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Thorndike’s law 2.0: dopamine and the 
regulation of thrift
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Dopamine is widely associated with reward, motivation, and reinforcement learning. Research 
on dopamine has emphasized its contribution to compulsive behaviors, such as addiction 
and overeating, with less examination of its potential role in behavioral flexibility in normal, 
non-pathological states. In the study reviewed here, we investigated the effect of increased 
tonic dopamine in a two-lever homecage operant paradigm where the relative value of the 
levers was dynamic, requiring the mice to constantly monitor reward outcome and adapt their 
behavior. The data were fit to a temporal difference learning model that showed that mice with 
elevated dopamine exhibited less coupling between reward history and behavioral choice. 
This work suggests a way to integrate motivational and learning theories of dopamine into a 
single formal model where tonic dopamine regulates the expression of prior reward learning 
by controlling the degree to which learned reward values bias behavioral choice. Here I place 
these results in a broader context of dopamine’s role in instrumental learning and suggest a 
novel hypothesis that tonic dopamine regulates thrift, the degree to which an animal needs to 
exploit its prior reward learning to maximize return on energy expenditure. Our data suggest 
that increased dopamine decreases thriftiness, facilitating energy expenditure, and permitting 
greater exploration. Conversely, this implies that decreased dopamine increases thriftiness, 
favoring the exploitation of prior reward learning, and diminishing exploration. This perspective 
provides a different window onto the role dopamine may play in behavioral flexibility and its 
failure, compulsive behavior.
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IntroductIon
Thorndike (1911) first articulated his Law of 
Effect that states:

“Of several responses made to the same situation 

those which are accompanied or closely followed by 

satisfaction to the animal will, other things being 

equal, be more firmly connected with the situation, 

so that, when it recurs, they will be more likely to 

recur… the greater the satisfaction, the greater 

the strengthening…”

In his studies, Thorndike (1911) placed cats 
into enclosures with trick latches. Being cats, they 
do not like being imposed upon and so the ani-
mals began exploring, pawing, and figuring out 
how to open the door. Eventually, they figure it 
out. Upon repeated exposures, they come to open 
the door quickly without engaging in preliminary, 
exploratory behaviors. In short, the cats learned 
to open the door. Cats are clever.

Thorndike (1911) formalized the common 
sense observation that “they learned to open the 
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door” by suggesting a learning mechanism with 
two key elements: (a) what is learned – an associa-
tion between stimuli in the environment and the 
behavior such that when those stimuli are pre-
sented, the behavior is more likely to be emit-
ted, (b) how learning occurs – a positive outcome 
increases the strength of that association increas-
ing its impact on future behavior. Thorndike’s 
formulation articulates the basic concept of 
instrumental learning: a positive outcome follow-
ing an emitted behavior (response) strengthens 
the association between stimuli present during 
the behavior and the particular response to those 
stimuli that yielded “satisfaction” (Figure 1A). We 
tend to repeat things that work out well for us.

Importantly, Thorndike’s (1911) law is proba-
bilistic: behaviors will be more likely to recur. What 
determines the likelihood of recurrence? As the 
quote from Thorndike suggests, he – and most 
investigators in the subsequent century – have 
focused on the magnitude of the positive outcome 
and the strength of the association it induces to 
determine how much learning controls behavior. 
Here we develop the idea that the degree to which 
prior learning biases behavior can be regulated 
independently of the strength of those associa-
tions. We will map this onto temporal difference 
reinforcement learning algorithms where the con-
tribution of the strength of association is captured 
in the concept of value; that is, a formalization 
of “satisfying effect.” The degree to which these 

values bias behavior is represented in the concept 
of temperature. The probability of recurrence – 
the “likely,” then, is a function of both. Here we 
focus on the latter.

dopamIne and reward: controversy 
and consensus
Understanding the neural substrates that medi-
ate instrumental, stimulus-response learning 
remains an important question in neurosci-
ence, a question that invariably leads to dopa-
mine and reward. Though widely believed that 
dopamine plays a role in mediating the impact 
of reward on behavior – often construed as the 
“reward system” – its precise function remains 
controversial. Though widely used, “reward” is 
an ill-defined term (Cannon, 2004; Salamone 
et al., 2005; Salamone, 2006; Yin et al., 2008). 
It is sometimes meant to refer to positive affect 
associated with a “satisfying effect.” At other times 
it is used interchangeably with “reinforcer” and 
yet other times as something that satisfies an 
appetitive need. Here we use the term broadly as 
synonymous with positive outcome (“satisfying 
effect”) without distinguishing different aspects 
of a positive outcome. Similarly, there has obvi-
ously been much elaboration of instrumental 
learning since Thorndike. For example, “stimu-
lus-response” is widely viewed as a particular type 
of instrumental learning associated with habitual, 
automatic responding while other forms, such as 

Figure 1 | Theories of dopamine and instrumental behavior. Schematic showing (A) basic outline of instrumental, 
stimulus-response learning three hypothesis on the role of dopamine: (B) anhedonia hypothesis, (C) reinforcement 
learning hypothesis, and (D) incentive-salience hypothesis.

Law of effect
Early description of instrumental 
learning where a positive outcome 
increases the likelihood of a behavior 
being repeated in the future under 
similar circumstances.

Reward
Here construed simply as “positive 
outcome” and taken as synonymous 
with reinforcer. More precise definitions 
have been proposed but are not 
germane to the present discussion.
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This view has been widely criticized on the basis 
that dopamine is not, in fact, mediating pleasure 
or affect (Salamone et al., 1997; Berridge and 
Robinson, 1998).

The second broad perspective is that dopamine 
mediates learning itself. In this view dopamine 
signals a positive outcome that induces learn-
ing, i.e., alters the associations between stimuli 
and responses. There are two versions of this. 
One, developed by Wise (2004) from his origi-
nal anhedonia hypothesis, argues that dopamine 
“stamps in” reinforcement; interestingly, the same 
term used by Thorndike (1911): dopamine is a 
reward hammer, fashioning synapses to conform 
to reward feedback. The other perspective draws 
upon learning theory and dynamic programming 
to formalize reinforcement learning as a specific 
algorithm called temporal difference learning 
(Sutton and Barto, 1998). In this perspective, 
the strength of association between stimuli and 
response encodes the value (expected reward) 
of emitting that behavior in response to those 
stimuli. The greater the value, the more likely 
the behavior is to be emitted. In these models, 
the emphasis is on assigning the “correct” value to 
these associations. Dopamine, then, is assigned a 
very specific role called a prediction error signal 
(Montague and Dayan, 1996; Schultz et al., 1997; 
Schultz, 2002). Instead of signaling at every posi-
tive outcome and “stamping in” reward, dopamine 
only signals when the outcome was unexpected, 
either more or less reward than anticipated, and 
thus rather than stamping in reward, it updates 
reward value. The formalism of reinforcement 
learning models forces the clear identification 
of parameters that affect the performance of the 
algorithm, and these parameters represent a con-
ceptual strength of such models, which we will 
return to below. The key point here is that in the 
learning view of dopamine, dopamine serving as 
teaching signal (Figure 1C).

The third broad perspective is the motiva-
tional view, where dopamine is viewed as serv-
ing an activational function, invigorating goal 
pursuit (Robbins, 1992; Robbins and Everitt, 
2007), including the widely accepted incentive-
salience hypothesis (Robinson and Berridge, 
1993; Berridge, 2004, 2007). In incentive-salience, 
the association between stimuli and a response 
is construed as incentive and dopamine scales 
that incentive up or down, dynamically regu-
lating the degree to which learned associations 
influence behavior (Figure 1D). Salamone et al. 
(2007) have developed an alternative motivational 
view and argue that dopamine does not modulate 
reward at all; instead, dopamine energizes behav-
ior and decreases the impact of response cost (i.e., 

action-outcome learning, represent goal-directed 
associative learning (Thorndike, 1911; Yin and 
Knowlton, 2006; Balleine and O’Doherty, 2010). 
Here we return to the broad umbrella provided 
by Thorndike in which the heart of associative 
learning, of all stripes, is to associate stimuli with 
the appropriate action or response. We will revisit 
finer distinctions below.

Additionally, midbrain dopamine nuclei 
project widely throughout the brain, includ-
ing projections to the prefrontal cortex, amyg-
dala, hippocampus, and the striatum (Haber 
and Knutson, 2010). However, the great bulk of 
investigation into dopamine function has cen-
tered primarily on its projections to the striatum, 
widely viewed as a key substrate of reinforcement 
learning and the predominant site of action in 
dopamine mediation of reward and motivation 
(Schultz, 2002; Everitt and Robbins, 2005; Balleine 
et al., 2007; Nicola, 2007; Belin et al., 2009; Wise, 
2009; Humphries and Prescott, 2010; Ito and 
Doya, 2011). Thus, the following discussion of 
dopamine and reinforcement learning applies 
to dopaminergic processes within the striatum. 
Importantly, however, a primary function of the 
striatum is widely believed to be the modula-
tion of cortical activity vis-a-vis corticostriatal 
loops (Alexander and Crutcher, 1990; Parent 
and Hazrati, 1995; Haber, 2003; Graybiel, 2005; 
DeLong and Wichmann, 2009; Redgrave et al., 
2011), providing a substrate by which reward-
based (reinforcement) associative learning can 
influence cortically mediated behavior (for inter-
esting review, see Cools, 2011). The degree to 
which other dopamine targets may contribute to 
the dopamine function proposed here is beyond 
the scope of the current, brief review.

The different views of dopamine and reward 
can be mapped onto Thorndike’s (1911) law, 
though this is not to suggest that mediating or 
modulating instrumental, stimulus-response 
learning is the sole function of dopamine. 
Broadly, theories of dopamine’s role in reward 
can be classed into three perspectives.

In the first, initially proposed by Roy Wise 
(Wise et al., 1978; Cannon, 2004; Salamone 
et al., 2005; Salamone, 2006; Yin et al., 2008; Wise, 
2010), dopamine itself induces pleasure; that is, 
when something good happens, this positive out-
come releases dopamine that creates pleasure that 
then reinforces the behavior. In essence, in this 
view dopamine mediates affect that determines 
reinforcement; dopamine release is the positive 
outcome (Figure 1B). In the absence or reduc-
tion of dopamine, there is a lack of pleasure and 
consequently a lack of reinforcement, giving this 
perspective its name, the anhedonia hypothesis. 

Temporal difference learning
A class of algorithms for implementing 
supervised reinforcement learning in 
which differences in predictions across 
successive time steps are used to update 
preceding predictions. For example, a 
prediction of expected reward at time t 
is compared with actual reward plus 
predicted future reward at time t + 1. 
The difference between t + 1 reward/
prediction and the prediction at t is 
used to update the prediction at time t.
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only do  drug-reinforced S-R associations pre-
dominate in an addict’s behavioral control, but 
there is a concomitant failure of executive con-
trol (Hyman et al., 2006; Kalivas, 2008; Koob and 
Volkow, 2010). Executive control can be cast in 
several forms. There is traditional, hierarchical 
executive control, which is associated primarily 
with the prefrontal cortex, where a higher level 
of cognitive function exerts inhibitory control 
over the expression of more rudimentary asso-
ciative learning, bringing reward pursuit under 
goal-directed control. In addition, there are “two-
system” theories of behavioral control. In these 
models, S-R learning comprises one system that 
generates habitual, automatic responding while 
another, potentially competitive system, generates 
goal-directed behavior. For example, in a widely 
adopted learning typology, S-R learning is viewed 
as habitual and automatic, and associated with 
the dorsolateral striatum, while action-outcome 
(A-O) learning provides an associative substrate 
for goal-directed behavior, associated with the 
dorsomedial striatum (Yin and Knowlton, 2006; 
Balleine and O’Doherty, 2010). There is a roughly 
parallel version of this cast in computational 
terms (Daw et al., 2005) where: (a) S-R habit 
arises from model-free, cached values (i.e., the 
value of stimuli and actions represented simply as 
a weight without any representation of how that 
value arises) and (b) goal-directed behavior arises 
from a model-based system where learned asso-
ciations represent a model of the world (i.e., the 
animal can scan forward/backward in a “model 
tree” and calculate the relative predicted values 
of different behaviors based on this model rather 
than a “mysterious” cached value). However, inso-
far as S-R learning is an evolutionarily old form 
of learning, adaptive fitness may have required 
that it evolve, within the system, a mechanism that 
prevents an organism from becoming a slavish 
automaton to arbitrary experiences of reward.

explore-exploIt: devIatIng from strIct 
s-r control
Even for the simplest of organisms (or a computer 
model), adaptation requires a degree of freedom 
from responding strictly controlled by learned 
S-R associations. Always choosing the response 
that has, in the past, yielded the greatest reward – 
known as a greedy strategy – is insufficiently flex-
ible. Reward is essentially information about the 
environment. This information, in turn, assigns 
values to stimuli, actions, and their associations, 
which represents an understanding of the world. 
The challenge for an organism is in arriving at 
the best understanding of the world: how does 
an organism know that it “got it right” or that 

effort required) on behavioral choice: “… ena-
bling organisms to overcome obstacles or work-
related response costs that separate them from 
significant stimuli.” Though they propose very 
different mechanisms, in both theories, dopamine 
effectively increases motivation (energy expended 
toward a goal), increasing the likelihood of reward 
pursuit – either by energizing behavior (reduc-
ing cost barriers) in Salamone’s view or inducing 
“wanting” (increasing incentive) in Berridge’s.

Though these different perspectives are often 
viewed as competing hypotheses and inspire 
controversy, there is nothing inherently mutu-
ally exclusive between them. It is conceivable that 
dopamine could do all these things. The challenge 
is to discern how these potential aspects of dopa-
mine function may be integrated. Here we will 
focus on integrating the reinforcement learning 
and motivational views into a single framework.

antI-automaton mechanIsms
The potential problem with stimulus-response 
learning as a mechanism controlling behavior 
is a lack of flexibility: organisms could become 
enslaved to their prior reward history, simply 
emitting learned, reinforced responses to stim-
uli. Indeed, behaviorists in the early to middle 
twentieth century saw principles of S-R learning 
as a way to shape and control human behavior 
(Skinner, 1948, 1971). Though both humans and 
animals ended up being more resistant to such 
control than anticipated (for an interesting his-
torical survey of behaviorism, see Lemov, 2005), 
the notion of being a slave to S-R learning persists 
in modern neuroscience, particularly in the study 
of dopamine, where over-activating the dopamine 
system, for example through drugs of abuse 
(Berke and Hyman, 2000; Hyman et al., 2006) 
or, more recently, highly palatable food (Volkow 
and Wise, 2005; Avena et al., 2008; Kenny, 2010), 
establishes associations that results in compulsive 
behavior that escapes rational, executive control 
(Everitt and Robbins, 2005; Kalivas and O’Brien, 
2008). Berridge (2007) has argued against a habit-
based “automaton” view of addiction, noting that 
addicts can be highly flexible and inventive in their 
pursuit of drugs. Nonetheless, even in his theory, 
learned incentives induce increased “wanting,” 
generating compulsive behavior: addicts become 
slaves to “wanting” rather than habit.

The primary check on slavish S-R respond-
ing is generally believed to be a cognitive, delib-
erative system that exerts executive control, 
inhibiting and intervening in the automatic 
responses that might otherwise be generated by 
reinforced stimulus-response associations. This 
is reflected in theories of addiction where not 

http://www.frontiersin.org/Neuroscience/
http://www.frontiersin.org/Neuroscience/archive
www.frontiersin.org


Beeler Dopamine and thrift

Frontiers in Neuroscience www.frontiersin.org August 2012 | Volume 6 | Article 116 | 5

input (medium spiny neurons) and (2) indirectly 
through its regulation of corticostriatal plasticity, 
altering the strength of synaptic transmission as 
a consequence of experience. These two regula-
tory mechanisms of dopamine in corticostriatal 
throughput represent potential mechanisms 
underlying dopamine modulation of two dif-
ferent aspects of reinforcement learning.

Temporal difference models have two critical 
parameters that control how rewarding outcomes 
shape behavioral choice. The first is the learning 
rate, commonly called alpha, which controls the 
rate at which new information updates estab-
lished values – learning about “satisfying effects.” 
With a high learning rate, for example, very recent 
experience has a great impact on values. A low 
learning rate, in contrast, preferentially weights 
cumulative experience. This parameter is central 
to the relationship between reward and reinforce-
ment efficacy; that is, the degree of reinforcement 
induced by reward (Figure 2, bottom), though 
obviously the nature and magnitude of the 
reward itself is independent of learning rate. The 
other parameter, commonly referred to as beta or 
the “inverse temperature,” controls the degree to 
which established values actually biases behav-
ioral choice (Sutton and Barto, 1998; Dayan, 
2001; Daw et al., 2006). A high beta, for example, 
would mean that behavior is highly determined 
by established values, or “greedy”; a low beta, in 
contrast, means that behavior may deviate from 
what would be dictated by established values. 
At “maximal” beta, behavior would approach 
maximally greedy and behavioral choice would 
be ruled by prior experience. At “minimal” beta, 
behavior would relatively independent of prior 
experience, as if learning had not occurred. By 
controlling the degree to which learned associa-
tions and established values determine behav-
ioral choice, this parameter can modulate the 
“likely” in “more likely to recur in the future” 
(Figure 2). In short, Thorndike (1911) states 
that obtaining a “satisfying effect” – rewarding 
outcome – will increase the probability of that 
behavior in the future. However, that increased 
probability can be considered to be the result of 
two factors: (1) the magnitude and reinforcement 
efficacy of the reward itself, or more precisely 
the subsequent strength of association and (2) 
the degree to which learned associations bias 
behavioral choice. Computational reinforcement 
learning models formalize these two aspects of 
reinforcement learning, the translation of “sat-
isfying effects” to behavioral choice, as these two 
critical parameters, alpha and beta, the learning/
update rate, and the balance between exploration 
and exploitation.

the environment has not changed recently? Thus, 
new information can be valuable (Behrens et al., 
2007), even if it is not directly rewarding (but see 
Kakade and Dayan, 2002).

The explore-exploit dilemma (Sutton and 
Barto, 1998), poses the question of how the ani-
mal is to balance fully maximizing its reward 
based on its current knowledge of the world, 
exploitation, against obtaining new knowledge, 
exploration (see Cohen et al., 2007 for review; 
Daw et al., 2006 for human study). An example 
will help from Dayan (2001). Imagine a bee forag-
ing between two colors of flowers where the yield 
of nectar for all flowers is probabilistic but the 
average yield is higher (let us say double) in blue 
rather than yellow flowers. A bee that first lands 
on a low yield yellow flower would be rewarded. 
If that bee were to maximally exploit that reward 
information, it would continue to return to yel-
low flowers, be further reinforced, resulting in 
a strategy of only selecting yellow flowers. In 
this scenario, the bee has never has sufficiently 
sampled its environment and learned that blue 
flowers yield twice as much nectar. Of course, the 
bee could have landed on the blue flower first. 
Though fortuitous for the bee, a greedy strategy 
is still likely to be maladaptive if the environment 
is changing, as most environments do. For exam-
ple, if during spring different growing patterns 
result in a shift such that later in spring the yellow 
flowers have higher yield, the bee that only selects 
blue flowers will suffer a disadvantage. Thus, an 
organism needs to be able to regulate how much 
reward history biases behavioral choice, allowing 
non-greedy exploration: sampling and updating 
of knowledge of the environment.

mappIng temporal dIfference 
learnIng onto thorndIke
In reinforcement learning algorithms, stimuli 
and actions are associated with values (V) that 
arise from accumulating reward experience. 
More rewarding stimuli and actions will obtain 
greater value. These values, in term, bias action 
choices in favor of more rewarding options. The 
values are updated with new reward experience. 
The striatum has been implicated as a primary 
substrate for reinforcement learning where 
it is believed to play a role in action selection 
(Mogenson et al., 1980; Mink, 1996; Redgrave 
et al., 1999) by modulating cortical activity 
vis-a-vis corticostriatal-thalamo-cortical loops 
(Figure 2, top). Dopamine can alter corticostri-
atal throughput, and presumably action selection, 
through two mechanisms (Beeler, 2011; Beeler 
et al., 2012b): (1) direct modulation of striatal 
projection neuron activity and responsiveness to 

Explore-exploit dilemma
An expression coined to capture the 
trade-off between fully exploiting prior 
reward learning by always choosing the 
best option (exploit) and sampling less 
valuable options to obtain further 
information about the environment 
(explore). In TD models there are 
multiple potential strategies for 
managing exploration-exploitation, but 
the neural mechanisms controlling this 
trade-off remain poorly understood.

Learning rate
The degree to which new reward 
information updates established values, 
controlling the relative contribution 
between new and old information; by 
providing a temporal window of 
integration, controls the rate of learning 
and forgetting.

Temperature
Amount of “randomness” in a system; 
in TD models, determines the degree to 
which established values bias behavioral 
choice (usually the inverse temperature).
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across a broader temporal span. The putative 
roles of dopamine in mediating reinforcement 
learning and modulating motivation, often 
associated with phasic and tonic dopamine, 
respectively, have not been reconciled into a 
single, unified theory. Though the role of phasic 
dopamine in reinforcement learning has been 
extensively modeled using temporal difference 
algorithms, there has been little examination of 
the potential role of tonic dopamine in these 
models. The incentive-salience perspective on 
dopamine suggests that dopamine scales the 
impact of learned reward values (i.e., incen-
tive) on behavior, suggesting a potential way 
to integrate tonic dopamine and its putative 
motivational effects into reinforcement learn-
ing models as a mechanism regulating the beta, 
or explore-exploit, parameter (Beeler et al., 
2010, see Zhang et al., 2009 for an alternative 
approach).

mappIng phasIc and tonIc dopamIne 
onto temporal dIfference learnIng
Dopamine is widely believed to operate in two 
modes, phasic and tonic (Grace et al., 2007), 
but see Joshua et al. (2009), Owesson-White 
et al. (2012). Phasic dopamine activity consists 
of short burst of high-frequency spikes while 
tonic activity consists of irregular, basal spike 
activity at approximately 4–5 Hz. The role of 
dopamine as prediction error signal in tempo-
ral difference learning models is associated with 
phasic firing (and pausing) with millisecond 
temporal resolution appropriate to signal dis-
crete events, such as cues and rewards (Schultz 
et al., 1997; Schultz, 2002; Stuber et al., 2005; 
Day et al., 2007; Flagel et al., 2010; Gan et al., 
2010). In contrast, tonic activity, investigated 
primarily through pharmacological and genetic 
methods, is more widely associated with moti-
vational views of dopamine function and acts 

Figure 2 | Mapping formal parameters of 
reinforcement learning models onto instrumental, 
stimulus-response learning. (Top) Simplified depiction 
of cortico-basal ganglia-thalamo-cortical circuits believed 
to modulate cortical activity and action selection, 
representing a pathway by which striatum-based 
reinforcement learning influences behavior. (Bottom) A 
schematic showing the two key parameters of temporal 
difference models within a simple stimulus-response 
diagram. The light red box labeled “associative value” 
represents the synaptic strength, construed as “value” 

in computational models, linking a particular stimulus 
with a particular response. The learning rate reflects 
dopamine’s modulation of synaptic plasticity, regulating 
the degree to which outcomes alter learned values 
(represented by thickness of black arrows). The 
explore-exploit parameter reflects the degree to which 
an established value biases the subsequent response 
(again represented by arrow thickness), reflecting 
dopamine’s modulation of responsiveness of striatal 
projection neurons to afferent activity (i.e., a gain 
mechanism).

Phasic dopamine
Short, high-frequency bursts of spikes 
in dopamine cells associated with 
prediction error signals in 
reinforcement (temporal difference) 
learning theories of dopamine.

Tonic dopamine
Irregular, low frequency basal firing 
activity of dopamine cells; extracellular 
dopamine concentration or dopamine 
“tone.” Note, extracellular dopamine 
concentrations may be the consequence 
of both tonic and phasic dopamine 
activity.
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the groups does not lie in their behavior around 
switches but rather during the periods of stabil-
ity between these switches where the wild-type 
preferentially distribute their pressing toward the 
inexpensive lever while the DATkd distribute their 
effort equally to both levers. This suggests that 
the DATkd are adopting an alternative behavioral 
strategy.

To formally assess how the two genotypes 
are using on-going reward information, we fit 
the data to a temporal difference learning algo-
rithm (Daw and Dayan, 2004; Corrado et al., 
2005; Lau and Glimcher, 2005) and modeled 
the data on a lever press by lever press basis. We 
observed no difference between genotypes in 
the alpha, or learning rate parameter, consistent 
with previous studies of the DATkd showing no 
learning impairments (Cagniard et al., 2006; Yin 
et al., 2006; Beeler et al., 2010) and their behav-
ior around lever switches described above. The 
DATkd appear to learn about and update reward 
information normally. In contrast, we observed 
a difference in the beta parameters between the 
two groups where the DATkd exhibit a lower beta; 
that is, there was less coupling between reward 
history and their behavioral choices. From this 
we draw two primary conclusions. First, that 
tonic dopamine can modulate the inverse tem-
perature, or explore-exploit parameter in a TD 
learning model, suggesting that tonic dopamine 
plays a complementary role to phasic dopamine, 
where the latter modulates learning and updat-
ing values while the former scales the degree to 
which those values bias behavioral choice. Second, 
we observe that increased dopamine decreases the 
impact of reward value on behavioral choice: that 
is, elevated dopamine favors exploration rather 
than exploitation. Subsequent modeling work by 
Humphries et al. (2012) supports these observa-
tions and elaborates the potential complexity of 
dopamine modulation of the trade-off between 
exploration and exploitation.

The observation that tonic dopamine can 
modulate how much learned values bias behavior 
is consistent with the incentive-salience hypoth-
esis where dopamine scales incentive values 
that drive reward pursuit (Cagniard et al., 2006; 
Berridge, 2007). However, rather than increasing 
the impact of learned values on choice behavior, 
as predicted by the incentive-salience hypothesis, 
increased dopamine, in these studies, diminishes 
the coupling of reward and choice.

rulIng out other explanatIons: cost 
sensItIvIty and perseveratIon
Increased dopamine has been associated with 
perseveration and stereotypy, making it pos-

dopamIne and beta: regulatIng how 
value bIases choIce
Given that dopamine is widely associated with 
enhanced pursuit of reward and believed to 
underlie compulsive behavioral disorders such 
as addiction, we asked whether increased tonic 
dopamine would impair behavioral flexibility 
(Beeler et al., 2010); that is, make mice more 
greedy such that their behavioral choices were 
more dictated by prior reward experience. This 
question has two components: (1) does tonic 
dopamine affect beta, the degree to which reward 
learning biases behavior and (2) if so, what is the 
direction of dopamine’s modulation of beta? 
Prior literature would suggest that increased tonic 
dopamine would increase the impact of reward 
on behavioral choice. Thus, we might expect that 
hyperdopaminergic mice will show increased beta 
and be more controlled by reward history.

To test this we used a homecage behavioral flex-
ibility paradigm. Mice were singly housed in cages 
equipped with two operant levers and a pellet dis-
penser. There was no food restriction but all food 
had to be acquired through lever pressing. Both 
levers yielded 20 mg pellets of food, but with dif-
ferent lever press requirements such that one was 
always “cheap” (FR20, fixed ratio schedule requir-
ing exactly 20 presses per pellet) and one was always 
expensive where the cost incremented across the 
experiment (FR20-250). Which lever was which, 
however, randomly changed every 20–40 min. As 
a consequence, the mice had to monitor their on-
going reward and constantly update the value of 
each lever based on recent returns. To assess the 
role of tonic dopamine, we used mice with a knock-
down in the dopamine transporter (DATkd) that 
results in increased extracellular dopamine and 
an increased rate of tonic activity (Zhuang et al., 
2001) while patterns of phasic, burst activity are 
unchanged (Cagniard et al., 2006).

Behaviorally, we observed what would be 
expected: the DATkd mice work harder and spend 
more time pressing the expensive lever. In this 
situation, however, they do not gain significantly 
greater reward; they just work harder. One poten-
tial explanation would be that the DAT mice have 
impaired learning and do not update the value of 
each lever in the same way that wild-type mice do. 
When we examined their behavior immediately 
surrounding switches between which lever was 
expensive and inexpensive, however, we observe 
identical patterns in the two genotypes: both 
groups recognize the change, receive reward on 
the now cheap lever but then nonetheless return 
to the previously inexpensive lever for a short time 
before gradually shifting their effort toward the 
now inexpensive lever. The difference between 
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2010). This means that “exploration” may actu-
ally reflect some other, unaccounted for, process 
or factor. Here, we propose such a factor: energy 
availability, signaled by dopamine, regulates thrift, 
or the degree to which prior reward information 
needs to be maximally exploited. In short, we con-
strue the dopaminergic regulation of beta as the 
regulation of thrift.

adaptIng behavIor to the economIc 
envIronment: regulatIng thrIft
A central function of reinforcement learning is 
to maximize reward (Sutton and Barto, 1998; 
Dayan, 2001). As noted above, however, this 
requires balancing the greedy exploitation of 
prior knowledge and exploring the environ-
ment, ensuring one’s knowledge of the envi-
ronment is accurate and updated. The best 
balance between exploration and exploitation, 
however, is contingent on the environment, 
both its stability and its economics. The for-
mer is reflected in the certainty an animal can 
attribute to its knowledge (see Daw et al., 2005; 
Yu and Dayan, 2005; Rushworth and Behrens, 
2008), an important topic outside the scope of 
the current discussion. The latter is reflected in 
the availability and cost of reward. In the con-
text of foraging, if food is reliably and readily 
available, there is no advantage to being fru-
gal. Energy spent exploring will increase the 
animal’s knowledge of its environment and 
facilitate adaptation. In contrast, if food is 
scarce and costly, exploration should be kept 
to a minimum to conserve energy and exploit 
the limited available food sources.

Niv et al. (2007) proposed that tonic dopa-
mine regulates vigor of behavior by encoding 
the average reward over time. They proposed 
that higher tonic dopamine would signal a rich 
reward environment and represent the oppor-
tunity cost associated with inactivity, the “cost 
of sloth.” An alternative take on this same 
notion would suggest, as Niv proposes, that 
tonic dopamine represents the average reward 
history – from our view, specifically energy 
availability – but that a rich environment would 
favor exploration and energy expenditure rather 
than exploitation of reward information. That 
is, if the environment is rich, opportunity 
costs are not important: there is plenty to go 
around, one should expend energy and explore. 
Activity may be increased but less strictly cou-
pled to reward. What is being adapted, in this 
view, is not reward pursuit but the expendi-
ture of energy relative to the prevailing energy 
economy (Beeler et al., 2012b). Our data sug-
gest a relaxation of thrift, that is, decreased 

sible that the DATkd “get stuck” motorically or 
even decision-wise. The data rule this out. In the 
model, a “last lever pressed” factor was included 
to capture the degree of perseveration, i.e., that 
the greatest factor determining their lever choice 
is simply the lever they last pressed. There were 
no differences between genotypes on this factor, 
indicating that the DATkd mice are not simply 
perseverating.

Alternatively, Salamone et al. (2007) have long 
argued that dopamine energizes behavior, increas-
ing the amount of effort an animal will expend in 
pursuit of a goal. In this view, increased dopamine 
does not enhance the incentive for reward but, 
rather, diminishes sensitivity to cost associated 
with procuring reward. Thus, it is possible that the 
DATkd mice “simply did not care” about the cost. 
The data argue against this. In a variant of the par-
adigm where the expensive and inexpensive levers 
did not switch, the two genotypes were indistin-
guishable and the DATkd clearly favored the inex-
pensive lever. In a subsequent study (Beeler et al., 
2012a) with escalating response costs to obtain 
food, the DATkd showed the same elasticity of 
demand – the degree to which consumption 
adjusts in response to escalating cost (Hursh and 
Silberberg, 2008) – as wild-type, again suggest-
ing that the DATkd mice are not insensitive to 
cost. Nonetheless, as Salamone suggests, dopa-
mine does appear to energize their behavior. If 
this is not due increased incentive (i.e., increased 
exploitation of reward value information) nor 
to decreased sensitivity to cost, how then is their 
behavior being “energized?”

Before proceeding, it is important to note that 
our results show a decrease in exploitation. Though 
exploration and exploitation are often construed 
as occurring along a continuum, and behaviorally 
an increase in one necessitates a decrease in the 
other, at the level of neural processes, exploita-
tion and exploration may represent two (or more) 
interacting processes mediated by different neu-
ral substrates. Thus, in our studies, enhanced 
dopamine resulted in decreased exploitation 
(decreased coupling between reward history and 
choice), allowing exploration. The degree to which 
the behavioral strategy of equally sampling two 
familiar levers represents exploration is unclear. 
In the remainder of the review, we argue that 
dopamine favors exploration; however, we view 
this primarily as permissive. We remain agnostic 
as to what mechanisms direct exploration (see 
Cohen et al., 2007). Critically, the beta parameter, 
though generally viewed as regulating explore-
exploit, also captures noise in the model, includ-
ing factors affecting the process being modeled 
but not included in the model (Nassar and Gold, 

Thrift
The degree to which behavioral choice 
is biased toward maximizing the return 
on energy expenditure, i.e., minimizing 
effort and maximizing reward.
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can be thought of, energetically, as regulating 
thriftiness. In a reward/energy rich environment, 
there is no need to conserve or be frugal with 
energy expenditure. In such an environment, 
increasing exploration and energy expended 
in foraging (or other behaviors) represents an 
adaptive decrease in thriftiness. In contrast, in 
reward/energy poor environments, frugality in 
energy expenditure is critical. Thus, in environ-
ments with a low average rate of reward (espe-
cially energy poor), exploiting prior experience 
to increase thriftiness and maximize return on 
expenditures is adaptive (Figure 3). From this 
perspective, learned reward value, or incentive, 
can be thought of as guidelines for managing the 
distribution of energy resources. The degree to 
which these incentives/values control behavior, 
however, depends upon the balance between 
exploration and exploitation, modulated by the 
same dopamine system believed to teach reward 
values in the first place. Insofar as the alpha and 
beta parameters in reinforcement learning algo-
rithms capture something essential about this 

 exploitation, permissive of exploration. How 
this energy “freed from the Law of Effect” is 
directed behaviorally is a different question, 
beyond the scope of this review.

the role of explore-exploIt regulatIon: 
dopamIne modulates thrIftIness
The idea that dopamine regulates energy expend-
iture, though not central to the reward-centric 
view of dopamine, is consistent with decades 
of literature showing that dopamine modulates 
general activity levels, exemplified by psycho-
stimulants. What is not intuitive is the relation-
ship between dopamine’s modulation of activity 
as a generalized phenomenon and its putative 
regulation of the balance between exploration 
and exploitation. We suggest that in a given 
energy economy, the animal faces two fundamen-
tal questions: (1) how much energy do I have 
to expend and (2) how thrifty do I need to be 
in using available energy (put another way, how 
carefully should I distribute that energy). The 
balance between exploration and  exploitation 

Figure 3 | Tonic dopamine and the balance between exploration and exploitation. Schematic of hypothesized role of tonic dopamine in mediating thrift in 
energy expenditure and reward pursuit through regulating the degree to which prior reward learning and value biases behavioral choice.
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type of learning and its control over actions, a 
dopamine system that regulates both represents 
an elegant evolutionary solution to learning from 
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exploration and exploitation. Elegant work by 
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that the norepinephrine system may contribute 
importantly to regulating the balance between 
explore-exploit as well. Undoubtedly multiple 
systems regulate this balance, each contribut-
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ing explore/exploit as a function of uncertainty 
or utility (Cohen et al., 2007). Here we suggest 
dopamine regulation of beta may be construed 
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to exploit its prior knowledge to maximize return 
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returnIng to thorndIke: freedom has 
Its lImIts
The foregoing discussion suggests that organisms 
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response learning from the point of view of 
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one’s behavior is ruled by the law of effect. This 
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