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The things that we hold dearest often require a sacrifice, as epitomized in the maxim “no
pain, no gain.” But how is the subjective value of outcomes established when they consist
of mixtures of costs and benefits? We describe theoretical models for the integration of
costs and benefits into a single value, drawing on both the economic and the empirical
literatures, with the goal of rendering them accessible to the neuroscience community.We
propose two key assays that go beyond goodness of fit for deciding between the dominant
additive model and four varieties of interactive models. First, how they model decisions
between costs when reward is not on offer; and second, whether they predict changes
in reward sensitivity when costs are added to outcomes, and in what direction. We pro-
vide a selective review of relevant neurobiological work from a computational perspective,
focusing on those studies that illuminate the underlying valuation mechanisms. Cognitive
neuroscience has great potential to decide which of the theoretical models is actually
employed by our brains, but empirical work has yet to fully embrace this challenge. We
hope that future research improves our understanding of how our brain decides whether
mixed outcomes are worthwhile.
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When faced with many possible courses of action humans and
animals must evaluate their expected future costs and benefits in
order to decide optimally. Every action is associated with a cost
because every action requires, at minimum, some energy expen-
diture for execution. The things that we hold dearest often require
a sacrifice, as epitomized in the maxim “no pain, no gain.” We
struggle to be included in our peer group, study hard to increase
our career prospects, work to provide for our families, pay to go
on vacation, subject ourselves to painful health tests to maintain
our physical well-being, and spend considerable energy on caring
for our loved ones. Understanding how costs are integrated with
benefits to ultimately reach a decision is therefore of paramount
importance.

Value-based theories of decision-making suggest that people
are thought to evaluate courses of action on the basis of their pre-
dictions about the future happiness a choice will engender (Von
Neumann and Morgenstern, 1947; Vlaev et al., 2011). Because
people are notoriously bad at predicting their future emotions
(Hsee and Hastie, 2006) their decision utility is often different
from their experienced utility at the time the consequences of their
action come to fruition (Kahneman et al., 1997). Here we focus
on decision utility, the time when agents decide between different
prospects. Our question is how the subjective value of outcomes
that are mixtures of costs and benefits is established.

We define costs and benefits as outcome attributes that decrease
or increase, respectively, the decision value of that outcome at the
time of decision-making. The costs and benefits most often stud-
ied in cognitive neuroscience include primary reinforcers such as
food, drink, physical effort, and pain; secondary reinforcers such
as monetary gains and losses; and mental events such as cognitive
effort (Kool et al., 2010) and emotional suffering, such as the pain

of regret (Bell, 1982). Although in some situations effort may be
rewarding (Kivetz, 2003; Kim and Labroo, 2011), it is normally
considered a cost (Hull, 1943).

While the definition of benefits is straightforward, our defini-
tion of costs may be controversial because it excludes some aversive
outcome attributes. For instance, a decision may be risky because it
entails a chance that a reward is not obtained, or it may prolong the
time until reward is available for consumption. Yet we do not con-
sider risk and delay to be true costs because they do not produce
a negative subjective utility on their own, in the absence of other
rewards or costs. Both risk and delay derive their meaning from
the nature of the outcome and modulate its utility; their emotional
valence depends on whether the outcome is rewarding or costly
(see Loewenstein, 1987, for discussion on the valence of delay). As
we will see, all available models of value integration make a similar
distinction in that they treat risk and delay differently to “true”
costs.

There are several theoretical valuation models for integrat-
ing costs and benefits. Cognitive neuroscience has great potential
to decide which one is actually employed by the brain. Yet the
burgeoning behavioral and neurobiological work on decisions
between mixed outcomes often employs a single model of val-
uation, and model comparison work is rare. Our aim in this paper
is to encourage empirical scientists to design behavioral and neu-
robiological experiments that can uncover the functional form of
value integration in the brain.

In the first section we review the dominant model of value,
which assumes an additive integration of costs and bene-
fits. Alternative cost-benefit integration models draw substan-
tially on our understanding of how risk and delay influence
valuation. This influence is therefore reviewed briefly in the
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second section. The third section describes alternative models
of cost-benefit integration, all interactive in nature, with the
aim of rendering them accessible for the neuroscience com-
munity. These three sections concentrate on theoretical mod-
els but draw on some pertinent behavioral work. In the final
two sections we provide a selective review of relevant neuro-
biological work from a computational perspective, focusing on
those studies that illuminate the underlying valuation mecha-
nisms.

THE ADDITIVE MODEL OF VALUE INTEGRATION
A dominant model for cost-benefit decision-making is expected
utility theory (Von Neumann and Morgenstern, 1947). Here the
subjective value (V ) of a choice is computed as the sum of
the probability (p) weighted utility (U ) of each of its possible
outcomes:

V =
n∑

k=1

pk × U (mk) (1)

In this equation m signifies the magnitude of rewards and costs
associated with the outcomes the choice entails. The utility func-
tion in this theory is typically plotted for positive ms where it is
concave, with diminishing sensitivity for larger ms. Costs are rep-
resented by negative U s. This is an additive model of valuation
because the disutilities of costs are summed with the utilities of
beneficial outcomes. A positive V favors a decision to act, and if
there is more than one option under consideration the action with
the greatest expected utility is chosen.

The additive model of valuation is dominant, but there are
a number of interesting alternatives (see Table 1; Figure 1).
Crucially, there are situations in which the additive model may
not be valid. Multi-attribute utility theory (Keeney and Raiffa,
1993), for example, allows additive integration only under the
assumption of “additive independence” (Thurston, 2006). Con-
sider a lottery where an agent may obtain one of two outcomes
with a 50% probability. Both outcomes are a mixture of two
attributes, x and y, each with two values – for example, a large
sandwich for $4 or a smaller sandwich for $2. Under additive
independence an agent who is indifferent between the two out-
comes of Lottery A, [x2,y1] and [x1,y2] would also be indifferent
between the two outcomes of Lottery B where the same attrib-
utes and values are recombined [x1,y1] and [x2,y2]. Clearly,
an agent who is indifferent between the possible outcomes of
lottery A – the high-reward/high-cost outcome and the low-
reward/low-cost outcome – is unlikely to be indifferent between
the two outcomes of lottery B where the high-reward/low-cost
outcome (a large sandwich for $2) clearly dominates the low-
reward/high-cost outcome (a small sandwich for $4). In this sce-
nario reward and cost are not additively independent, suggesting
that they should not always be combined according to the additive
model.

Before we describe alternative models of cost-benefit integra-
tion we discuss in a little more detail how risk and delay are thought
to modulate the value of an outcome with either a rewarding or a
costly attribute.

MODULATION OF COSTS AND BENEFITS BY RISK AND DELAY
Consider a patient who must evaluate a treatment option. The
improvement in health this treatment brings and the painful pro-
cedure it involves must both be weighed against the chance that it
is not efficacious and will only yield benefits after a long recovery
period. In this section we discuss how risk and delay influence the
subjective value of a reward or a cost.

MODELING RISK
Expected utility theory, a prescriptive model for decision-making
under risk,fits empirical data less well than the descriptive Prospect
theory (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992). In Prospect theory utilities are again computed as a product
of two functions, one transforming gains and losses (the util-
ity function) and the other transforming given probabilities (the
probability weighing function). The utility function is concave in
the gain domain and convex in the loss domain with a steeper
slope in the latter, so that the disutility of losses is greater than the
utility of gains, allowing prospect theory to account for loss aver-
sion. Prospect theory also proposes a non-fixed reference point
for changes in utility, rather than a fixed point representing final
wealth states; this feature is important for our discussion in Section
“Modeling costs as right-shifts of the utility function”. These trans-
formations allow the theory to account for a number of expected
utility violations, such as the reflection and framing effects and
biases in the perception of small and large outcome probabili-
ties (Kahneman and Tversky, 1979, 2000; Tversky and Kahneman,
1981). Both expected utility and Prospect theory entail a multi-
plicative integration of utility with its probability, such that utility
is weighted (or discounted) in accordance with its decreasing
likelihood of occurrence.

The form of probability discounting proposed by expected
utility theory does not account adequately for an array of anom-
alies in decision-making under uncertainty, but prospect theory
can account for most of those. The mathematical form of the
probability weighting and utility functions in prospect theory
are not formally specified beyond their qualitative predictions,
but more precise formulations derived from a body of animal

Table 1 | Models of value integration.

Additive models Interactive models

Expected utility theory:

V=pr×U (mr)−pc×U (mc)

Trade-off model:

V=p×U (mr)/U (mc)

Prospect theory:

V=P (pr)×U (mr)−P (pc)×U (mc)

Hyperbolic discounting:

V=U (mr)/[1+ k ×U (mc)]

Discounted utility theory:

V=P (pr)×D(d r)×U (mr)

−P (pc)×D(dc)×U (mc)

Right-shift of the utility curve:

V=P (p)×U (mr−mc)

Bilinear model:

V= x1×U (mr)− x2×U (mc)

− x3×U (mc)×U (mr)

The subjective value of a single mixed outcome with probability p, one rewarding

attribute mr and one costly attribute mc (coded positively so that greater mc rep-

resents greater cost), delivered after a time delay d. U, P, and D are functions that

transform externally given quantities m, p, and d into internal representations. x1,

x2, and x3 are constants.
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FIGURE 1 | Additive and. interactive models of value integration. Value
was computed according to the bilinear model with x 1 =1 and x 2 =1. Additive
models are depicted on the left, with x 3 = 0. Interactive models are depicted
on the right, with x 3 =0.06. Top panels employed a linear utility function for

rewards and costs (those that were employed by Talmi et al., 2009); bottom
panels employed a power function with exponent 0.8. Additive models with
non-linear utility (bottom left) represent the predictions of expected utility
theory with p=1. Figure adapted from Park et al. (2011).

and human probability discounting experiments indicate that
probabilistic rewards are discounted in a hyperbolic or quasi-
hyperbolic manner as their likelihood diminishes (Green and
Myerson, 2004; Green et al., 2004, 2011). These experiments
typically employ psychophysical, “adjusting amount” procedures
(Rachlin et al., 1991). In a standard procedure, participants are
required to choose between a smaller-certain reward and a larger-
probabilistic reward. In each trial the amount of the smaller reward
is adjusted until the participant is indifferent between the two
options. Under the assumption that indifference entails equality
of subjective value the subjective value of the risky option can be
quantified in terms of the certain (risk-free) option. The proba-
bility of the larger reward is then altered such that the probability
discount function can be estimated from a number of indifference
points across the probability spectrum. Results of these procedures
consistently show that hyperbolic functions provide a superior fit
to these indifference points, in contrast with the predictions of
expected utility theory (Figure 2). To take this into account p in
Eq. 1 can be replaced by P(p) where

P(p) =
1

1+ h ×Θ
(1.1)

With

Θ =
1− p

p
(1.2)

Θ is termed the “odds ratio” and is computed as the probability of
non-occurrence divided by the probability of occurrence. An odds
ratio of 1 therefore corresponds to outcomes that occur 50% of the
time. h is a discount rate parameter which determines the rate of
probability discounting. If h= 1 the individual is risk neutral and
values the reward in accordance with EU theory, so P(p)= p. When
h < 1 the individual is described as risk averse [V < (p×M )] and
when h > 1 as risk seeking (Figure 2). P(p) can be considered as
a discount factor between zero and one by which the reward is
discounted in accordance with its “odds against.”

The main feature of a hyperbolic discount function is that the
reward loses a gradually smaller proportion of its value per increas-
ing unit in odds against – so it loses a larger proportion of its value
when the probability changes from 90 to 80% than when it changes
from 60 to 50%. This can explain why a person who chooses
a smaller but more certain reward over a larger but more risky
option can switch their preferences when the probability of both
options is reduced by a constant – similar to the Allais or certainty
paradox (Allais, 1953; Kahneman and Tversky, 1979). The smaller
(below 1) is h, the greater is the steepness of the initial devaluation
relative to the later devaluation. Note that this formulation is con-
sistent with the predictions of prospect theory, for example, the
overweighting of events with small probabilities and the under-
weighting events with large probabilities (Figure 2). A number
of similar but more complex functions have been proposed that
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FIGURE 2 | Hyperbolic discounting of risk. In this basic hyperbolic model
individuals steeply discount reward value with initial decreases in
probability of occurrence and only gradually as they get more unlikely. h is a
risk aversion parameter. In the case of h=1 discounting conforms to EU
theory, i.e., an equal decrease in value for every percent decline in
probability. h < 1 equates to risk aversion and when greater than one to risk
seeking. Value here is represented as a proportion of its initial (certain)
value or alternatively as the discount factor.

attempt to capture other features of subjective valuation by adding
extra parameters (Green and Myerson, 2004; Myerson et al., 2011).

MODELING DELAY
While it is difficult to extend EU and prospect theory to account for
situations where people choose between rewards or punishments
that are available at different points in time (termed intertemporal
choice), discounted utility theory models this situation explicitly.
The subjective value of a single, certain outcome m that is delayed
by d can be expressed as

V = D(d)× U (m) (2)

With U (m) representing the instantaneous utility of m and D(d)
representing a discount factor ranging from zero to one by which
U (m) is discounted in accordance with its objective delay.

In fact, the probability discounting approach outlined above
derives from an older and richer literature on temporal dis-
counting (Loewenstein and Elster, 1992; Frederick et al., 2002;
Green and Myerson, 2004), and relates to a debate as to which is
the primary discounting mechanism – probability (because delay

entails uncertainty) or delay (because the resolution of uncer-
tainty takes time, Prelec and Loewenstein, 1991; Rachlin et al.,
1991). In discounted utility theory the utility of a reward is dis-
counted exponentially as a function of its delay, namely with a
constant percentage decrease in value per unit time (Samuelson,
1937; Koopmans, 1960).

D(d) = e(−k∗d) (2.1)

k is a free parameter which represents the individual’s discount
rate. Thus k quantifies an individual’s tendency to discount future
costs and benefits. An individual with a high k value devalues
future costs and benefits more steeply than a lower k individual,
i.e. with a greater percentage decrease in value per unit time. k is
thought to relate to impulsivity in the same manner as h relates to
an individual’s risk profile (Ainslie, 1975, 2001) because individu-
als with a large k are more likely to choose the smaller-sooner over
larger-later option.

Although people do discount exponentially in some situations
(Schweighofer et al., 2006), there is a wealth of empirical evidence
against exponential discounting, primarily in the robust finding
that the discount rate is not constant but decreases with time. In
a simple demonstration (Thaler, 1981) asked subjects to specify
the amount of money they would require in 1 month, 1 year or
10 years to make them indifferent between that option and receiv-
ing $15 now. Their median responses ($20, $50, $100) implied an
average annual discount rate of 19% over a 10 year horizon, 120%
over a 1 year horizon and 345% over a 1 month horizon. Similar
observations have been made for in non-monetary domains such
as health and credit markets (Redelmeier and Heller, 1993; Chap-
man and Elstein, 1995; Chapman, 1996, 2001; Pender, 1996). A
noted manifestation of this feature is that humans and animals
are prone to preference reversals when a constant delay is added
to both options of an intertemporal choice (Prelec and Loewen-
stein, 1991; Loewenstein and Elster, 1992). For example, people
who prefer $10 today over $11 tomorrow often also prefer $11 in
31 days to $10 in 30 days (Green et al., 1994). As we have seen,
the same reversals also characterize choices between certain and
probabilistic outcomes.

When mathematical functions are fit to intertemporal choice
data (for example indifference points between smaller-sooner and
larger-later options) a multitude of studies have demonstrated
that hyperbolic or quasi-hyperbolic discount functions provide
a superior fit compared to exponential functions in both humans
and animals, for delayed monetary, health-related, and other forms
of reward, and punishment (reviewed in Rachlin et al., 1991; Ho
et al., 1999; Frederick et al., 2002; Green and Myerson, 2004, but
see Kable and Glimcher, 2007, for a different model). The standard
and most widely used functional form for hyperbolic discounting
in the behavioral literature was proposed by Mazur (1987) and
based on earlier work by Ainslie and Herrnstein (1981), Ainslie
(1975), Herrnstein (1981). According to this work,

D(d) =
1

1+ k × d
(2.2)

so that

V =
m

1+ k × d
(2.3)
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If we taker U (m) to be a better representation of the instantaneous
value of M (Pine et al., 2009) then

V =
U (m)

1+ k × d
(2.4)

As with probability discounting, other functional forms which
capture decreasing rates of discounting and the non-linearity of
the relationship between objective and subjective delay have also
been proposed (Phelps and Pollak, 1968; Loewenstein and Prelec,
1991; Frederick et al., 2002; Green and Myerson, 2004; Myerson
et al., 2011).

Expected utility, prospect theory and discounted util-
ity theory entail an attenuation of reward sensitivity with
risk or delay. This means that when reward is risky or
delayed, the utility gained by increasing it by a con-
stant reduces, so that U (m+ 1)−U (m) is greater than
U(m+ 1)×D(d)−U (m)×D(d) or U(m+ 1)× P(p)−U(m)×
P(p). Figure 3B illustrates this point. By combining these forms of
discounting, the subjective value of either costs or benefits can also
therefore be represented as a product of utility with two discount
factors, one based on probability and the other on delay (Prelec
and Loewenstein, 1991; Rachlin and Raineri, 1992; Ho et al., 1999):

V =
n∑

k=1

P
(
pk
)
× D (dk)× U (mk) (2.5)

ALTERNATIVE MODELS FOR THE EFFECTS OF RISK AND DELAY
A key challenge for the models we presented for the integration of
reward with probability and delay (Eq. 2.5) concerns the effect of
reward magnitude on valuation. The “magnitude effect” refers to
a prevalent finding in intertemporal choice that small magnitudes
are discounted more steeply than large ones. A person who is indif-
ferent between $60 today and $120 in 1 year is thus more likely to
choose $1200 in 1 year to $600 today. The magnitude effect has
been documented in numerous studies involving both real and
hypothetical rewards (reviewed in Frederick et al., 2002; Green
and Myerson, 2004) For instance, Thaler (1981) asked his partici-
pants to decide between a given immediate monetary reward and a
delayed monetary reward they would receive in a year’s time. Par-
ticipants were required to declare how much money they would
want in a year for them to be indifferent between the immediate
and the delayed options. He found that the immediate amounts of
$4000, $350, and $60 were discounted by 29, 34, and 39%, respec-
tively. Although the magnitude effect has also been documented in
non-monetary reward domains such as medical treatments, drugs,
job choices, vacations, and restaurant tips (Raineri and Rachlin,
1993; Chapman and Elstein, 1995; Chapman, 1996; Chapman
and Winquist, 1998; Baker et al., 2003; Schoenfelder and Han-
tula, 2003) it has not been observed in species other than humans,
for example in rats and pigeons and primates using food rewards
(Richards et al., 1997; Grace, 1999; Green and Myerson, 2004;
Freeman et al., 2012, but see Grace et al., 2012). In humans the
magnitude effect has not been reliably observed in the loss domain
(Estle et al., 2006) and in some (but not all) studies seems to level
off when the magnitudes involved are fairly large (Shelley, 1993;
Green et al., 1997).

FIGURE 3 | Hyperbolic discounting of delay. This function describes
theoretical data from an experiment in which two groups of animals are
given a choice between two arms of a maze, one of which contains a
larger-later reward, four food pellets that necessitate a wait of 15 s, and one
which contained a smaller-sooner reward, two food pellets that were
available after 3 s. (A) Value as a function of delay for a single reward
magnitude, two food pellets, computed according to Eq. 2.3. The discount
function is depicted for two values of k with higher k indicating steeper,
(more impulsive) discounting. (B) Value as a function of reward magnitude
for the two different and delays, 3 and 15 s, computed using the same
equation. The circles show the two options presented to the two groups of
animals. In this example the value of the larger-later reward is greater for
the less impulsive group, and the value of the smaller-sooner reward is
greater for the more impulsive group. (C) Value as a function of both delay
and reward magnitude.
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Although less explored, there is evidence that reward magni-
tude has the opposite effect on probability discounting compared
to temporal discounting. The “peanuts effect” describes the find-
ing that larger magnitude rewards are discounted more steeply
than smaller rewards, implying that people tend to be less risk
averse when they are “playing for peanuts” (Weber and Chapman,
2005; Chapman and Weber, 2006). For example, an individual
may prefer a 10% probability of obtaining $100 over a certain $10,
but may also prefer a certain $100 to a 10% probability of win-
ning $1000. The reward magnitude effect humans display when
they evaluate risky and delay outcomes poses a challenge for the
multiplicative P ×D×U approach in Eq. 2.5, since it suggests
that D and P themselves depend on U. The double dissociation
between the effect of reward magnitude on delay and probability
exacerbate the challenge because it suggests that magnitude effects
cannot simply be explained by a property of the discount func-
tion U. We briefly review two approaches to this challenge and
in Section “Using Neurobiological Evidence to Decide Between
Models of Risk and Delay” we discuss how neurobiological data
can help decide between them.

Green and Myerson (2004), Myerson et al. (2011) posit that
magnitude scales the temporal discount rate parameter k in Eq.
2.3 such that k decreases with increasing magnitude. By contrast,
in probability discounting magnitude scales an exponent of the
denominator of the discount function in Eq. 1.1. Because this ren-
ders the two discount functions D and P partially a function of m,
the subjective value V can no longer be thought of as the product
of a multiplication of separate utility and discount functions U, D,
and P.

Prelec and Loewenstein (1991) offer a general scheme with
which to view multi-attribute choice. Their model, an extension of
prospect theory, similarly relies on the decomposition of valuation
into separate discount and utility functions, and explains magni-
tude effects in delay discounting in terms of the utility function.
They suggest that agents represent or “frame” each attribute of a
multi-attribute outcome as a pair of values. The first value is the
absolute magnitude of the attribute and the second is what they
call the “polarity,” namely, whether it is beneficial or detrimental.
For example, $50 in 2 weeks is encoded as (50, 2) with the polarities
(+,−). The importance of attributes relative to each other can be
altered by certain linear transformations. One such linear trans-
formation is adding a constant to the magnitude of all values of
an attribute. The consequence of this transformation is “decreas-
ing absolute sensitivity,” a decrease in the importance of that
attribute relative to others. A second transformation involves mul-
tiplying all values of an attribute by a constant. The consequence
of this transformation is “increasing proportional sensitivity,” an
increase in the importance of that attribute. The magnitude effect
in intertemporal choice follows from increasing proportional sen-
sitivity because multiplying the monetary attribute increases its
importance relative to the delay attribute, leading to the appear-
ance that larger magnitudes are discounted less. These features
of multi-attribute framing can explain many of the anomalies
common to decision-making under uncertainty and intertem-
poral choice. Yet because increased proportional sensitivity will
always increases the importance of the monetary attribute this
effect cannot explain the opposite effects of reward magnitude on
delay and probability discounting.

To account for the peanuts effect Prelec and Loewenstein (1991)
invoke “interaction effects.” These are emotional processes that
can influence cost-benefit decisions by changing the importance
of the attributes of an outcome through valuation processes unre-
lated to utility and discount functions (Berns et al., 2007). Dis-
appointment, one of many interaction effects, accounts for the
magnitude effect in probability discounting. The notion here is
that anticipation of disappointment – should a losing outcome
occur – increases the greater the potential gain, and that increasing
disappointment decreases the importance of the money relative to
the probability attribute in a manner that accounts for preference
reversals (Prelec and Loewenstein, 1991; Weber and Chapman,
2005; Chapman and Weber, 2006). Disappointment does not
enter into delay discounting since there are no probabilistic out-
comes. Interaction effects are useful, however, when we consider
other interesting phenomena in intertemporal choice. The inter-
action effects of anticipation and dread are invoked to explain
why in some cases people prefer to speed up punishments to “get
them over with,” and savor rewards by delaying them, phenomena
which are incompatible with standard discounted utility theory
(Loewenstein, 1987; Berns et al., 2006).

In summary, the discounted utility theory notion of a decision
value-based on the multiplication of separate utility and discount
functions has been challenged in light of opposing magnitude
effects. In one view discount functions accept magnitude as an
argument, with no requirement for a separate utility function.
Although two separate mechanisms are required to account for
opposing magnitude effects this is perhaps a more parsimonious
account, but it does not explain a host of other influences on val-
uation that are captured by interaction effects. In another view
additional mechanisms are invoked with magnitude solely act-
ing on the utility function, and delay and risk are treated within
separate weighting functions.

INTERACTIVE MODELS OF VALUE INTEGRATION
While the functional form of decision-making that involves risk
and delay costs is well described, and a rich empirical litera-
ture delineates the neurobiology of effort-based decision-making
(Salamone et al., 2007; Floresco et al., 2008a; Kurniawan et al.,
2011), less research has been devoted to uncovering the functional
form of valuation when effort and other costs are mixed with
reward. In this section we review non-additive models for deci-
sion values when outcomes include costs. Because the empirical
evidence for these models is more limited than that of the addi-
tive model we describe them within the context of experiments
that corroborate them. Our aim is to expose these models for
scrutiny by the neuroscience community and encourage further
model comparison work to decide between them. Table 1 lists all
the valuation models discussed in this paper.

A strong alternative to the additive model is the trade-off model
(Simonson, 1989), where decision values are expressed as the
ratio of costs and benefits. The subjective value of a single mixed
outcome with probability p, one rewarding attribute mr and one
costly attribute mC, could be expressed as:

V = p ×
U (mr )

U (mC )
(3)
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Let us take two examples to illustrate how this model has been
employed. Soman (2004) used the trade-off model to account for
the results of an experiment where participants made hypothet-
ical decisions between differently priced products that required
more and less effort, such as an expensive desk that was already
assembled and a cheaper desk that required customer assembly.
Soman did not utilize model comparison but the trade-off model
fitted his data well and accounted for the influence of delay on
choosing between these mixed outcomes. Another example comes
from work on foraging, where both the additive and the trade-off
models are prevalent (Stephens and Krebs, 1986). Bautista et al.
(2001) modeled cost-benefit decisions of starlings deciding how
to forage for food: to walk (low-reward/low effort) or fly (high-
reward/high effort). In that set-up rewards consisted of the energy
gain from the food, and costs consisted of the energy loss asso-
ciated with the chosen travel method. The authors compared the
additive model and the trade-off models, which they termed net
rate and efficiency, respectively, and found that the additive model
accounted best for the starlings’ decision.

One key difference between the additive and trade-off models is
how they treat situations that do not offer any reward but impose
a cost. The additive model allows subjective values to become neg-
ative in these situations, while the trade-off model does not. The
importance of this feature depends on the situation. While non-
rewarding decisions – between two costs, or a cost and the status
quo – are rare in economic studies, they are common outside
the laboratory. Berns et al. (2008) used an example of a patient
deciding between risky treatment options, where the best out-
come is maintaining current levels of health, and contended that it
is difficult to explore such decisions in typical financial decision-
making experiments because people are unlikely to take part in a
study where they might end up losing out financially. The diffi-
culty with financial costs is partially ameliorated in experiments
that require participants to exert effort or suffer experimentally
induced pain, although here too there is an implicit, unmodelled
reward that draws participants to take part in the experiment in
the first place. Clearly, though, according to the trade-off model
the patient’s decision or its laboratory equivalents, do not have
a negative decision utility. The next models of valuation that we
review differ in their approach to decisions between costs. The first
does not model negative utilities in the absence of reward, the sec-
ond predicts negative utilities, and the third allows for either zero
or negative utilities. Therefore, in decisions between “bad” and
“worse” an empirical demonstration of negative decision utilities
will constrain model selection.

Another key difference between the additive and the trade-off
models is whether reward sensitivity changes with costs. This is an
important and under-appreciated difference between models. The
additive model predicts that costs do not alter reward sensitivity,
while the trade-off model predicts that they do. The models we
review below differ in this respect too. The first predicts decreased
reward sensitivity with cost, the second predicts increased sensi-
tivity, and the third allows changes in either direction. Measuring
changes in reward sensitivity is therefore another assay for model
selection. Taken together, three aspects of the decision – whether
it adheres to the additive independence assumption, the pres-
ence or absence of negative decision utilities, and whether reward

sensitivity changes with cost – distinguishes integration across
costs and benefit from valuation of all-rewarding multi-attribute
outcomes.

HYPERBOLIC DISCOUNTING OF REWARDS ASSOCIATED WITH COSTS
Brañas-Garza et al. (2012) report a result that illuminates the social
importance of understanding decision values of mixed outcomes
in the field of health. When people consider a painful medical
procedure their decision values should integrate over the pain
costs of the procedure as well as the value of consequent future
health benefits. How steeply one discounts the future will there-
fore impinge on the integrated value of the procedure. They found
that the more impatient participants, those that discounted the
future more steeply in an intertemporal choice task, reported
more frequently that they experience a negative feeling as soon
as they decide to undergo the procedure. This feeling may derive
from the disutility of the decision value, and bias these partici-
pants against some health-promoting behaviors such as necessary
painful medical procedures.

The success of the hyperbolic discount functions in account-
ing for the effect of delay and risk costs on choice makes it rather
tempting to consider whether other costs devalue reward hyper-
bolically. The subjective value of a single, certain, mixed outcome
with one rewarding attribute mr and one costly attribute mc, could
be expressed as:

V =
U (mr )

1+ k × U (mC )
(4)

Prevost et al. (2010) used hyperbolic discounting (Eq. 2.4) to
model how participants decided between cost-benefit mixtures.
Participants first viewed fuzzy erotic images and then decided
between two options: either viewing a clear image of the same
content for a low-cost, or viewing it for a longer duration for a
higher cost. The low-cost involved a short wait or exerting mini-
mal physical effort, while the high-cost involved waiting longer or
exerting more effort. The hyperbolic discount function described
choices equally well for both delay and effort cost, and fared better
in doing so than the exponential discount function.

We have seen that hyperbolic models are not ideal for situa-
tions that require a cost without providing a reward, because they
do not allow negative decision utility when only costs are on offer.
However, all trials in the paradigm used by Prevost et al. (2010)
included at least a small reward, possibly contributing to the fit of
this model for their data.

Clearly, if effort also modulates U (mR) hyperbolically, reward
sensitivity will decrease under effort. But a hyperbolic interaction
of effort with reward may not be detected in studies that only
consider a linear form of interaction. Kurniawan et al. (2010), for
example, obtained a different result from Prevost et al. (2010) in a
task that similarly required participants to choose between a low-
reward, low effort option and a large reward, large-effort option.
Both effort and reward had the expected effect on decisions, and
a similar effect on ratings of choice likability, but the interaction
between reward and effort was not significant for either measure-
ment. The null interaction effect appears to go against interactive
models, but as Kurniawan and colleagues used the general linear
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model in their analysis it is possible that they could not detect a
non-linear interaction between effort and reward.

Prelec and Loewenstein (1991) speculated that their rules for
transformation of attribute weighting should apply to all multi-
attribute choices. Consequently, if effort and pain discount reward
hyperbolically it would be natural to predict that effort and pain
discounting will resemble risk and delay discounting, and generate
preference reversals when a constant is added to both options. In
decisions between outcomes that mix reward and pain, for exam-
ple, adding a constant amount of pain to both options should shift
preference in favor of the high-reward high-pain option. This is an
example of how consideration of underlying models yields useful
hypotheses for experimentation.

MODELING COSTS AS RIGHT-SHIFTS OF THE UTILITY FUNCTION
In prospect theory, choice options are coded as gains and losses rel-
ative to the“status quo,”a neutral point of reference that is assigned
a value of zero on the reward magnitude axis and is where the utility
function crosses that axis (Kahneman and Tversky, 1979). Utility
is zero when people do not expend any effort, and therefore do not
expect to be rewarded. Kivetz (2003) argued that effort require-
ments create an expectation for reward, which should be modeled
as a right shift of the reference point. For example, when Thea
is asked to mow the lawn she forms an expectation for reward.
Agreeing to do this chore has a negative decision utility and is
experienced as a loss relative to her revised reference point. If she
is promised $5 for completing this chore and considers this sum
fair this reward merely brings her decision value back to zero.

Prospect theory can be extended to account for effort costs by
shifting utility function to the right under effort (Kivetz, 2003).
People who expend effort U (mc0) expect a fair reward, U (mr0) in
return. According to this formulation people should be indifferent
between no reward/no effort and U (mro)/U (mc0). Kivetz (2003)
was interested in frequency programs such as frequent-flyer miles,
a marketing tool that requires customers to invest effort for future
rewards. He showed that replacing U (m) in Eq. 1 by U (mr–mc)
provided an adequate account for customers’ choices and for the
influence of risk on their decisions. The subjective value of a single
mixed outcome with probability p, one rewarding attribute mr and
one costly attribute mc, could be expressed as:

V = P(p)× U (mr −mC ) (5)

Because of the concavity of U, right-shifting it under effort means
that U now increases more steeply with mR. Consequently, this
model implies that effort increases reward sensitivity. For exam-
ple, Thea may be just a little more delighted with a gift of $10 than
$5, but after she is asked to mow the lawn her increased happiness
with $10 relative to $5 is greater.

Kivetz (2003) argued that his model can be extended to all costs
that people perceive as having an inherent disutility, and mentions
delay and pain costs. Beyond the conceptual problem of consid-
ering the passage of time as inherently negative we would argue
that the empirical evidence base for decreased reward sensitivity
with delay (Figure 3) means that Kivetz’ model, which predicts
increased sensitivity under cost, is unlikely to account well for
intertemporal choice.

A BILINEAR MODEL FOR COST-BENEFIT ANALYSIS
Phillips et al. (2007) based their proposed valuation model on
their review of animal research concerning the role of dopamine
in cost-benefit analysis. Their model was intended to be applica-
ble for delay, effort, risk, and other aversive outcomes. They did
not provide the functional form of the value function, perhaps
because there is limited evidence for two of the central compo-
nents of their model, namely, exactly how dopamine levels and
the indifference functions vary with reward magnitude. Noting
these reservations, and making some assumptions of our own, we
derived their value function (Appendix). The function we derived
in this way is somewhat unwieldy. However, for small rewards,
within the linear portion of the utility function, their model can
be expressed more simply as:

V = x1 × U (mr )+ x2 × U (mC )+ x3 × U (mr )× U (mC ) (6)

With positive constants x1 and x2, and a constant x3 that can
be either positive or negative. Thus, although the value function
proposed by Phillips et al. (2007) may appear to model value addi-
tively (Botvinick et al., 2009), a closer look shows that it includes
an interaction between reward and cost, albeit of a different form
than that in Eqs 3–5. Figure 1 depicts this model and compares it
to the additive model both for a linear and for a non-linear utility
function.

Two aspect of the bilinear model are important for our dis-
cussion. First, in contrast with the other models discussed here
this model allows reward sensitivity to either increase or decrease
when outcomes include costs. The direction of change depends
crucially on the functional forms of the reward utility function
and the indifference function (see Appendix). Second, in contrast
to the models in Eqs 3 and 4 this model allows utility to become
negative when the choice options do not offer any reward.

Although Phillips et al. (2007) offered a very specific functional
form to describe the interaction of rewards, costs, and value, they
did not describe direct empirical evidence for that particular form.
Two studies that examined decisions involving pain costs observed
that the bilinear interaction model fitted their data well. In the first
study (Talmi et al., 2009) participants chose between two options,
one that maximized and one that minimized the chances for the
delivery of a mixed outcome. That outcome included a monetary
gain or a loss as well as an electrical stimulation of the skin that
could be either painful or mild. Participants experienced the pain
a few seconds after they made their choice, at which time they were
also informed that the promised amount of money was added to
their account. When Talmi and colleagues compared the additive
model with the bilinear interaction model they found that the
addition of an interactive term significantly improved the model
fit, with the interaction parameter x3 suggesting that physical pain
attenuated the sensitivity of participants to monetary reward. This
conclusion was corroborated by another study (Park et al., 2011)
where participants were asked to accept or reject mixed outcomes
that involved varying monetary reward and one of five pain mag-
nitudes. The authors replicated Talmi et al.’s (2009) finding that
the bilinear model accounted for, behavioral choice better than the
additive model. Notably, participants in both studies likely experi-
enced disutility in some of the experimental trials, because Talmi
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et al. paired pain with either gains, losses, or zero rewards, and
Park et al. used a very low amount of 1 cent in some of the trials,
paired with both low and high levels of pain. This aspect of their
paradigm may explain the importance of the parameter x2 in their
data.

While Talmi et al. argued that because the monetary rewards
were very small, under $0.60, the utility of reward and the disutil-
ity of pain should be modeled linearly (Rabin and Thaler, 2001),
Park et al. (2011) tested this hypothesis formally. Although they
also employed small monetary rewards, up to C0.99, they found
that modeling reward utility using a power function explained
their data better than when a linear function was used. When
this change was implemented, behavioral choice data no longer
favored the bilinear over the additive model. Their fMRI results,
however, fit the bilinear model better than the additive model
regardless of whether reward utility was modeled with a linear or
a power function. Figure 1 (adapted from their Figure 2) com-
pares four models: two interactive models, computed either with
a linear or a non-linear utility function, and their additive model
counterparts, which are identical but omit the interaction term.
In fact, a detailed analysis of the bilinear model suggests that the
importance of the interaction term depends on the relationship
between the utility functions for rewards and costs, and is likely
not to be important when they are identical. In order to decide,
for a particular situation, whether an interaction term is present
it is sufficient to determine the form of three functions: the util-
ity function of rewards without costs; the utility function of costs
without rewards; and the indifference function – the relationship
between rewards and costs. In future work we plan to investigate
the conditions for an interaction in more detail.

In summary, while the additive model is dominant in the eco-
nomic literature, there are several alternative models that feature
an interaction between costs and benefits such that costs alter sen-
sitivity to reward. According to four of these models, described
in this section, costs modulate the subjective utility of mixed
outcomes. Each of these models proposes a different functional
form to describe this interaction. Further empirical work can help
determine which model best captures the decision values of mixed
outcomes in animals and humans. In Section“Using Neurobiolog-
ical Evidence to Decide between Additive and Interactive Valuation
Models” we explore how neurobiological data can assist in this
endeavor, but first we explore how such data can shed light on the
modulation of costs and benefits by risk and delay.

USING NEUROBIOLOGICAL EVIDENCE TO DECIDE BETWEEN
MODELS OF RISK AND DELAY
A large amount of empirical work in animals has been dedicated
to uncovering the neural structures that mediate decision-making
when mixed outcomes involve both costs and benefits. There is
strong evidence in human neuroimaging for an abstract represen-
tation of subjective utility in the ventromedial prefrontal cortex
(vmPFC) across many different kinds of commodities (Padoa-
Schioppa, 2011; Levy and Glimcher, 2012), but controversy on
where this abstract representation is expressed in animals (Padoa-
Schioppa, 2011; Roesch and Bryden, 2011). The regions involved
in the effects of delay, risk, and effort on decision-making have
been described, with more limited investigations of other costs

(Phillips et al., 2007; Salamone et al., 2007; Floresco et al., 2008a;
Roesch and Bryden, 2011). Much of this literature, however, does
not speak directly to the issues we focus on here, the functional
form of integrative valuation of mixed outcomes. In this section
we examine how empirical neurobiological data could help decide
between the models for the modulation of costs or benefits, sepa-
rately, by risk and delay. In the final section we discuss data relevant
for models of cost-benefit integration.

EVIDENCE FOR SEPARATE REPRESENTATIONS OF D AND U
Animal and human neuroimaging studies have identified a rel-
atively large set of regions that are involved in intertemporal
decision-making (for reviews in animal studies see Cardinal et al.,
2004; Winstanley et al., 2006; Floresco et al., 2008a,b; and in
humans Tanaka et al., 2004, 2007; McClure et al., 2004, 2007;
Kable and Glimcher, 2007; Gregorios-Pippas et al., 2009; Luh-
mann et al., 2008; Ballard and Knutson, 2009; Wittmann et al.,
2007; Prevost et al., 2010; Hariri et al., 2006; Pine et al., 2009, 2010.
They include ventromedial and medial prefrontal cortex, dorsal,
and ventral striatum (VS), posterior cingulate cortex, and insula,
as well as dorsolateral PFC, amygdala, and lateral OFC. There is
no agreement on the particular contribution of each region to
intertemporal choice and value construction. Recent literature
has started to address regional specificity by correlating behav-
iorally derived model parameters with BOLD responses or single
cell electrophysiological recordings. We will demonstrate how this
approach has led to an increasingly sophisticated view of func-
tional specificity and model implementation in the brain in animal
electrophysiological recording and human neuroimaging studies.

McClure et al. (2004) performed the first neuroimaging study of
intertemporal choice to provide a neurobiological account of tem-
poral discounting and preference reversals. The disproportionate
valuation of rewards available in the immediate future, and other
evidence, led them to postulate the differential activation of dis-
tinguishable neural systems – specifically, that impatience is driven
by the limbic system which responds to immediate rewards and
is less sensitive to the value of future rewards, whereas patience
is mediated by the lateral PFC which is able to evaluate trade-
offs between more abstract rewards, including those in the more
distant future. This proposed struggle between an affective and a
deliberative decision-making system was based theoretically on a
quasi-hyperbolic time discounting function which splices together
two different discounting functions, one exponential and another
which distinguishes sharply between present and future rewards,
modeled by a parameter termed beta. Beta represents the special
value placed on immediate rewards relative to those received at any
other time. The hypothesis then was that activity in lateral PFC
areas should correspond with the rational, deliberative processes,
and limbic activity should represent the beta parameter. To test
this hypothesis, they scanned the brains of subjects as they made
a series of different hypothetical intertemporal choices. Critically,
they split the trials into two types – those where both rewards were
delayed in the future, and those where the small reward could be
received immediately following the experiment.

When they compared these two conditions in their analysis they
found that whereas lateral PFC (dorsal and ventral) and intra-
parietal regions were similarly active across all trial types, limbic
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structures including the VS (NAc), mPFC, posterior cingulate, and
medial OFC (regions they defined as beta regions) were preferen-
tially activated in response to choices where there was an option
for immediate reward. Furthermore, when they analyzed all the
choices where there was an immediate component, they could
predict the choice outcome – a greater activation of limbic areas
led to choice of the immediate small reward, whereas choice of
the delayed reward followed a greater activation of the lateral PFC
areas relative to the limbic ones. However, the hypothesis that the
limbic system mediates impulsivity by its preference for immedi-
ate rewards is difficult to reconcile with animal work indicating
that the integrity of the NAc and OFC is crucial for self-control
and the ability to choose delayed rewards (Cardinal et al., 2004).
In McClure et al.’s (2004) account, NAc or OFC lesions should, in
theory, promote delayed choice as long as the DLPFC is left intact.

Kable and Glimcher (2007) have argued that McClure et al.’s
(2004) study provided insufficient evidence for a dual valuation
system since they did not demonstrate activity corresponding to
different discount rates in the limbic and lateral PFC regions, and
critically, that the discount rate in the beta regions was greater
than the observed behavioral discount rate of the subjects. With-
out such evidence the results of their analysis could simply be
explained by proposing that limbic regions track the subjective
value of rewards at all delays and this preferential activity sim-
ply reflects the fact that sooner rewards are more valuable than
later rewards. Thus, to explicitly determine the neural correlates
of subjective value in intertemporal choice Kable and Glimcher
employed a model-based approach in their analyses. They scanned
participants while they were deciding between a constant smaller-
sooner option and a variable larger-later option. The crux of their
analysis was regressing the BOLD response against the hyperbol-
ically discounted values of the larger-later option, derived from
the choices each subject made, by estimating individuals’ discount
rate parameter (k) according to Mazur’s (1987) hyperbolic dis-
counting function (Eq. 2.3). These regressors identified a network
of three regions which correlated with the subjective discounted
value of the delayed reward – the VS, medial prefrontal cortex, and
posterior cingulate cortex. This network did not exclusively value
immediate rewards, as hypothesized by McClure et al. (2004) but
tracked the subjective value of rewards at all delays, leading Kable
and Glimcher to conclude that there is a single valuation system
for delayed rewards.

Kable and Glimcher (2007) along with subsequent studies
(Peters and Buchel, 2010; Prevost et al., 2010) successfully estab-
lished a neural correlate of the subjective value of delayed rewards
under the assumption of a single valuation process, but did not
attempt to tease apart the putative subcomponents of this process.
Therefore, their data cannot distinguish between a single valuation
system in Green and Myerson’s (2004) model and the multiplica-
tive model in Eq. 2.5. To examine the architecture of valuation
in more detail Pine et al. (2009) scanned participants while they
were deciding between serially presented options that differed in
both monetary amount and delay. Here the BOLD responses dur-
ing the presentation of each option were modeled with the three
key subcomponents U, D, and V, derived from subjects’ choices
according to Eq. 2.5. To ensure that no brain activity could be mis-
attributed to a particular regressor by virtue of correlation with

another, these regressors were orthogonalized. Pine et al. found
that U correlated with activity in ventral tegmental area (VTA),
striatum, and anterior cingulate cortex (ACC); D with VTA, stria-
tum, insula, posterior cingulate cortex, inferior frontal gyrus, and
vmPFC; and V with dorsal striatum and subgenual ACC/vmPFC.
Interestingly, there was one anatomical region in the dorsal stria-
tum where all three independent correlations overlapped, that is
this area correlated independently with the discount factor, utility,
and subjective value.

These results demonstrated that the brain evaluates delayed
rewards in an integrative fashion. They suggest that the deter-
minants of value are estimated separately, both with a system
which relates instantaneous, undiscounted subjective value to the
magnitude dimension, and with a system which calculates a dis-
count factor to evaluate the subjective value of rewards based
on their delay. Finally, a further set of regions encodes the mul-
tiplicatively integrated value of these subcomponents, which is
then used to guide decisions. It was demonstrated that the dor-
sal striatum is the site where information from the individual
value systems is integrated, because only this region represented
all three subcomponents. Pine et al. (2009) thus replicated Kable
and Glimcher’s (2007) findings of subjective value coding in
the striatum and medial PFC, but extended them to demon-
strate an expanded network of regions involved in discrete aspects
of the multiplicative valuation process. To illustrate the differ-
ence consider the possibility that the activity in the posterior
cingulate cortex reported by Kable and Glimcher expresses the
discount factor rather than overall subjective value (i.e. implicat-
ing this region solely in discounting) – a possibility supported
by Pine et al.’s findings that this region only correlated with D,
and not V. These results are thus consistent with the separa-
tion of D and U (Eq. 2), and support the Prelec and Loewen-
stein (1991) framework over the notion of a single valuation
process.

Working on a similar premise, over a number of experiments,
Roesch et al. (2007), Roesch and Bryden (2011) recorded from
single units in rats as they made intertemporal choices. They
manipulated magnitude and delay over different blocks in order to
understand how these two determinants of value are represented
and integrated in various brain regions. They found that activity
in the majority of the OFC neurons they recorded declined as the
delay to the reward increased, implicating this region in the tem-
poral discounting of rewards. This activity also correlated with a
decreased tendency for rats to choose the larger-later option trials.
Interestingly, Roesch et al. (2007) argue that the OFC does not
represent V and that the OFC is not a site of “common value cur-
rency” because neurons that encoded delay did not also encode
reward magnitude (a requirement if they encoded discounted
value). These results conflict with other electrophysiological find-
ings, which observed delay-discounted values of reward in single
neurons in pigeon OFC analog (Kalenscher et al., 2005) and in
primate OFC (Roesch and Olson, 2005). Additionally, they seem to
contradict the finding that OFC lesions in rats influence both tem-
poral discount rates and sensitivity to reward (D and U, Kheramin
et al., 2002, 2003, 2004). Taken together, it is not yet clear whether
the animal medial PFC represents U, D, and V separately or in an
integrated fashion.
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Of all the single neurons recorded in rodents by Roesch and
Bryden (2011) only dopamine neurons in the midbrain, especially
in VTA, appeared to integrate magnitude and delay in that they
encoded to both variables and their responses to the two vari-
ables were highly correlated. As a population, neurons in VS
also encoded both delay and magnitude (see also forced choice
voltametry data in Day et al., 2011), and some neurons did
responded to both variables in a correlated manner, but overall
the correlation between the response of single cells to these two
variables was low. Kobayashi and Schultz (2008) demonstrated
more specifically that the activity of midbrain dopamine neurons
in primates tracks the discounted value of rewards in accordance
with a hyperbolic discount function. Neural firing in response to
Pavlovian conditioned stimuli that predicted rewards of differing
delays decreased with longer delays, at a rate similar to the discount
rate measured when the same animal performed a separate choice
task, and followed a pattern akin to a hyperbolic decline. These
neurons were also responsive to the magnitude of the predicted
reward. The site of integration Pine et al. (2009) localized in the
striatum may therefore reflect the output of midbrain dopamine
neurons in the rodent electrophysiological recordings (Logothetis
et al., 2001). Alternatively, Pine et al.’s findings could be related
to coding of temporally discounted rewards in the primate dorsal
striatum reported by Cai et al. (2011).

In summary, animal and human work converge on a network
comprising VTA, striatum, and medial PFC which is involved in
computing and representing subjective value, but the exact role
of each of these regions in constructing value remains debated.
Evidence from animal single unit recordings corroborates the
hierarchical model of separate encoding of D and U with an
integration of the two to inform subjective value, but there is a
controversy as to how downstream one has to record to locate
the site of this integration. In human fMRI studies, by contrast,
correlates of subjective value derived from hyperbolic discount
functions are fairly consistent, but only one paper so far has inves-
tigated each component of the multiplicative model individually
to delineate regions implementing separate valuation functions
for delay and magnitude and their integration.

EVIDENCE FOR SEPARATE REPRESENTATIONS OF P AND U
As with temporal discounting, a burgeoning human neuroimag-
ing literature has shed a great deal of light on the neurobiological
mechanisms of valuation and decision-making under uncertainty.
Early studies examined BOLD responses to anticipation versus
outcome of probabilistic rewards of varying magnitude (Breiter
et al., 2001; Knutson et al., 2001a,b). Subsequent studies have iden-
tified the neural regions performing computations relating to the
subjective value of risky prospects based on their expected values –
correlates of which have been observed in the striatum and OFC
(Preuschoff et al., 2006; Rolls et al., 2007; Tobler et al., 2007). The
utility and probability functions which are multiplied to calculate
subjective value are typically assumed to be linear and their neural
correlates have also been examined individually (Knutson et al.,
2001a examined magnitude and Abler et al., 2006 examined proba-
bility). In addition, more sophisticated Prospect theory-like utility
and probability functions have been associated with BOLD sig-
nal in the striatum and vmPFC when participants decide between

gambles (Tom et al., 2007; Hsu et al., 2009). Another school of
thought proposes that in addition to expected values/utilities, the
“riskiness” of probabilistic rewards is encoded by the brain and
has some role in valuation. Such properties can be modeled by
statistical moments such as their mathematical variance and skew-
ness. Correlates of the former have been found in the lateral OFC,
insula, and striatum (Dreher et al., 2006; Preuschoff et al., 2006,
2008; Rolls et al., 2007; Tobler et al., 2007; for detailed reviews see
Rangel et al., 2008; Schultz et al., 2008).

Surprisingly however, to our knowledge only one study has
attempted to tease apart the three components of the model in Eq.
1 within the same task. Tobler et al. (2007) presented their partic-
ipants with stimuli predictive of outcomes which varied in their
probability and magnitude. The value of each cue was computed
as the product of the given, objective probability of the associated
outcomes and their utility, which was modeled simply as a linear
function of magnitude. They found that both the magnitude and
probability of the predicted outcome correlated positively with
separate regions in the striatum (dorsal and ventral respectively;
Figure 4). In contrast, the medial PFC was only responsive to the
probability of each reward. When correlating the expected value
of each option predicted by the cue, Tobler et al. (2007) observed a
third and separate region in the striatum. Critically, this region also
overlapped with the individual probability and magnitude sensi-
tive regions (Figure 4), strongly suggesting the striatum a site for
the integration of probability and utility. To make the case more
convincing Tobler et al. (2007) also showed that the striatal BOLD
response to a particular expected value was the same whether the
value was a product of a large magnitude and low probability (e.g.,
200 points with a 10% probability) or vice versa (e.g., 20 points
with a 100% probability). In a prior study (Fiorillo et al., 2003) the

FIGURE 4 | Separate and partially overlapping striatal regions
encoding unique valuation components of probabilistic rewards.
Activity in dorsal striatum positively correlated with U (in this case
magnitude), and in ventral striatum with probability. Their product, that is
expected utility, positively correlated with a third, and overlapping striatal
region. Figure adapted from Tobler et al. (2007).
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same group showed that VTA neurons exhibited similar character-
istics, correlating positively with probability, magnitude, and their
multiplicative integration. Tobler et al.’s results are analogous to
those of Pine et al. in the intertemporal sphere, in that both stud-
ies revealed that each component of the integrative model in Eq.
2 was represented separately in the brain. The findings of Tobler,
Fiorillo, Pine, and their colleagues therefore support the multi-
plicative integration of separable value components rather than a
single valuation function, as in the model advocated by Green and
Myerson (2004).

Berns and Bell (2012) recently utilized a task where information
about the probability and magnitude of rewards were presented
sequentially. Although they did not look for correlates of expected
value they did assess probability and magnitude independently and
showed that whereas magnitude correlated with the ventral stria-
tum BOLD responses, probability correlated with dorsal striatum
activity. In this instance however the two regions did not overlap.
This led the authors to conclude that although magnitude and
probability are processed by distinct neural systems, their integra-
tion is not achieved by any of the models discussed above. We
note, however, that none of the studies discussed in this section
fully embraced the model in Eq. 1 in that they all used objective
magnitudes and probabilities instead of their transformation by
the utility and the probability weighting functions. This is more of
a concern for null results which could be more easily explained by
parameter misspecification. Therefore, before accepting Berns and
Bell’s conclusion it would be necessary to check whether an overlap
could be found when BOLD signal is regressed against participant-
specific, behaviorally derived utilities, and subjective probabilities.

EVIDENCE FOR SEPARATE REPRESENTATIONS OF D AND P
Both Tobler et al. (2007) and Pine et al. (2009) found that mag-
nitude correlated predominantly with the striatum, whereas the
modulators of magnitude – delay and risk – were expressed in
the striatum and vmPFC among other regions. In both studies
the striatum was considered the critical site of value integration.
This begs the question of whether probability and delay share
neural mechanisms, and even whether all modulators of reward
are integrated in the striatum.

In support of the dissociation between D and P, Simon
et al. (2009) observed poor correlation between the two across
individuals. They allowed rats to choose between a safe small
reward and a larger reward that was associated with varied prob-
ability of an electric shock. As expected, increasing magnitude
and probability of shock biased rats to prefer the safe reward, and
individual animals showed a stable pattern of responding across
training sessions. The same rats also took part in probability dis-
counting and delay discounting tasks that entailed choice between
rewards without risk of shock. The sensitivity of individual ani-
mals to the risk of shock – namely, their tendency to opt for the
safe reward in the main task – was correlated with sensitivity to
risk in the probability discounting task but not with sensitivity to
delay in the delay discounting task.

Relatively few fMRI studies have studied probabilistic and
intertemporal choices in the same task (Luhmann et al., 2008;
Ballard and Knutson, 2009; Peters and Buchel, 2009). Of these,
only Peters and Buchel employed a model-based approach.

They scanned participants while they were deciding between an
immediate-small and larger-later rewards, and separately, between
a certain-small and larger-probabilistic rewards. Decisions were
modeled using hyperbolic discount functions to infer participant-
specific parameters for k and h, which were subsequently used to
calculate the subjective value of the dynamic (larger-later, larger-
risky) options. Utility was modeled as a linear function of reward
magnitude. To demonstrate that subjective value here was equiv-
alent across choice types participants also performed a separate
behavioral experiment where they decided between delayed and
risky rewards. Indeed, Peters and Buchel found that their partici-
pants were indifferent between delayed and probabilistic rewards
which had the same subjective value as calculated from the sepa-
rate tasks, indicating the rewards had comparable intrinsic values.
Analyses of the BOLD response revealed both overlapping and
diverging activations. Whereas overlapping regions in the striatum
and OFC were correlated with subjective value in both cases, other
regions correlated with the subjective value of either risk- or delay-
discounted reward. The authors concluded that the striatum and
OFC are domain-general valuation regions which integrate results
from domain specific subjective valuation systems into a common
“neural currency” of value – that is a metric of value which can be
used to compare the utilities of various multi-attribute options.

Though this is certainly a feasible interpretation, it is somewhat
unintuitive to assume an integration of different subjective values
(V s) rather than an integration of different sub-components of a
common subjective value (such as U, D, and P). Indeed, the analy-
sis performed by Peters and Buchel (2009) does not eliminate the
possibility that some of the regions identified as correlating with
V could in fact have a more specific role in the representation
of one of the subcomponents of subjective value1. Had they have
compared brain activity which could only be explained by utility,
the discount factors D and P (rather than inverse delay and prob-
ability), and subjective value we would have a clearer picture of
the relationship between each domain specific discount system, if
they are common or separable, and where and they are integrated
with utility to calculate subjective value.

A critical experiment to elucidate integration across reward
and its modulators, delay and probability, would be to examine
the BOLD correlates when participants decide between options
with all three attributes, i.e., delayed probabilistic rewards. Mod-
eling such choices will enable a neurobiological evaluation of the
multiplicative V =U ×D× P approach outlined in Eq. 2.5.

USING NEUROBIOLOGICAL EVIDENCE TO DECIDE BETWEEN
ADDITIVE AND INTERACTIVE VALUATION MODELS
The claim that animals and humans represent a mixed outcome
with a single value, and that this value is intimately tied to subse-
quent choice, is dominant in neuroeconomics and fundamental for

1Peters and Buchel included magnitude (m), probability (p) and the inverse of delay
(1/d) as regressors in their model. These regressors were orthogonalised with respect
to the regressor that coded value (V ). Crucially, because m, d and p would, to some
extent, be correlated with V, and because the analysis model ensured that V was
assigned all variance that correlated with it, it is difficult to ascertain which of the
regions that seemingly coded V actually coded m, d or P. This perspective may
explain why the authors obtained a different map of activation when they reversed
the order of orthogonalization
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the models we discussed here (although it is not without its critics:
Vlaev et al., 2011). Neurobiological data can provide converging
evidence for this claim by showing that single cells, populations, or
brain regions represent reward and other costs together. In a sec-
ond step the form of neural integration could be determined. As
discussed in Section “Using Neurobiological Evidence to Decide
between Models of Risk and Delay” the influence of risk and delay
on reward has been described in detail, and great strides have
been made in our understanding of the neurobiological under-
pinnings of this process. We know relatively little, however, about
how rewards are integrated with other costs.

We begin with a brief review of the regions thought to be
involved in this process when outcomes involve a mix of rewarding
food and physical effort. The dopamine system and the nucleus
accumbens (NAc) are central to animals’ motivation to over-
come effort in order to obtain a larger reward (Phillips et al.,
2007; Salamone et al., 2007; Floresco et al., 2008a,b). Dopamine
antagonists and lesions of the NAc decrease the probability that
high-reward/high effort options are chosen, while dopamine ago-
nists make this choice more likely (Cousins and Salamone, 1994;
Bardgett et al., 2009; Ghods-Sharifi and Floresco, 2010; Mai et al.,
2012). Although exerting effort often takes time and therefore
delays reward delivery, there is evidence that the dopamine sys-
tem and the NAc are important for overcoming effort even when
the delay to reward is controlled (Floresco et al., 2008b; Ghods-
Sharifi and Floresco, 2010). For example, Day et al. (2011) used
voltametry to show that in forced choice trials NAc dopamine
release expressed the discounted reward value of future outcomes
associated with either effort or delay. When food reward was
associated with low effort or delivered immediately, dopamine
release was higher than when the same amount of food was asso-
ciated with high effort or delivered after a longer delay. One
difficulty in interpreting these results was that exerting effort
inevitably resulted in a time delay between the cue and reward
delivery. However, because dopamine release was significantly
lower in the high effort relative to the long delay trials the authors
could conclude that the attenuation of dopamine release in high
effort trials was not solely due to the time delay associated with
the effort cost. The role of dopamine is not limited to phys-
ical effort but also extends to cognitive effort (Cocker et al.,
2012).

The NAc is part of a network of inter-connected regions that
play a role in effort-based decision-making which includes the
ACC (Walton et al., 2002, 2003; Schweimer and Hauber, 2005;
Rudebeck et al., 2006) and basolateral amygdala (Floresco and
Ghods-Sharifi, 2007; Ghods-Sharifi et al., 2009). Animals can over-
come the effects of ACC lesions with additional training (Rudebeck
et al., 2006) or when the ratio between the easy-smaller and the
harder-larger rewards increases (Walton et al., 2002), and ACC
lesions do not always alter effort-based choices (Schweimer and
Hauber, 2005), suggesting that it plays less of a key role than the
NAc (Floresco et al., 2008a).

In line with this animal work, Talmi et al. (2009) and Park
et al. (2011) found that a medial PFC region extending from the
subgenual/perigenual ACC to vmPFC/OFC expressed the bilin-
ear interaction between reward and pain cost at the time of
decision (Eq. 6). Talmi et al. (2009) showed that activation in

the subgenual ACC that was parametrically modulated by mon-
etary reward was attenuated when the rewarding outcome also
involved pain (Figure 5). Park et al. (2011) replicated these results,
demonstrating that pain-discounted values in this region fitted the
bilinear model (Eq. 6) better than the additive model (Eq. 1), and
even more so when the utility function in Eq. 6 was modeled as a
power function. Talmi et al. also observed the same pattern in VS,
in the region of the NAc. Park et al. did not find such activation in
the VS but reported increased connectivity between the subgenual
ACC and the amygdala when outcomes involved high compared to
low pain. Notably, the VS and amygdala regions reported by these
authors were only 13 mm apart. In summary, these two datasets
suggest that the vmPFC and possibly the VS and amygdala express
the modulation of reward by pain costs. The convergence on these
regions is not surprising given their ubiquitous role in representing
subjective value across a variety of paradigms (Levy and Glimcher,
2012). Rather, these studies are important because of their compu-
tational approach, which allowed them to demonstrate that neural
signals in these regions conformed better to an interactive than an
additive valuation of mixed outcomes.

Hare et al. (2008) pointed out that decision values often corre-
late with the utility of reward U (m) and with reward prediction
errors, and optimized their task to decorrelate these three factors.
They observed that the ACC/vmPFC region close to the regions
where decision value was expressed in the studies of Talmi et al.
(2009) and Park et al. (2011) expressed U (m), not V, casting some
doubt on the interpretation of the above findings. This concern is
addressed, however, by the pattern of results in Talmi et al.’s study.
In that study pain costs significantly interacted with reward value
in both ventral ACC and VS, suggesting that this signal does not
merely express reward utility.

Amemori and Graybiel (2012) report results that seem at first
glance to challenge the bilinear model (Eq. 6). They recorded from
pregenual ACC (close to the region that expressed the bilinear
interaction in Talmi et al., 2009) when monkeys decided between
accepting a minimum amount of food (“avoidance” decisions)
and a reward that was paired with an aversive air puff (“approach”
decisions). Both food amount and the strength of the air puff
were manipulated parametrically. The additive model (Eq. 1) fit-
ted behavioral choice best, better than the interactive model (Eq.
6) and more complex second and third order models.

An additional result from the same study, however, suggests
that an additive model may not tell the whole story. Neuronal
activity in pregenual ACC when monkeys anticipated mixed out-
comes correlated with subjective value, computed according to
the winning additive model, with one population of neurons cod-
ing V positively and the other negatively. Those positive-coding
and negative-coding neural populations were, for the most part,
evenly intermixed within the recording area, but a subzone in
the ventral bank of the cingulate sulcus had a higher concen-
tration of negatively coding neurons. Microstimulation of this
subzone increased avoidance behavior, biasing monkeys to forego
the mixed outcome (large reward and air puff) in favor of smaller
rewards. The authors plotted cost as a function of reward, not-
ing the decision boundary – the mixture of costs and benefits
that resulted in indifference. Trials where the stimulation was
“on” had shallower indifference function slopes than trials where
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FIGURE 5 | Neurobiological evidence for the bilinear model. BOLD
signal in the ventral striatum (top) and subgenual cingulate gyrus
(bottom) covaried positively with reward in the low-cost conditions
(blue), in which participants decided between mixtures of money and

mild electric stimulation. This correlation was attenuated in the
high-cost condition (red), in which participants decided between
mixtures of money and painful electric stimulation. Figure adapted from
Talmi et al. (2009).

the stimulation was “off,” indicating reduced sensitivity to reward
under stimulation. The anxiolitic drug diazepam abolished this
effect of the stimulation.

To interpret these more complex data it may be helpful to con-
sider the individual differences in Talmi et al.’s (2009) dataset.
Only about half of their participants exhibited shallower reward
sensitivity under pain; the other participants appeared to decide
according to an additive model. The former participants, those
who exhibited the interaction, likely experienced the pain cost
as more threatening, because their SCR responses to pain were
higher and they activated the anterior insula – a region associ-
ated with the emotional response to pain (Craig, 2003) – more
strongly than those whose reward sensitivity did not change.
We speculate that microstimulation in Amemori and Graybiel
(2012) may have similarly rendered the aversive air puff more
threatening for the monkeys, resulting in attenuated reward
sensitivity.

A different map of activation altogether was obtained by Pre-
vost et al. (2010). They used an elegant design where delay and
effort costs were manipulated as closely as possible using identi-
cal trial structures. Subjective value for mixtures of reward and
delay or effort was computed according to the hyperbolic model
(Eq. 4). Attesting to the effectiveness of their paradigm, their delay
data localized subjective value to the VS and vmPFC, replicating
commonalities across many previous studies (Levy and Glimcher,

2012), and closely resembling those of another dataset which also
employed the same hyperbolic model to model delay-discounted
reward (Peters and Buchel, 2010). This makes the dissociation
they observed between the representation of subjective value in
the delay and the effort condition particularly striking. Prevost
et al. reported that effort-discounted value negatively correlated
with signal in the dorsal ACC and anterior insula. Signals in
these regions increased when outcomes were more effortful and
subjectively less valuable.

Croxson et al. (2009) have similarly observed an interaction
between effort and reward in the dorsal ACC. Their task employed
a forced choice paradigm, allowing a clear distinction between
valuation per se and decision-making. They were interested in the
location of BOLD responses associated with the subjective value
of cues that signaled mixtures of reward and effort. The subjective
value was modeled according to a variant of the trade-off model
in Eq. 3, and correlated with activity in the dorsal ACC, striatum,
and midbrain; yet only the dorsal ACC expressed the interaction of
effort and reward, while dopaminergic midbrain and VS expressed
both reward and effort but not their interaction. The difficulty in
relating Prevost et al.’s and Croxson et al.’s datasets to each other is
that although both studies observed an interaction between reward
and effort in the same region of the ACC, the correlation between
that signal and subjective value was negative in the former and
positive in the latter study. By contrast, the correlation between
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that signal and the level of effort required in each trial was positive
in the former and negative in the latter study.

While effort is often associated with activation in the ACC, ani-
mal data provides less evidence for effort representation in the
insula (Floresco et al., 2008a). Yet a relationship between insula
activation and value, in the same direction as that reported by
Prevost et al., was also observed in two recent studies. Brooks
et al. (2010) required participants to decide between a stan-
dard delivery of 10 painful shocks and a gamble, in which
either more than 10 or less than 10 shocks could be delivered
in equal probabilities. As in Prevost et al. (2010) Brooks et al.
also reported negative correlations between subjective gamble
values and activation in the dorsal ACC and insula. In keep-
ing with the dominant pattern in the literature, however, they
also observed a positive correlation between subjective value and
activity in VS. In the second study, a PET study with [18F] fal-
lypride and d-amphetamine challenge, individual differences in
dopamine function in the bilateral insula were correlated with
their tendency to choose to spend more time and exert more effort
in order to win larger rewards (Treadway et al., 2012). Partici-
pants who were willing to spend more time and effort for larger
rewards – those who presumably evaluated this choice to have a
higher subjective value than other participants – exhibited reduced
dopamine function in the insula. At the same time, in line with
the prevalent pattern in the literature, dopamine function in the
striatum and vmPFC correlated positively with this individual
difference.

The negative correlation of the insula signal with reward in
Treadway et al. (2012), Brooks et al. (2010), and Prevost et al.
(2010) may be related to the salience of the more effortful tri-
als. Participants in Prevost et al.’s study may have perceived effort
but not delay costs to be salient; the more effortful and time-
consuming options were also likely more salient to those of Tread-
way et al.’s participants who chose them only infrequently, and
high probability of receiving more painful shocks could also have
been more salient. The “salience network” (Seeley et al., 2007),
intriguingly, is identified with conjoint activation in the very
same regions, dorsal ACC and bilateral insula, observed by Pre-
vost, Brooks, and their colleagues. This reverse-inference does not,
however, explain why effort-discounted value in Prevost et al.’s
study did not activate the VS and vmPFC, as delay-discounted
value did.

Clearly, even if the hyperbolic model does account both for the
effect of effort on decision value and for the effect of delay on
these values, it does not necessitate that the two share a neuro-
biological mechanism. A well-known set of studies demonstrated
that Marmosets were willing to wait longer than Tamarins for a
larger food reward, but preferred a food reward that was closer
in distance to food reward that was further from them in spa-
tial distance (Stevens et al., 2005). Because all animals grew up in
captivity with limited exposure to predators, the most likely inter-
pretation for the discounting, in Marmosets, of spatially distant
food rewards was the energetic cost (effort) involved in obtaining
that reward, rather than risk of predation. The double dissociation
may suggest separable mechanisms for effort and delay discount-
ing, or it could indicate differences in valuing these two costs
upstream to the decision-making process, as per the discussion

of D and U in Section “Evidence for Separate Representations of
D and U.”

The direction of the correlation between outcome mixtures and
VS activity is also not without controversy. On the one hand, Kur-
niawan et al. (2010) also reported positive value coding in VS for
mixtures of reward and effort. Although behaviorally, effort and
reward did not interact significantly, the fMRI data suggested a
neurobiological interaction. NAc activity was positively correlated
with reward magnitude, a correlation that was only significant
when participants chose to expend effort for large rewards, but
not when they chose to expend effort for smaller rewards or when
they chose the low-reward, low effort option. On the other hand,
Botvinick et al. (2009) observed stronger NAc activation when a
cue signaled a more effortful task. One possibility is that because
participants were not offered any reward in that study, the direction
of value coding in the VS may have reversed; but in Brooks et al.
(2010) the choices were also between “bad” and “worse,” and VS
activity correlated positively with reward. Interestingly, Botvinick
and colleagues interpreted their data according to Kivetz’ model
(Eq. 5), suggesting that NAc activation signals the obligatory shift
of the reference point of the utility function to the right in effortful
blocks.

We have reviewed neurobiological evidence that accords with
interactive models of valuation, however the additive model dom-
inates the human imaging literature. To take just one example
from a particularly elegant study, Hare et al. (2008) used an addi-
tive model (Eq. 1) to compute the decision value, which in their
study was the difference between the true value of a food item,
established according to the elicited “willingness to pay” for that
item in a Becker–DeGroot–Marschak (BDM) auction procedure,
and the price at which the food item was offered to the participant.
Hare et al. optimized their task to decorrelate this decision value
from U (m) and a reward prediction error signal, and observed a
positive correlation between central OFC activity and this deci-
sion value (see also Plassmann et al., 2007). Similarly to studies
that used only one model to fit their data, or compared the fit
only between two models, this converging evidence for the addi-
tive model of valuation cannot rule out the possibility that an
interaction term would have improved the fit.

In summary, computationally inspired studies of decision valu-
ation, in participants deliberating between mixed outcomes, have
produced converging evidence for additive as well as interactive
models when correlating the value computed according to these
models with neural activity. However, since most neuroimaging
studies compare two models at most, it is possible that more
convergence could be achieved by greater employment of model
comparison.

CONCLUSION
The goal of much neurobiological work on valuation is to under-
stand internal reward representations, namely, how the brain
represents costs and benefits that are present in the environ-
ment (Dayan, 2012). Here we asked how the subjective value
of outcomes is established when they consist of mixtures of
costs and benefits. This is a surprisingly under-researched topic
despite a large empirical and computational body of work on
decision-making.
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The way people value costs and benefits, individually, has been
studied extensively. Here we reviewed current thinking and empir-
ical data concerning the subjective value of monetary gains and
losses, and the influence of risk and time delay on this value. We
discussed data that support and challenge available models, and the
potential for neurobiological work to illuminate some open ques-
tions. By comparison, the functional form of cost-benefit analysis –
the decision between mixtures of rewards and costs – is relatively
unknown. We described two general classes of models – addi-
tive and interactive – for the process of integrating rewards and
costs into a single decision value. The economic literature typically
assumes that costs and benefits are integrated additively, but there
is also support for a variety of interactive models. Yet only a hand-
ful of studies directly compare additive and interactive models, or
between interactive model variants. Modeling-informed empiri-
cal work is clearly necessary in order to enhance understanding of

the neurobiological mechanism that allows animals and humans
to integrate costs and benefits. Empirical work on this intrigu-
ing question should proceed with caution; not assuming that
integrated representations of the subjective value of anticipated
outcomes are natural kinds, but to demonstrate their existence
empirically (Vlaev et al., 2011). We hope that by clarifying some
of the main candidates for valuation, and the way neurobiologi-
cal data can support or challenge them, we will encourage further
empirical work on the mechanism that allows animals and humans
to decide optimally in a complex environment.
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APPENDIX
Phillips et al. (2007) suggested that when a participant is faced with a choice of taking or foregoing an action which would yield both
rewards M R and costs M C, the value of the action can be expressed as the value V (M R, M C) relative to the value of the same action if
cost was not involved, V (M R, M C= 0). When there are no costs the value is maximal because V (M R, M C)=V (M R, M C= 0).

They observed that there is a specific cost C i which translates to V (M R, M C)= 0, namely, lead the participant to be indifferent about
the choice. When M C=C i participants are not motivated either to act or avoid acting; consequently, they act 50% of the time. Costs
higher than C i mean that V (M R,M C) < 0 and bias the participant against the action; costs lower than C i mean that V (M R,M C) > 0
and favor taking the action. The authors note that there is limited evidence as to the exact functional forms of the indifference function
C i and offered a tentative, plausible form in their Figure 1, where cost is a linear function of dopamine:

MC = a1 × DA (A1)

With the constant a1 > 0. Given evidence that dopamine level (DA) is a function of currently available reward and the maximum levels
of dopamine DAmax observed in the task context, and that the utility of reward is a decelerating function of reward magnitude, DA
was described according to the following function:

DA = DAmax ×
MR

(MR + a2)
(A2)

With the constant a2 > 0. Therefore,

Ci = a3 ×
MR

(MR + a2)
(A3)

With the constant a3 > 0.
The authors further proposed a specific form for a cost-benefit function Z (Figure 2), which depicts the ratio of outcome with cost

to the same outcome without cost.

Z =
V (MR , MC )

V (MR , MC = 0)
. (A4)

Because when there is no response cost the two outcomes are equivalent (the ratio is maximal), and because when the ratio is 0.5
decision-makers are indifferent between the two outcomes, we determine that Z passes between (C i, 0) and (0,1). Therefore

Z =
1−MC

Ci
(A5)

The authors did not provide an explicit model for V (M R, M C= 0), the utility of rewarding outcomes that are not accompanied by
costs. On the basis of their choice of Eq. 2 to represent DA and their reasoning for that choice we selected the same form to also model
reward utility:

V (MR , MC = 0) = Rmax ×
MR

(MR + a4)
(A6)

Combining the above equations provides us with a value function for mixed outcomes:

V (MR , MC ) =

[
Rmax ×

MR

(MR + a4)

]
−

[(
Rmax

a3

)
×MC ×

(MR + a2)

(MR + a4)

]
(A7)

To understand its implications we considered the case where Mr < < a4, namely when the utility of Mr, V (M R, M C= 0), resembles a
linear function. In this case, some algebra will show that

V (MR , MC ) =

(
Rmax

a4

)
×

(
MR −

[(
a1

A3

)
×MC

]
−

[(
MR ×

MC

a3

)(
1−

a2

a4

)]
−

[
R2

a4
×

(
1−

MC

a3

)])
(A8)

Now, as MR < < a4, we could probably drop the last term as it is small (it is always a positive term) and “tidy up,” introducing constants
x1, x2, and x3’:

V (MR , MC ) = X1 ×MR − X2 ×MC − X3 ×MR ×MC (A9)
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With x3 a constant that is either positive or negative:

X3 =

(
Rmax

a4

)
×

(
1−a2

a4

)
a3

(A10)

And x1 and x2 positive constants.
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