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INTRODUCTION

To explain human financial risk taking, economic, and finance theories typically refer to the
mathematical properties of financial options, whereas psychological theories have empha-
sized the influence of emotion and cognition on choice. From a neuroscience perspec-
tive, choice emanates from a dynamic multicomponential process. Recent technological
advances in neuroimaging have made it possible for researchers to separately visualize
perceptual input, intermediate processing, and motor output. An affective neuroscience
account of financial risk taking thus might illuminate affective mediators that bridge the
gap between statistical input and choice output. To test this hypothesis, we conducted a
quantitative meta-analysis (via activation likelihood estimate or ALE) of functional magnetic
resonance imaging experiments that focused on neural responses to financial options with
varying statistical moments (i.e., mean, variance, skewness). Results suggested that differ
ent statistical moments elicit both common and distinct patterns of neural activity. Across
studies, high versus low mean had the highest probability of increasing ventral striatal activ-
ity, but high versus low variance had the highest probability of increasing anterior insula
activity. Further, high versus low skewness had the highest probability of increasing ven-
tral striatal activity. Since ventral striatal activity has been associated with positive aroused
affect (e.g., excitement), whereas anterior insular activity has been associated with neg-
ative aroused affect (e.g., anxiety) or general arousal, these findings are consistent with
the notion that statistical input influences choice output by eliciting anticipatory affect. The
findings also imply that neural activity can be used to predict financial risk taking — both
when it conforms to and violates traditional models of choice.

Keywords: neuroeconomics, neurofinance, FMRI, accumbens, striatum, insula, activation likelihood estimation,
meta-analysis

probability. Thus, they mathematically defined “expected value” as

Imagine a world where people act as computers, consistently taking
in, analyzing, and responding to all of their sensory impressions.
These “rational” actors should not show volatile and inconsistent
changes in preferences, and so their future choices should be pre-
dictable based on their past behavior. Such a world may be hard to
imagine, because it is not the world we live in. Instead, people often
show sudden, pronounced, and inconsistent changes in choice. For
instance, although most people will never win the lottery or lose
a limb, the same individuals will often pay a high premium both
for a tiny chance to hit the jackpot as well as to compensate for
the unlikely possibility of dismemberment. To explain financial
risk taking, decision theorists have either appealed to the objective
statistical properties of financial options or to the subjective emo-
tional experience of individuals. Do these distinct accounts conflict
with or complement each other, and can they be reconciled?

ECONOMIC AND FINANCE MODELS OF RISK TAKING

Traditional economic models assume that people seek to maximize
value. Blaise Pascal and Pierre de Fermat historically concluded
that the expected value of uncertain gambles could be calculated
by multiplying the magnitude of the gamble outcomes by their

the mean (or the first statistical moment) of repeated outcomes.
In economics, expected value (and its close cousin expected utility)
provide a foundational guide to choice by providing a common
metric that individuals can use to compare different and diverse
financial options (von Neumann and Morgenstern, 1944). One
implication of preferences for expected value is that people should
not only prefer gambles with the best outcomes, but also those with
more chances to obtain a good outcome. Beyond expected value,
financial theorists have additionally and separately considered the
role of risk, which can be mathematically defined as variance (or
the second statistical moment) of repeated outcomes (Markowitz,
1952). Resulting mean-variance financial models further assume
that while people are attracted to expected value, they are instead
repelled by risk. One implication of preferences against risk is that
people should prefer gambles with relatively steady outcomes over
those with more variable outcomes.

Behavioral research, however, suggests that neither expected
value nor mean-variance models fully account for individuals’
financial risk taking (Edwards, 1954). As a result, some theorists
have suggested that anomalies in choice (e.g., the lack of diversity
in investors’ portfolios) might result from preferences for large yet
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improbable outcomes, which has been mathematically defined as
skewness (or the third statistical moment; Mitton and Vorkink,
2007). One implication of preferences for skewness (according to
some theories) is that people might prefer “long shot” gambles
(e.g., those with high magnitude but low probability outcomes)
over others. Despite some behavioral evidence that skewness can
influence preferences (Kraus and Litzenberger, 1976; Coombs and
Lehner, 1981), either by enhancing (Menezes et al., 1980) or inter-
acting with risk (Alderfer and Bierman, 1970; Chiu, 2005), only a
few models of financial risk taking consider skewness. For instance,
cumulative prospect theory (Tversky and Kahneman, 1992) and
rank-dependent utility models (Quiggin, 1982) have attempted to
account for skewness by overweighting large but unlikely positive
and negative outcomes. In doing so, however, these models sacri-
fice their ability to explain tolerance for variance (Levy and Levy,
2004). Although most economic theories do not account for the
influence of skewed outcomes, skewed outcomes may nonethe-
less influence choice, at both the individual and the market levels
(Patton, 2004). Thus, while traditional economic and finance the-
ories consider the influence of mean and variance on risky choice,
most remain agnostic about the influence of higher order statistical
moments such as skewness. By implication, a theory that accounts
for individuals’ preferences for skewness in addition to mean and
variance might generate more accurate predictions about risky
financial choice.

EMOTION AND RISKY CHOICE

If people base risky financial choices solely on statistics (e.g., mean,
variance, skewness), then all individuals should show similar
choices, generating predictable market movements. Psychological
theorists, however, have argued that financial choices likely result
from multicomponential processes that generate heterogeneous
choices. If multicomponential processes drive financial risk tak-
ing, then those processes may unfold over time and be influenced
by factors other than statistical moments.

Early economic theorists suspected that emotions influence
choice. Smith (1759) argued that behavior was determined by
a struggle between the “passions” and an “impartial spectator.”
The passions included emotions such as fear and anger, as well
as motivational feeling states arising from self- or other-regarding
interests. Smith argued that although behavior may be influenced
by passions, individuals can overcome their impulses by observ-
ing their actions from the perspective of an “impartial” outsider.
Due to a subsequent emphasis on rational decision-making (partly
encouraged by von Neumann and Morgenstern’s work on expected
value), interest in the influence of the passions diminished.

More recently, although traditional economic theorists have
endorsed the rationally grounded “Efficient Markets Hypothesis”
(Samuelson, 1965; Fama, 1970), unpredicted and rapid rises and
crashes of the market valuation of technology and housing sec-
tors have raised new questions about investor rationality. Critics
of the Efficient Markets Hypothesis have contended that investors
consistently exhibit irrational tendencies including overconfidence
(Barber and Odean, 2001; Gervais and Odean, 2001), loss aver-
sion (Kahneman and Tversky, 1979; Shefrin and Statman, 1985;
Odean, 1998), herding (Huberman and Regev, 2001), psycholog-
ical accounting (Tversky and Kahneman, 1981), miscalculation

of probabilities (Lichtenstein et al., 1981), and regret (Bell, 1982;
Clarke et al., 1994). These “irrational” biases have been attributed
to psychological factors with emotional overtones — including fear,
greed, and other affective reactions to price fluctuations and shocks
to wealth. In an attempt to explain individual and market anom-
alies, an expanding field of research has begun to examine links
between emotion and “irrational” decision-making (Loewenstein,
2000).

Beyond the notion that emotion acts peripherally to under-
mine choice, some theorists have proposed that affect can play
an even more central role by providing a “common currency”
that allows individuals to compare and choose between different
options (Peters et al., 2006). Despite the difficulty of measuring
affect, scientists have had some success by examining associations
between different affective reactions and choice (Mellers, 2000).
Although most of this research has focused on “consequential”
affect, which arises in response to choice outcomes, some have
additionally argued for the importance of “anticipatory” affect,
which occurs prior to choice (Loewenstein et al., 2001).

To assess affect, behavioral researchers have primarily relied
upon self-reported experience. For instance, investigators can
compare a single individual’s affective reactions to different stim-
uli (e.g., gambles) in two dimensions (e.g., valence on a continuum
from bad to good, and arousal on a continuum from not aroused to
aroused). Valence and arousal ratings can then be mean-deviated
across stimuli within an individual and mathematically rotated
through affect space (by 45°) to derive indices of positive and
negative arousal (Knutson et al., 2005). Using these and related
methods, investigators have shown that anticipation of uncertain
monetary gains elicits positive arousal, whereas anticipation of
uncertain monetary losses elicits negative arousal — even before
outcomes are revealed, and when measured either online dur-
ing anticipation or retrospectively (Samanez-Larkin et al., 2007;
Nielsen et al., 2008).

Since anticipation of uncertain gains or losses elicits self-
reported affect, this might subsequently influence risky choice.
Unfortunately, anticipatory affect is difficult to assess because most
affective self-reports are retrospective (and thus prone to mem-
ory and other biases) and online probes of affect may change the
very nature of the choice being made (e.g., introducing reflection,
distraction, delays, and other biases into the decision process). Ide-
ally, investigators could also collect online physiological probes of
anticipatory affect in order to validate and augment self-report
measures. Fortunately, advances in neuroimaging at the end of the
twentieth century may provide these probes.

NEURAL TARGETS

In initial attempts to link physiological measures of affect to finan-
cial risk taking, researchers collected peripheral physiological mea-
sures (including skin conductance, blood volume pulse, heart rate,
muscular tone, respiration, and body temperature) from financial
traders at work. The investigators observed increased physiological
reactions during periods of market volatility, and reported greater
increased physiological reactions to market volatility in less experi-
enced traders (Lo and Repin, 2002). Subsequent findings suggested
that the strength of physiological reactions correlated with poor
trading performance (Lo et al., 2005). Contrary to the notion that
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emotions play no role in financial risk taking, these findings sug-
gested that market events correlated with both self-reported and
physiological reactions, even in experienced professional traders.
The correlational nature of these findings, however, could not
establish whether financial events caused the arousal, or whether
arousal might reciprocally influence financial choice.

Advances in the temporal and spatial resolution of neuroimag-
ing techniques (such as functional magnetic resonance imaging or
FMRI) have enabled researchers to visualize changes in brain activ-
ity as individuals anticipate and make financial choices. Critically,
these advances allow investigators to examine changes in neural
activity in anticipation of choice. Thus, investigators can tempo-
rally capture neural responses to statistical properties of financial
options before outcomes are revealed. Enhanced temporal resolu-
tion also raises the possibility of using anticipatory neural activity
to predict choice. Advances in spatial resolution also matter, since
FMRI allows investigators to probe activity in deep subcorti-
cal as well as cortical circuits. Based on evolutionary reasoning,
while more recently evolved cortical circuits may play critical roles
in the representation of language and numeric symbols, more
ancient subcortical circuits that share greater homology across
mammalian species may play a more prominent role in emotional
and motivational functions that can promote immediate survival
(MacLean, 1990). Specifically, decades of brain stimulation in ani-
mals suggest that animals will work to the exclusion of all other
rewards to stimulate subcortical regions that lie along the ascend-
ing mesolimbic dopamine pathway, extending from the ventral
tegmental area of the midbrain through the lateral hypothalamus
to ventral striatal regions (including the nucleus accumbens or
NAcc) and medial and orbital prefrontal cortices (MPFC; Olds and
Fobes, 1981). In contrast, animals will work equally hard to avoid
stimulating other subcortical pathways that extend from the peri-
aqueductal gray of the midbrain up through the stria terminalis
and the medial hypothalamus to the lateral amygdala, and possi-
bly the anterior insula (Panksepp, 1998). Based on its subcortical

spatial resolution, FMRI could allow investigators to test for the
involvement of affect not only in choices linked to immediate
survival, but also more abstract choices related to financial risk
taking.

To link activity in these deep brain circuits to affective expe-
rience and ultimately choice, we have outlined an anticipatory
affect model (Knutson and Greer, 2008). The model posits that
uncertainty elicits increased aroused affect, while potential gains
versus losses elicit positive versus negative affect. Since most future
events are subjectively uncertain, potential gains should elicit pos-
itive arousal (e.g., feelings like excitement) as well as correlated
neural activity in the NAcc, but potential losses should elicit nega-
tive arousal (e.g., feelings like anxiety) as well as correlated neural
activity in the anterior insula. The anticipatory affect model has
additional implications for motivated behavior, since the evolved
function of positive arousal is to promote approach, whereas the
function of negative arousal is to promote avoidance (Figure 1).

Most risky financial propositions (e.g., gambles, stocks) require
concurrent assessment of uncertain gains and uncertain losses.
According to the anticipatory affect model, if positive arousal
increases, uncertain gains should appear more prominent, which
should lead people to approach the risk (all else being equal).
On the other hand, if negative arousal increases, uncertain losses
should appear more prominent, which should lead people to avoid
the risk. Consistent with this account, in an initial FMRI study that
used neural activity to predict financial risk taking, anticipatory
NAcc activity predicted increased financial risk taking, whereas
anticipatory anterior insula activity predicted decreased financial
risk taking (Kuhnen and Knutson, 2005).

Although initially inspired by a combination of animal brain
stimulation (Panksepp, 1998) and human neuroimaging find-
ings, the anticipatory affect model shares features with earlier
“somatic marker” and “risk as feelings” models, both of which posit
that anticipation of uncertain outcomes can generate emotional
arousal (Bechara et al., 1996; Loewenstein et al., 2001). Critically,
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FIGURE 1 | An anticipatory affect model (adapted from Knutson and
Greer, 2008). An incentive cue for uncertain future outcome first elicits brain
activation in at least two brain regions (NAcc and anterior insula) associated
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with anticipatory affect (positive arousal and negative arousal, respectively).
The balance of activation in related circuits then promotes either approach
toward or avoidance of risk.
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however, the anticipatory affect model does not require mediation
through bodily sensations (i.e., requiring only brain activity, unlike
somatic marker accounts), and specifically distinguishes anticipa-
tory positive arousal from negative arousal (which have opposite
effects on subsequent approach versus avoidance behavior, unlike
the risk as feelings model). Finally, the anticipatory affect model
links positive and negative arousal to activity in distinguishable
neural circuits, implying that neuroimaging data could be used
to directionally predict risky choice (e.g., Kuhnen and Knutson,
2005).

Different statistical moments of financial options might influ-
ence either the same or different neural circuits. The anticipatory
affect model implies that distinct statistical moments should exert
different but overlapping influences on affect and associated neural
activity. First, financial options with high means involve large
potential gains, and so should elicit positive arousal and corre-
lated NAcc activity. Second, financial options with high variance
involve both large potential losses and gains, which should elicit
negative arousal and correlated anterior insula activity as well
as positive arousal and correlated NAcc activity. Third, financial
options with high (overall) skewness involve even larger poten-
tial losses and gains, which should elicit even more negative
arousal and correlated anterior insula activity, as well as positive
arousal, and correlated NAcc activity. However, positive skew-
ness and negative skewness might have divergent impacts, since
options with high positive skewness involve large potential gains,
which should elicit positive arousal and correlated NAcc activity,
while options with high negative skewness involve large potential
losses, which should elicit negative arousal and correlated anterior
insula activity. By implication, since anticipatory affective circuits
are especially sensitive to the best or worst potential outcomes,
they may de-emphasize probability and other considerations that
require simulation or integration of many potential outcomes over
time (and which may rely more on prefrontal circuits such as the
MPEC).

Consistent with the anticipatory affect model, previous self-
reported affect findings suggest that anticipating the outcomes
of higher mean gambles elicits greater positive arousal (Knutson

etal.,2005). Anticipating the outcomes of higher variance gambles
(with equal mean) elicits both greater negative arousal and posi-
tive arousal. Additionally, anticipating the outcomes of positively
skewed gambles (with equal mean and variance) elicits greater
positive arousal, whereas anticipating the outcomes of negatively
skewed gambles (with equal mean and variance) elicits greater neg-
ative arousal (Figure 2; Wu et al., 2011). But beyond self-reported
affect, do patterns of neural activity also align with the anticipatory
affect model? Since a number of recent studies have investigated
the impact of financial statistical moments on FMRI activity, we
now survey their collected findings.

PRESENT AIMS

Although earlier reviews have considered how financial risk influ-
ences neural activity (Knutson and Bossaerts, 2007; Mohr et al.,
2010a), none have integrated both economic and psychologi-
cal accounts by explicitly linking different statistical moments of
financial options to neural responses. The purpose of this meta-
analysis was to examine whether different statistical moments
of financial options (i.e., mean, variance, and skewness) recruit
distinct or overlapping neural circuits implicated in anticipatory
affect, and to explore implications of these findings for subse-
quent choice. To address these aims, we conducted a quantitative
meta-analysis of FMRI studies of statistical moments on finan-
cial risk using the activation likelihood estimation (ALE) method
(Eickhoff et al., 2011, 2012; Turkeltaub et al., 2012). Based on
the anticipatory affect model, we predicted that distinct statistical
moments would elicit overlapping patterns of activation, such that
moments involving large gains (high mean, high variance, positive
skewness) should increase activity in the ventral striatum (includ-
ing the NAcc), and moments involving large losses (high variance,
negative skewness) should increase activity in the anterior insula.

MATERIALS AND METHODS

STUDY SELECTION

We reviewed FMRI studies of financial risk taking. Studies
were identified for meta-analysis via a search of the PubMed
database using key phrases “mean” OR “reward” OR “expected
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FIGURE 2 | Negative and positive arousal ratings by gamble
variance and skewness (adapted from Wu et al., 2011). Expected
value was held constant across all four gambles, while variance was
equated across High Variance, Negative Skew, and Positive Skew
gambles, and skewness was manipulated in opposite directions for

High Variance

Gamble

Negative Skew Positive Skew

Positive- versus Negative Skew gambles. Gambles elicited differential
positive arousal such that Positive Skew > High Variance and Negative
Skew > Low Variance (all p's < 0.05). Gambles elicited differential
negative arousal such that Negative Skew > High Variance and Positive
Skew > Low Variance (all p's < 0.05).
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value” OR “variance” OR “risk” OR “uncertainty” OR “skewness”
AND “finance” OR “monetary” AND “human” AND “FMRI.”
This search (performed on July 10, 2012) identified 248 stud-
ies. We specifically searched for FMRI studies that used mon-
etary incentives to manipulate one or more of the first three
statistical moments of interest (i.e., mean, variance, skewness).
We further identified recent review papers about risky choice
that explicitly addressed neural correlates of financial risk taking
(Knutson and Bossaerts, 2007; Mohr et al., 2010a). All stud-
ies found through the database search or cited by the review
papers underwent a selection process. Inclusion criteria were:
(1) assessment of healthy young adults (i.e., between 18 and
60 years); (2) acquisition of whole brain FMRI data; (3) availabil-
ity of peak activation coordinates from group activation tables;
(4) information about the probability of uncertain outcomes
was provided to participants (as opposed to ambiguity); (5) at
least one of the three statistical moments of interest (i.e., mean,
variance, or skewness) were objectively manipulated, indepen-
dent of subjective interpretations (i.e., risk tolerance/aversion
measures).

These inclusion criteria were chosen to ensure that results
would generalize to the population of healthy young adult humans.
Several studies suggest that aging may alter brain structure
and function (Cabeza et al., 2005). Furthermore, older adults
often show qualitatively different activation patterns than young
adults (Park et al., 2004). Therefore, this meta-analysis focused
on studies that investigated risk processing in younger healthy
adults (Criterion 1). Because some studies focus on specific
brain regions, they may not report whole brain results. Par-
tial findings, however, impede the detection of unexpected acti-
vations in unscanned or unreported brain regions, so studies
were excluded if they acquired or reported only partial brain
data (Criterion 2). As the ALE approach requires activation
foci, only studies that reported peak activation coordinates of
group statistical maps were included (Criterion 3). Because risk
is often conceptually distinguished from ambiguity — a form of
uncertainty in which probabilities are unknown — only stud-
ies in which probabilities were known or estimated by sub-
jects were included (Criterion 4). Since the focus of this meta-
analysis was to examine neural responses to statistical moments
of uncertain financial options, only studies that systematically
varied mean, variance, and/or skewness (as opposed to lin-
ear probability) of monetary incentives were included (Crite-
rion 5). Studies evaluated for variance and skewness were only
included if lower order moments (e.g., mean, mean and variance)
were held constant. If studies manipulated multiple moments
simultaneously, the lowest appropriate manipulated moment was
included in the meta-analysis (e.g., studies that manipulated
variance without controlling for mean were included only for
mean).

Activation maps were constructed for three distinct contrasts.
For the mean map, we included contrasts of neural activity dur-
ing processing of monetary incentives with high versus low mean.
For the variance map, we included contrasts of neural activity
during processing of monetary incentives with high versus low
variance (but which controlled for mean). For the skewness map,
we included contrasts of neural activity during processing of

monetary incentives with high (either positive or negative) versus
low skewness (but which controlled for variance and mean).

Activation foci coordinates for contrasts in the 28 studies
that met inclusion criteria were submitted to ALE meta-analyses
(Table 1). Of these, 21 contrasts were included in the mean map,
10 in the variance map, and 4 in the skewness map. Three studies
that separately modeled mean and variance were included in both
maps, and 2 studies that separately modeled variance and skewness
were included in both maps. Yacubian et al. (2006) replicated their
results in a second sample, thus their replication findings were
separately included in the mean map. Symmonds et al. (2011)
separately modeled positive skewness and negative skewness in
different whole brain analyses, so these results were separately
included in the skewness map.

Table 1| Studies included in the ALE meta-analysis, with associated

contrasts.

Study Mean Variance Skewness
Abler et al. (2009) X

Breiter et al. (2001) X

Burke and Tobler (2011)" X
Christopoulos et al. (2009) X

Cohen et al. (2005) X

Delgado et al. (2008) X

Dreher et al. (2006) X

Elliott et al. (2003) X

Engelmann and Tamir (2009) X

Hsu et al. (2005) X

Knutson et al. (2000) X

Knutson et al. (2001) X

Knutson et al. (2003) X

Knutson et al. (2005) X

Matthews et al. (2004) X

Mohr et al. (2010b) X X

Preuschoff et al. (2006) X X

Preuschoff et al. (2008) X

Rademacher et al. (2010) X

Simon et al. (2010) X

Smith et al. (2009) X

Spreckelmeyer et al. (2009) X

Symmonds et al. (2011)2 X X
Stoppel et al. (2011) X

Tobler et al. (2007) X

Wu et al. (2011) X X
Xue et al. (2009) X X

Yacubian et al. (2006)3 X

Total number of studies 21 10 4
Total number of foci 210 82 23
Total number of subjects 407 164 92

"Whole brain coordinates acquired via personal communication.
?Modeled positive skewness and negative skewness trials separately.
3Included a separate replication sample.

www.frontiersin.org

November 2012 | Volume 6 | Article 159 | 5


http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive

Wu et al.

Affective neuroscience and financial risk

ACTIVATION LIKELIHOOD ESTIMATE RATIONALE

In contrast to behavioral meta-analyses that aim to estimate
the effect size of a finding, FMRI meta-analyses aim to identify
brain regions, or circuits implicated in certain mental processes
(Turkeltaub et al., 2002). Due to this difference in research goals,
meta-analytic techniques have been adapted to fit the format of
FMRI findings. Specifically, whereas the key results of behav-
ioral studies are test statistics (p, t, or z scores) and effect sizes,
test statistics in FMRI studies usually only have meaning when
paired together with the information about the location of the
effect, often revealed by the location of voxels with the highest
test statistics. One frequently used meta-analytic technique that
utilizes this spatial information is ALE analysis (Eickhoff et al.,
2011, 2012; Turkeltaub et al., 2012). ALE analysis is a quantita-
tive meta-analytic technique that compares activation likelihoods
calculated from a group of observed activation foci with a null
distribution of randomly generated activation foci. The ALE meta-
analytic method provides advantages over traditional label-based
meta-analytic methods because it relies upon activation foci coor-
dinates, which show greater reliability across FMRI studies than
do anatomical labels.

Meta-analyses were conducted using the ALE algorithm
implemented with Ginger ALE software available from
www.brainmap.org (Laird et al., 2005). Foci originally reported
in Montreal Neurological Institute coordinates were converted to
Talairach coordinates using the icbm2tal transformation prior to
analysis (Lancaster etal.,2007). In the ALE analyses, each contrast’s
activation foci are modeled as the peaks of Gaussian functions, the
spatial extent of which is dependent on the number of subjects
included in the corresponding analysis. The resulting distribu-
tions of values (called “activation likelihood estimates”) represent
the probability of activation occurring in a given voxel (i.e., the
ALE values). For the whole brain ALE values, significance was
assessed against 5000 sets of randomly distributed foci with a non-
parametric statistical permutation test. Statistically thresholded
maps were then computed using a false discovery rate procedure
that corrected for multiple comparisons across the whole brain
[FDR (g) =0.01, minimum cluster size = 100 mm?].

RESULTS

The contrast of neural responses to high versus low mean (stud-
ies =21, foci =210, subjects = 407) had the highest probability of
activating foci in the bilateral NAcc of the ventral striatum. Highly
significant foci were also observed in the anterior cingulate cortex,
followed by the bilateral anterior insula. Other significant foci were
observed in the left red nucleus, thalamus, and putamen (Table 2;
Figure 3).

The contrast of neural responses to high versus low variance
(studies = 10, foci = 82, subjects = 164) had the highest probabil-
ity of activating foci in the left subgenual cingulate cortex and left
anterior insula. Significant foci were also observed in the left supe-
rior temporal sulcus, left medial prefrontal cortex, right ventral
striatum, and right anterior insula.

The contrast of neural responses to high versus low general
skewness (studies =4, foci=23, subjects =92) had the highest
probability of activating foci in the left NAcc of the ventral
striatum.

Table 2 | ALE of neural foci implicated in processing high versus low
mean, variance, and skewness.

Region ALE (X10%)  x y z
MEAN (HIGH VERSUS LOW)

Right ventral striatum 55.6 10 8 2
Left ventral striatum 51.4 -10 6 2
Left anterior cingulate 24.0 0 22 32
Right anterior insula 20.0 34 16 2
Left red nucleus 20.5 -2 -18 -12
Left anterior insula 16.7 -30 18 0
Left thalamus 16.2 0 —14 14
Left cingulate 15.0 0 2 46
Left putamen 14.2 —26 -2 4

VARIANCE (HIGH VERSUS LOW)

Left subgenual cingulate 14.5 0 22 -6
Left anterior insula 14.1 -32 16 (1]
Left superior temporal cortex 13.8 —54 -10 4
Left ventral striatum 133 —-12 8 -2
Right medial prefrontal cortex 12.2 2 44 30
Right anterior insula 13.1 32 14 -2

SKEWNESS (HIGH VERSUS LOW)

Left ventral striatum 15 -14 8 -2

(In Talairach space, x= right-left; y= anteriorposterior, and z= superiorinferior
coordinates; predicted peak foci in bold).

DISCUSSION

This meta-analysis aimed to determine whether distinct statistical
moments of risky financial options (i.e., mean, variance, skewness)
elicit different patterns of neural activity. Rather than recruiting
either the same or completely distinct circuits, statistical moments
activated overlapping circuits implicated in anticipatory affect.
Specifically, statistical moments that promised large gains (i.e.,
high mean, high variance, high skewness) maximally activated the
ventral striatum (particularly in the NAcc), whereas moments that
threatened large losses (i.e., high variance) maximally activated the
anterior insula. The deep subcortical localization of these circuits
is noteworthy (as opposed to neocortical structures implicated
in symbolic representation and working memory), as it implies
that affective rather than cognitive processes play a critical role in
financial risk assessment.

Most of the findings were consistent with the anticipatory affect
model. Specifically, high versus low mean maximally activated
ventral striatum (including the NAcc), high versus low variance
maximally activated the anterior insula (and secondarily the ven-
tral striatum), and high versus low skew maximally activated the
ventral striatum. However, high versus low mean also activated the
anterior insula to a lesser extent. This may be due to the fact that
while most studies of higher order moments (e.g., variance and
skewness) controlled for lower order moments (e.g., mean), stud-
ies of lower order moments typically did not control for higher
order moments. Because increasing lower order moments (e.g.,
mean) often also increases higher order moments (e.g., variance),
studies of lower order moments may inadvertently elicit activity
related to higher order moments. Reduced control of higher order
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ALE of variance: bilateral anterior insula. ALE of skewness: left NAcc.

VARIANCE

FIGURE 3 | Activation Likelihood Estimate (ALE) meta-analytic maps for high versus low mean, variance, and skewness. ALE of mean: bilateral NAcc.

SKEWNESS

moments in studies of lower order moments might also account
for the larger overall number of activation foci observed in the
high versus low mean contrast.

Findings for skewness partially conformed to the anticipatory
affect model. While general skewness activated ventral striatum
(including the NAcc), as predicted, common activation of the
anterior insula was not as apparent. The omission is unexpected
given that all three surveyed studies of skewness have reported that
skewed gambles tend to activate the anterior insula (Burke and
Tobler, 2011; Symmonds et al., 2011; Wu et al., 2011). The small
number of relevant studies and variability of activation foci in the
anterior insula may have precluded a common finding. The antici-
patory affect model also specifically predicts that positively skewed
gambles will more powerfully activate the ventral striatum, as was
found in one study (Wu et al., 2011). However, this prediction
could not be evaluated in the context of the meta-analysis because
all studies did not provide contrasts for positive versus negative
skewness, though this represents an important direction for future
research. Finally, some studies modeled statistical moments during
the uncertain anticipatory period before gambles were evaluated,
whereas others modeled the entire gambling episode from antic-
ipation to outcome. Since the anticipatory affect model is most
relevant to the uncertain anticipatory period, it might best predict
neural activity that occurs then.

INTEGRATING ANTICIPATORY AFFECT AND FINANCIAL RISK TAKING
The meta-analytic findings support neither monolithic nor modu-
lar views of neural responses to the statistical moments of financial
options. Specifically, ascending from mean (lower order) to skew-
ness (higher order moments) neither repeatedly activates all the
same regions, nor does it recruit wholly distinct regions at each
step. Thus, ordering the findings by objective statistical properties
of the options does not yield a coherent framework for predicting
associated neural activity (Table 3).

Alignment by affective impact, however, reconfigures the sta-
tistical moments in a coherent way that generates more consistent
predictions about associated neural activity (Table 4). Specifically,
financial options that involve uncertain large gains are likely to
elicit positive arousal (e.g., high mean, positive skewness) and
recruit NAcc activity, but financial options that involve uncer-
tain large losses are likely to elicit negative arousal (e.g., high

variance, negative skewness) and recruit anterior insula activity.
Reordering these statistical moments by affective impact thus scaf-
folds a more parsimonious and coherent framework for predicting
choice. Thus, statistical moments representing objective finan-
cial risk may be translated into subjective feelings of risk indexed
by neural circuits associated with affect, which together promote
choice. Of course, statistical moments may also influence choice
through other neural routes as well. For instance, statistical infor-
mation might recruit circuits involved in symbolic representation
and working memory for numerical computation (e.g., dorsolat-
eral and parietal cortices), or might activate circuits implicated in
following habits or rules (e.g., the dorsal striatum and premotor
cortex). The current analysis, however, suggests that an affective
neuroscience account may provide an initial viable framework
both for describing and predicting financial risk taking.

IMPLICATIONS FOR FINANCIAL CHOICE

While traditional economic (e.g., expected value) and finance
(e.g., mean-variance) models can account for a range of choices,
other choices elude these models’ explanatory reach. For instance,
individual choices may be influenced by higher order statistical
moments (e.g., skewness, kurtosis) as well as by incidental factors
that are not relevant to the choice at hand (e.g., news, weather,
nutrition, sleep, etc.). By both encompassing and transcending the
explanatory reach of traditional models, an affective neuroscience
approach may eventually offer a more comprehensive account of
financial risk taking.

Although this meta-analysis focused on the influence of finan-
cial options on neural activity, the anticipatory affect account
also has implications for choice. Indeed, neuroimaging evidence
suggests that while ventral striatal activity (and NAcc activity
in particular) predicts risk seeking stock choices, anterior insula
activity instead predicts risk avoidant bond choices in investment
tasks (Kuhnen and Knutson, 2005). Extended to higher order sta-
tistical moments, individual differences in NAcc activation as well
as positive arousal predict subsequent preferences for positively
skewed gambles (Wu et al., 2011). These findings suggest that
even given the same statistical gambles, individual differences in
affective and neural responses may provide finer-grained predic-
tions that describe not only group behavior, but also individual
choice. These findings also imply the novel prediction that even
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Table 3 | Predicted maximum activity organized by statistical moments (lower to higher order).

Brain Affect Choice
NAcc Anterior insula Positive arousal Negative arousal
Statistics Mean X X 1
Variance X X N
+Skew X X 0
—Skew X X !
Table 4 | Predicted maximum activity organized by affective impact.
Brain Affect Choice
NAcc Anterior insula Positive arousal Negative arousal
Statistics Mean X X 1
+Skew X X 4
Variance X X 1
—Skew X X J

after holding mean and variance constant, ventral striatal (NAcc)
activity should predict approach toward positively skewed gam-
bles, while anterior insula activity should predict avoidance of
negatively skewed gambles — a prediction worthy of further inves-
tigation. Thus, different types of financial risk (e.g., variance versus
skewness, positive versus negative skewness, etc.) may differentially
recruit circuits involved in financial risk taking.

An affective neuroscience account also yields novel predictions
about the influence of incidental stimuli on financial risk taking.
Specifically, stimuli that increase positive arousal should encourage
financial risk taking, whereas stimuli that increase negative arousal
might discourage financial risk taking, even when those stimuli are
irrelevant to the task at hand. Indeed, in a neuroimaging study of
heterosexual males, exposure to positive images (i.e., erotic — ver-
sus neutral office supplies or aversive snakes and spiders) tended
to increase choices of higher risk (i.e., higher variance) gambles,
and this effect was partially mediated by NAcc activation (Knut-
son et al., 2008). In a follow-up behavioral study that included
males and females, prior presentation of positive images increased
financial risk taking, but prior presentation of negative images
decreased financial risk taking (Kuhnen and Knutson, 2011).

While these influences may hold in tightly controlled and care-
fully incentivized laboratory demonstrations, do they generalize
to “real world” choices? Researchers have speculated that investors
continue to show biases in choice despite financial advice or knowl-
edge to the contrary. Some of these, such as the lack of diversity
in investment portfolios, may result from preferences for skew-
ness (Mitton and Vorkink, 2007). Additionally, because individuals
are willing to pay more for positively skewed investments but
receive more for accepting negatively skewed investments (Ang
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