials. Moreover, not including this extra-trial
period will make the upramp and downramp regressors identical
up to an inversion, and this causes problems for the analysis. We
can exploit the additional variance provided by this baseline to
find our signal of interest in the EEG data. We then appended all
these padded trials into a feature vector. The features were cre-
ated both from the raw EEG time series, and wavelet-convolved
signals in the delta (2–4 Hz), theta (4–9 Hz), alpha (9–14 Hz),
beta (14–28 Hz), low gamma (28–48 Hz), and high gamma (48–
90 Hz) ranges. After construction, we downsampled these features
to 50 Hz, and z-transformed them to put them on the same scale
across participants (van Vugt et al., 2010). Downsampling was
done to reduce memory load for the computations.

We ran the GLM in two steps. In the first step we modeled all the
nuisance regressors. The regressors of interest (ramps) were then
modeled on the residuals of this first regression,which ensured that
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FIGURE 2 | Schematic of the different models we used to create
regressors from. Top row: RT model. Bottom row: DDM model. Left
column: low-coherence condition. Right column: high-coherence
condition. In the RT model, the ramp always starts at stimulus onset and
ends always at the response, and it always has a height of one. It
therefore has a different length for the slower and faster trials within a

coherence condition. Conversely, the DDM model has a fixed shape for all
trials within the low-coherence condition, and another shape for all trials
within the high-coherence condition. This shape is determined by three
DDM parameters: non-decision time (which determines ramp onset),
decision threshold (which determines ramp height) and drift rate (which
determines the slope of the ramp).

FIGURE 3 | Stimulus and response-locked event-related potentials
(ERPs) used for creating the stimulus and response regressors. (A)
Grand average stimulus-locked ERP (i.e., average across all channels). (B)
Topographical plot of ERP amplitude in the gray time window in the time

course in (A) which represents the first stimulus-evoked peak. (C) Grand
average response-locked ERP. (D) Topographical plot of ERP amplitude in
the gray time window in the time course in (C) which represents the
maximum response-related peak.

the nuisance regressors could not influence the fits for the regres-
sors of interest. In addition to computing the regression coeffi-
cients for each feature, we also computed the (square root of the)
variance explained by correlating the feature with the fitted regres-
sors as a measure of goodness of fit (Tabachnick and Fidell, 2005).

2.5. MULTIVARIATE GROUP ANALYSIS
To combine across participants, we included all participants’ data
into a single canonical correlation analysis (CCA; Calhoun et al.,
2009). In general, CCA is a multivariate technique to find corre-
lated components between two datasets. When given two matrices
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(e.g., a set of regressors and a set of time courses from electrodes),
it finds a set of weights on these two matrices such that they are
maximally correlated. The CCA method we used (see Figure 4)
was designed to do a group analysis across all of the participants.

There is no clear agreement in the literature on how to com-
bine data across participants when using decomposition methods
such as ICA and CCA (Calhoun et al., 2001). One approach is

to perform the decomposition for each participant separately and
then sort the resulting components. A problem with that method
is that it is unclear how this sorting should be done reliably because
the decomposition may have resulted in somewhat different com-
ponents for every participant. Another approach is to concatenate
all participants’ data and to perform the decomposition on the
resulting group data. The advantage of this method is that there is

A

B

C

FIGURE 4 | Graphical overview of the CCA/GLM method we
developed. In the first step (A), the electrodes-by-time matrices are
concatenated in the time dimension for all participants, where only a
subset of the data of each participant is used (orange rectangles). This
concatenated matrix with EEG data is then used together with the
corresponding concatenation of regressors (purple; the DDM-inspired
model time series) in the second step. (B) In this second step, the
electrode-by-time matrix that contains data from all participants is
correlated with the corresponding time course of the regressor (e.g.,

upramp) using CCA. This yields a correlation value, a weight on the
regressor, and a set of weights on the electrodes (all in cyan). In the third
step (C), the weight map on the electrodes is applied to the remainder of
every participants’ EEG data (white) and the correlation (green) of this
weighted EEG data to the regressor (purple) is compared to the correlation
based on the group data in the random effects analysis (cyan). This whole
procedure is done for the raw EEG data and separately for each frequency
band (cf. Figure 9 below). The number of time points indicated above the
matrices are just an indication.
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only a single set of weights on electrodes across all participants
(i.e., a common spatial structure), while each participant has
their own time course. It therefore becomes very easy to compare
results across participants. A disadvantage of this method is that it
forces components to have a similar spatial distribution across
participants (Calhoun and Eichele, 2010). However, the added
benefit of increased reliability derived from not having to aggregate
potentially disparate components outweighed this limitation.

In this study we therefore decided to use temporal concatena-
tion, such that we still had 116 features (corresponding to one
feature for every EEG channel) but had hundreds of thousands of
time points (see Figure 4A). The CCA then resulted in a single
set of canonical correlation weights on electrodes across partici-
pants. We had sufficiently many time points to run into memory
problems. To overcome these, we took a representative subset of
each participants’ data (i.e., six 4-min blocks from each of the
different conditions). We checked that including only a subset of
each participants’ data in the group decomposition is a reasonable
approach in Figure 10 (see Results for more details). We computed
a Bayes Factor to check whether indeed there was no strong evi-
dence for a difference between the subset of the data and the full
data by using the Bayes Factor calculator2 (Rouder et al., 2009).

The CCA produced a single set of electrode weights across
all participants for each regressor (Figure 4B). These electrode
weights can take either sign, a negative correlation with an upramp
implying that power decreases as time progresses.

2.6. RANDOM EFFECTS ANALYSIS
We developed a random effects analysis as a complementary means
to assess the significance of the various correlations between
regressors and EEG data. To this, we made use of the fact that
we had only used a subset of each participants’ data to run the
CCA. We used the remaining data to compute for each partici-
pant separately a correlation between the EEG data to which the
CCA-derived electrode weights were applied, and the correspond-
ing regressors. We then Fisher-transformed these correlations and
compared them with t -tests. As such, we could for example assess
whether the correlation between EEG and the dots time course
was larger than the correlation between EEG and the arrows time
course. Because this involved many t -tests, we applied a False Dis-
covery Rate procedure (Benjamini and Hochberg, 1995). A False
Discovery Rate of 0.001, which is the level we used, indicates that
on average 1 in 1000 of the significant effects we find is a false
positive.

2.7. PERMUTATION ANALYSIS
Since it is possible that the results we obtained were due to ran-
dom correlations between the EEG data and the regressors, we
performed an additional permutation analysis to assess what the
levels of canonical correlation would be for random data. We cre-
ated random data by shuffling the ramps in time for random
amounts and repeated the canonical correlation analysis with these
regressors. We did this for 1000 iterations. We then compared the
correlations obtained from the empirical data to those obtained

2http://pcl.missouri.edu/bf-one-sample

from the random data, and computed the probability that our
empirical data were derived from these random distributions.

3. RESULTS
3.1. BEHAVIORAL DATA
Before turning to the electrophysiological results, we discuss our
behavioral data. Participants were engaged in a random dot-
motion discrimination paradigm, where the level of motion coher-
ence was set such that they performed at ∼70 and 90% cor-
rect (Figure 5C). Accuracy was significantly higher [t (22)= 21.6,
p < 0.001, Figure 5A] and RT was significantly faster [t (22)= 5.7,
p < 0.001, Figure 5B] in the 90% correct condition. The two coher-
ence levels used to create the 70 and 90% correct conditions
were also significantly different from each other [t (22)= 17.3,
p < 0.001].

These results are consistent with a DDM parametrization in
which thresholds are approximately constant, starting points are
approximately midway between thresholds, and the drift rate is
high for the high-coherence condition, and low for the low-
coherence condition. This was confirmed by fitting a DDM to
the behavioral data (Table 1). The mean (sem) Maximum Likeli-
hood of these fits across subjects was 3466 (167) and the mean BIC
(Bayesian Information Criterion) was 3508 (167). The fits showed
that indeed the drift rate was higher for the high-coherence com-
pared to the low-coherence condition. The drift rate was even
higher for the arrows non-integration control condition, where
evidence was so abundantly clear that participants barely needed
to integrate information.

3.2. ELECTROPHYSIOLOGICAL DATA
Before turning to our novel model-based EEG analyses, we first
examine the basic EEG data. We looked at all electrodes and picked
a few representative samples of standard electrodes that are typi-
cally shown in EEG studies. Figure 6 shows the basic characteristics
of our EEG data. The spectrograms of oscillatory power for cen-
tral electrode Cz show task modulation and a decrease in 4–9 Hz
theta power over the course of the trial (Figure 6A). Figure 6B
shows the effect of motion coherence (i.e., task difficulty), where
trials in the easy high-coherence condition tend to show higher
theta power near the response, compared to trials in the more dif-
ficult low-coherence condition. There also seems to be a difference
in 14–28 Hz beta power occurring after the mean response time.
This may reflect motor activity, which occurs later for the diffi-
cult compared to the easy trials, because the difficult trials have
longer response times. Figure 6C shows the difference between
the integration (dot-motion) and non-integration (arrows) con-
ditions. Across the whole task, the non-integration condition is
associated with higher 9–14 Hz alpha power than the integration
condition. Furthermore, a decrease in theta is visible between stim-
ulus and response, where the response is associated with lower
theta.

Another notable effect that can be observed in the raw data is
increased gamma oscillatory power for the integration condition,
compared to the non-integration condition (shown for the frontal
electrode FPz in Figure 7). This difference appears to be fairly
constant across the whole task period. On the basis of these spec-
trograms, we expect evidence accumulation dynamics in the form
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FIGURE 5 | Mean accuracy (A), response time (B), and coherences (C) across subjects for the low and high-coherence (difficult and easy) task
conditions.

Table 1 | Mean (sem) DDM parameters for best fitting model to data from Experiment 1, separately for low and high-coherence trials

(integration conditions), and arrows trials (non-integration condition).

Condition Drift Decision threshold Non-decision time Starting point

Low-coherence 0.057 (0.004) 0.151 (0.007) 0.439 (0.011) 0.077 (0.004)

High-coherence 0.167 (0.008) 0.151 (0.007) 0.408 (0.014) 0.078 (0.005)

Arrows control 0.784 (0.069) 0.210 (0.036) 0.219 (0.009) 0.094 (0.027)

The threshold was held constant between the low and high-coherence conditions. The fits adhere to the Ratcliff convention where the non-biased starting point is

half the decision threshold value.

of ramps (Figure 1) to be primarily associated with low-frequency
oscillations as shown in Figure 6A.

3.3. GLM METHOD CHECKS
Before running the CCA on the ramp regressors, we verified our
method by plotting the weights for the eye blink, stimulus, and
response regressors on a topographical plot. If the GLM method
works correctly, we expect the highest regression coefficients on
the electrodes that were used to generate the relevant regressor.
That is, for the eyeblink regressor, we expect the largest weights on
the frontal electrodes. For the stimulus regressor that was gener-
ated based on Cz, the maximum correlation should occur with this
electrode, and the response regressor should maximally correlate
with CPz. Figure 8 shows that this was indeed the case.

Having established that the GLM, which predicts the time series
of a single electrode by a linear combination of regressors, is a
viable method to analyze EEG data, we used the multivariate CCA
method to search for the hypothesized ramp dynamics in our data.
The advantage of CCA is that rather than focusing on a single elec-
trode at a time, it allows linear combinations of channels to predict
linear combinations of regressors. It is therefore much more flexi-
ble. Yet, because it is more difficult to interpret linear combinations
of regressors than single regressors, we restricted our attention
to single regressors. Nevertheless, preliminary observations indi-
cate that ∼40% larger canonical correlations can be obtained by
allowing linear combinations of regressors. Linear combinations
of regressors could for example create boxcars from a roughly
equal weighting of upramp and downramp regressors, in a com-
pletely data-driven manner. Future work should further explore
this option.

We performed a CCA between the regressors and the EEG
time series for every channel. We did this analysis separately for
every frequency band (2–4 Hz delta; 4–9 Hz theta; 9–14 Hz alpha;
14–28 Hz beta; 28–48 Hz low gamma; 48–90 Hz high gamma)
because we sought to make inferences about which band shows
most evidence of ramping activity.

Figure 9A shows the canonical correlation of the upramp with
EEG data in every frequency band, as well as for non-wavelet-
transformed (plain) EEG. The correlation between hypothesized
ramping dynamics and EEG activity is largest in the 2–4 Hz delta
and 4–9 Hz theta bands. Note that all correlations given by CCA
are constrained to be positive, and that any negative relations
between regressors and EEG will be reflected in a negative sign
of the weights on the electrodes. We did a random effects analysis
as a follow-up, in which we applied the CCA-derived electrode
weights to each participants’ left-out EEG data (only a subset of
each participants’ data was used for CCA due to memory con-
straints) and computed the correlation between these data and
the regressors. We then assessed whether the Fisher-transformed
individual-subject correlation values were significantly different
from zero. We found that this was the case for all frequencies,
except for the high gamma band [all t -values up to low gamma >6,
which reflects p-values smaller than 0.0005, which is the p-value
level corresponding to a False Discovery Rate of 0.001].

We also assessed whether the different frequency bands
reflected evidence accumulation or rather a more general dot-
motion-induced ramping process by repeating the same analy-
sis for the non-integration condition. Figure 9B shows that the
canonical correlate in the theta band is specific to the integra-
tion (dots) condition, whereas the canonical correlate in the delta
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FIGURE 6 | Basic spectrograms for electrode Cz (a representative
electrode). Black line indicates the event to which the data are aligned
(onset of dot-motion for the stimulus-locked graphs and the response for
the response-locked graphs). Cyan line indicates the average response
time and stimulus onset time, respectively. (A) stimulus-locked
spectrograms for the high-coherence, low-coherence, and non-integration

condition. There is a gradual decrease in oscillatory power over the course
of the trial. (B) Difference spectrograms comparing low- and
high-coherence conditions. Left column: stimulus-locked. Right column:
response-locked. (C) Difference spectrograms indicating the contrast
between integration and non-integration conditions. Left column:
stimulus-locked. Right column: response-locked.

band is also fairly high for the non-integration (arrows) condition.
Indeed, comparing the distributions of individual-participant cor-
relation values between the dots and arrows conditions for the
delta band indicates that those are not significantly different when
using a False Discovery Rate of 0.001 [t (22)= 2.98, p= 0.0069].
This means that in the non-integration condition, delta oscillatory
power increases (or decreases-depending on the sign of the canon-
ical correlation weights) over the course of a trial from dots onset
until response, while according to our theory the participant only
starts to accumulate evidence (and does so quite rapidly) once the
arrow stimulus appears on the screen at a later point.

Theta oscillations show a dramatic drop in (canonical) correla-
tion value in the non-integration condition, as would be expected
from a neural correlate of evidence accumulation, because in the
non-integration condition virtually no evidence has to be accu-
mulated, and evidence accumulation only starts when the arrows
appear on the screen. Indeed, there is a significant difference

between the correlations of theta power with the upramp for
dots versus arrows conditions [t (22)= 11.6, p < 0.001]. This sug-
gests that theta oscillations are a more likely candidate for a
neural correlate of evidence accumulation than delta oscillations
because only the theta oscillations are specific to the integration
condition.

We further tested whether the correlations we obtained could
be due to a better match between temporal structure of the EEG
data in the delta and theta frequency bands and the structure of
the regressor than with EEG data in other frequency bands. In
other words, we tested the alternative hypothesis that any random
sequence of ramps would produce the correlations we observed,
with the highest correlations in the delta and theta bands. To that
end, we performed a permutation test. We created a set of 1000
regressors in which we randomly moved the ramps around across
time, and redid the CCA. The white dots in Figure 9 indicate the
97.5th percentile of the distribution of correlations that would
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be expected based on random regressors. These random correla-
tions are clearly below the observed correlations. Moreover, all of
the observed canonical correlations based on the empirical data

FIGURE 7 | Basic electrophysiological data for electrode FPz. Black line
indicates the event to which the data are aligned (onset of dot-motion for
the stimulus-locked graphs and the response for the response-locked
graphs). Cyan line indicates the average response time and stimulus onset
time, respectively. These are difference spectrograms contrasting the
integration and non-integration conditions. Left column: stimulus-locked.
Right column: response-locked.

FIGURE 8 |Topographical overviews of the 10% most significant
electrodes for the (A) eye blink, (B) stimulus, and (C) response
regressors. Red and blue reflect positive and negative regression weights,
respectively, and the intensity of the shading indicates the magnitude of
the regression weights. The most significant electrodes are in the locations
from which the regressors were generated [indicated with arrows in (B,C)].

are larger than the canonical correlations based on random data,
so the probability that the empirical canonical correlations are
obtained from random data is <0.001.

We further asked whether our CCA, which was based on only
a subset of each participant’s data (see Methods), is a good repre-
sentation of the participant’s data. To this end we compared the
correlation value of the canonical correlate of interest with the
correlations between the regressor and the weighted set of elec-
trodes for the entire time course within each subject (i.e., using the
complete data for each subject). If the CCA decomposition were
the same for every participant, then the canonical correlation of
the across-subject data would be identical to the within-subject
correlation based on the same weights. Figure 10 shows that the
within-subject correlations based on a subject’s complete data,
weighted by the coefficients obtained from the CCA, have gen-
erally similar values to the across-subject CCA based on a subset
of a subject’s data [one-sample t -test comparing mean propor-
tion between the within and across-subject correlations to one:
t (22)= 2.0, p < 0.1, Bayes factor for the alternative hypothesis of
a mean correlation different from one versus the null hypothesis
of a mean correlation equal to one: 1.02, indicating there is also
little evidence for the null hypothesis].

We then wondered to what extent EEG activity would show cor-
relation with alternative patterns of activity. Rather than upramps,
there could also be neural correlates of downward ramps, which
start at a high level and then return to baseline by the time of the
response. Note that such a downramp is clearly different from a
negative correlation of EEG with an upramp: the downramp starts
at a high level and then drops down to baseline by the end of the
trial, while the negative upramp starts at baseline and then goes
down to a level of −1 at the end of the trial. The inclusion of
between-trial baseline data allows us to distinguish between neg-
ative weights on upramps and (positive weights on) downramps.
Finally, there could be patterns of neural activity that turn on at the
start of the trial, and turn off at the end that reflects task engage-
ment. We modeled this with a boxcar between stimulus onset and
response.

FIGURE 9 | Canonical correlations as a function of frequency, with
the DDM-modulated model in blue and additional correlation
achieved by the RT-modulated model in red, shown separately for
the ramp regressor of (A) dots (integration condition) and (B)
arrows (non-integration condition). White dots indicate the 97.5th

percentile of the distribution of canonical correlations expected based
on random regressors. Letters indicate frequency bands: EEG= raw
EEG, D= 2–4 Hz delta, T=4–9 Hz theta, A= 9–14 Hz alpha,
B=14–28 Hz beta, G1=28–48 Hz low gamma, and G2=48–90 Hz high
gamma.
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FIGURE 10 |Validation of the subset method: within-subject correlation
of weighted regressors with EEG data divided by the across-subject
canonical correlates. Perfect validity of the subset method would yield a
fraction of one (within-subject correlations equal to across-subject canonical
correlation). Each datapoint used to create this histogram reflects a single
participant. This distribution has a mean that is not different from one.

Our results show that potential accumulators (upramps) are
more consistent with the EEG data than these alternative hypoth-
esis. Both downramp and boxcar regressors showed much lower
correlations [in the theta band the canonical correlations are 0.11
for the boxcar, 0.076 for downramp dots, and 0.15 for downramp
arrows]. This was corroborated by a random effects analysis, which
showed that for all but the high gamma band, the upramp had a
significantly higher correlation than the downramp [all t s > 6.04,
p < 0.001].

We then asked to what extent the DDM, free from trial-to-trial
variations in RT, could predict our EEG data. To do this, we com-
pared the canonical correlations for a regressor that was ramping
up or down exactly in accord with RT to that of a regressor that
was more stereotyped, having a fixed length (time-locked to the
response) but modulated by an individual’s DDM parameters as
obtained from fitting the DDM to the participant’s behavioral
data. Regressor height was modulated by the threshold parame-
ter; its slope by the drift parameter and ramp onset was delayed
by the participants’ non-decision time (see Figure 2). Because the
DDM-modulated regressor is not yoked to RT, it fails to capture the
stochastic noise in RT. Although, as would be expected, the canon-
ical correlations are uniformly higher for the RT-based regressor
than for the DDM-modulated regressor, it is remarkable that the
DDM still explains a large fraction (0.58–0.73) of the variance that
the RT-yoked regressor can (Figure 9, red boxes labeled RT mod).
In other words, the model is able to account for a large portion of
the neural variance in ramp-like behavior.

Figures 11A,B show the time courses of the canonical correlate
in the theta band: the frequency band that shows the greatest dif-
ference in upramp weights between dots and arrows (Figure 9).

The time course of the upramp regressor is much more peaked
for the integration condition (green) than for the non-integration
condition (arrow trials; magenta). In the stimulus-locked average,
the dots upramp time course departs significantly from baseline
around 240 ms [one-tailed t -test with a p < 0.01 significance level],
whereas the arrows upramp time course does not depart signif-
icantly from baseline until 400 ms post-stimulus. From 260 ms
post-stimulus, the dots upramp and arrows upramp are signifi-
cantly different. Similarly, in the response-locked time courses, the
dots upramp differs from baseline from −580 ms, but the arrows
upramp not until −380 ms. The two time courses start to dif-
fer significantly at −520 ms. The smaller amplitude of the arrows
upramp is what we expected based on the lower correlations of
theta activity with the upramp regressor in the non-integration
compared to the integration condition. Figure 11C shows the
topographical distribution of the weights on the electrodes that
define the canonical correlate in the theta band. They have a pos-
terior parietal distribution and are negative. This means that theta
power in these parietal channels starts near baseline, and then as
the trial progresses, theta power decreases away from baseline.

We next asked whether the dynamics of this theta upramp (the
most promising candidate for evidence accumulation) also covar-
ied with individual differences in DDM parameters. We found a
significant correlation [r(45)= 0.44, p= 0.0024] between an indi-
vidual’s drift rate and the slope of the average theta band time
course between 500 and 100 ms pre-response for that same per-
son. There was no significant correlation between the level the
time course reached at the end of the response interval and the
individual’s behaviorally fitted decision threshold [r(45)= 0.08,
p= 0.48].

4. DISCUSSION
We have shown that EEG oscillations exhibit dynamics consistent
with evidence accumulation in a perceptual decision making task.
In addition, the magnitude of the slopes of these potential “neural
accumulators” in the 4–9 Hz theta band covaried with individual
differences in the drift rates obtained from the behavioral data.

While correlations with accumulator dynamics occur in dif-
ferent frequency bands, previous studies have implicated theta
oscillations in various aspects of decision making (e.g., Jacobs
et al., 2006; Cavanagh et al., 2010). For example Jacobs et al. (2006)
showed an increase in parietal theta oscillations with decision con-
fidence during a recognition memory task. Cavanagh et al. (2010)
observed a correlation between post-decision error monitoring
and theta oscillations in frontal regions. Our findings add to this
body of evidence. One may wonder what is particular about the
theta frequency that would make it suitable for a function in deci-
sion making. A modeling study by Smerieri et al. (2010) suggests
an answer. They showed that in simulated spiking neural networks
of two populations of mutually inhibiting neurons, RTs decreased
and drift rates increased with increasing theta power. This effect
was specific to the theta range because higher frequencies are too
fast to modulate the cell’s membrane potential, which acts as a
low-pass filter.

Nevertheless, the correlations of accumulator dynamics with
other frequency bands are also not too surprising. For example,
a previous study has associated 14–28 Hz beta, rather than theta,
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FIGURE 11 | Stimulus-locked (A) and response-locked (B) time
courses of the canonical correlate in the 4–9 Hz theta band,
correlated with the dots upramp, cyan line indicates RT in (A) and
dots onset in (B). (C) Dots upramp topography (red indicates a positive

correlation between oscillatory power and the regressor, blue a
negative correlation). The shade of the color indicates the magnitude of
the correlation. Note that there are no positive correlations for the dots
upramp.

oscillations with evidence accumulation (Donner et al., 2009). One
reason for that difference with our findings may be that that study
was conducted with magnetoencephalography (MEG) rather than
EEG recordings. MEG may be better able to detect higher fre-
quency oscillatory activity because of its higher spatial sensitivity
(e.g., Dominguez et al., 2005). Another difference with Donner’s
study is that the beta oscillations they observed were lateralized,
that is, they increased in one hemisphere for one choice and in
the other hemisphere for the other choice. While we have exam-
ined such lateralized oscillations as well with our model, this did
not yield very strong correlations, because the lateralized beta and
gamma oscillations only started to rise just before the response.

To further explore how analysis methods affect our results,
we redid the same analysis on a Laplace-transformed version of
our data, which is a method that improves spatial resolution for
some sources, but decreases resolution for other sources (Hauk
et al., 2002). This version of the analysis (available from the first
author on request) still yielded correlations of EEG with evidence
accumulation dynamics, but now the dots-selective accumulator
dynamics shifted to more lateral locations and to the alpha and
beta bands, quite similar to those observed by Donner et al. (2009).
We should also note that our use of wavelets biases us to finding
results in the lower frequencies, while multitapers would instead
cause a bias toward finding results in higher frequencies (van Vugt
et al., 2007). Together, this suggests that evidence accumulation
involves oscillations at different frequencies, and the type of oscil-
lations one observes most prominently depends on the recording
and analysis methods.

The ramp regressor not only correlates with theta activity but
also loads fairly strongly on EEG activity in the 2–4 Hz delta band.
Nevertheless, unlike the theta band, the delta band shows a signif-
icant correlation with the ramp regressor in both the integration
and the non-integration control task (Figures 9A,B). This suggests
that while theta may be more specific to evidence accumulation,
delta may reflect a more generic “on-task” process that is triggered
by the dot stimuli on the screen. The relatively large loading on the
alpha regressor may reflect bleeding-in of theta activity because
there are individual differences in the ranges of alpha and theta

oscillations (Klimesch et al., 1993). It may thus be the case that
the 9–14 Hz alpha band contains theta accumulator activity from
individuals with a high-frequency theta band.

It is also important to consider alternative explanations for
the observed correlation with upramp dynamics. For example,
the upramp could alternatively reflect time-on-task, which also
increases with RT. Arguing against this interpretation is the fact
that the correlate of the upramp in the theta band is much lower
for the non-integration control task, in which stimulus-viewing-
duration has not changed, but the need for evidence accumulation
has mostly disappeared. Alternatively, upramp dynamics could
reflect response preparation. While some accounts argue that
motor preparation already starts at the time of stimulus presenta-
tion (Miller and Hackley, 1992), it mostly occurs a few hundred
milliseconds before the response (see also Figure 3). A third alter-
native explanation is that pre-response increases in medial frontal
theta increases have previously been associated with response con-
flict (Cohen and Cavanagh, 2011). The dots and arrows condition
do not only differ in accumulation dynamics, but also in the
amount of response conflict, and while the effect we observe has
different sign and topography from the effects reported by Cohen
and Cavanagh (2011), we cannot exclude the possibility that our
results represent response conflict.

Another issue to consider is that while the correlation with
the ramp regressor is stronger in the theta band than in other
frequency bands, evidence accumulation is also a broad-band
phenomenon: it is significantly different from zero in almost all
frequency bands according to our random effects analysis. Several
recent studies have suggested that broad-band increases in oscilla-
tory power reflect increased neuronal spiking more than increases
in power in specific frequency bands (Manning et al., 2009). Fur-
thermore, changes in broad-band power have been associated with
cognitive processes, such as verbal and spatial memory (Ekstrom
et al., 2007; Sederberg et al., 2007).

Although the correlations we obtained between the regressors
and the EEG data are on the order of magnitude of correlations
obtained from GLMs applied to fMRI data, there is room for
methodological improvement. Correlations of fMRI and EEG with
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task conditions or cognitive models tend to be fairly low due to
the large amount of noise in neural data. Nevertheless, we specif-
ically showed that the correlations we obtained are larger than
correlations found based on random regressors with a similar
temporal structure (Figure 9). Future studies should investigate
whether correlations could be improved by applying e.g., Inde-
pendent Component Analysis (Delorme et al., 2001). In addition,
the use of regularization, which zooms in on the informative fea-
tures in the data, could potentially help to increase the correlation
between model dynamics and EEG data.

What may seem surprising about the neural correlate of evi-
dence accumulation in the theta band is that instead of increasing,
oscillatory power decreases over the course of the decision inter-
val (Figure 11C). Nevertheless, these decreases in oscillatory power
may in fact reflect increases in functional brain activity. This is con-
sistent with (Lorist et al., 2009), who found that oscillatory power
increases with fatigue, thereby implying it should decrease with
productive task performance. It may also be the case that over the
course of evidence accumulation, one moves from a more global
mode of processing, in which information is combined from a
large number of neurons, to combining information from a much
smaller set of neurons associated with less synchronization and
lower oscillatory power (von Stein and Sarnthein, 2000). Both
of these hypotheses could be tested with more localized neural
recordings obtained from e.g., intracranial EEG. A third possi-
bility is that theta may reflect the amount of uncertainty or an
urgency to respond (Cisek et al., 2009), rather than the evidence
accumulation process per se, and that other oscillations (e.g., beta
which is more prominently observed in Laplace-transformed EEG
and MEG data) may reflect evidence accumulation itself.

Our findings have several implications for future research. First,
the correlates of the DDM that are observable in EEG can be
used to assess the effect of task manipulations (such as speed-
accuracy trade-off or reward rate) on accumulation dynamics.
Second, there are large individual differences in decision making
(e.g., Forstmann et al., 2010). EEG signatures of neural accumu-
lators may allow us to distinguish different types of participants
or strategies, given that individual differences in DDM parameters
covaried with the slope of the neural accumulation signal. The
“neural accumulators” could thereby soak up some portion of the
noise in the model. These “neural accumulators” may also capture

individual trial noise, such as attentional fluctuations, although
that remains to be proven. Third, we could use the same multi-
variate methods to clarify the topographical location of possible
neural accumulators with fMRI data, which has poorer temporal
but better spatial resolution than EEG. Using identical methods
for the analysis of EEG and fMRI data in the same task could thus
provide new perspectives on data fusion.

Finally, it is important to consider what implications our results
have for models of decision making. For example, the non-
linearity of the accumulator time courses suggests that evidence
accumulation may better be described by a competitive evidence
integration than by a linear ballistic accumulator (Brown and
Heathcote, 2008). Yet, it is difficult to distinguish between the
remaining accumulator models based solely on their dynamics
in two-alternative forced choice tasks (Ditterich, 2010). In fact,
we have tried different versions of our evidence accumulation
model, such as a version where only onset of evidence accumu-
lation changed rather than both onset of evidence accumulation
and the slope. We found no appreciable change in our results.
However, it is possible to distinguish between some models by
employing brief pulses of strong evidence, as in Wong and Huk
(2008) and Zhou et al. (2009).

In short, we have developed a novel method for detecting and
examining the electrophysiological correlates of model dynam-
ics. Using this method, we have provided evidence for a neural
correlate of the dynamics of evidence accumulation in decision
making measured in human EEG. Accumulation dynamics were
captured best by 4–9 Hz theta oscillations in a set of superior
parietal channels, and they covaried with individual differences
in DDM parameters fitted to behavioral data.
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