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Here, we describe a novel method for volumetric segmentation of the amygdala from MRI
images collected from 35 human subjects. This approach is adapted from open-source tech-
niques employed previously with the hippocampus (Suh et al., 2011; Wang et al., 2011a,b).
Using multi-atlas segmentation and machine learning-based correction, we were able to
produce automated amygdala segments with high Dice (Mean =0.918 for the left amyg-
dala; 0.916 for the right amygdala) and Jaccard coefficients (Mean=0.850 for the left;
0.846 for the right) compared to rigorously hand-traced volumes. This automated routine
also produced amygdala segments with high intra-class correlations (consistency = 0.830,
absolute agreement = 0.819 for the left; consistency = 0.786, absolute agreement =0.783
for the right) and bivariate (r =0.831 for the left; r =0.797 for the right) compared to hand-
drawn amygdala. Our results are discussed in relation to other cutting-edge segmentation
techniques, as well as commonly available approaches to amygdala segmentation (e.g.,
Freesurfer). We believe this new technique has broad application to research with large
sample sizes for which amygdala quantification might be needed.
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INTRODUCTION

The amygdala has been shown to play a central role in emotion,
along with various psychopathologies such as major depression,
anxiety disorders, and autism (Hamilton et al., 2008; Stanfield
et al., 2008; Hajek et al., 2009). Volumetric measurements have
been one of the key metrics used to demonstrate a relationship
between structure and function for this brain region (e.g., Camp-
bell et al., 2004; Videbech and Ravnkilde, 2004; Nacewicz et al.,
2006).

Volumetric quantification of the amygdala can be performed
using manual and automated protocols. Manual hand-tracing is
generally regarded as more accurate, but is often time-consuming
and dependent on rater experience. With larger and larger sam-
ple sizes, automated segmentation has become more common
(e.g., Bickart et al., 2011; Mattai et al., 2011; Butterworth et al.,
2012). Such methods afford consistent quantification of medial
temporal lobe structures, however the validity and accuracy of
automated segmentation of the amygdala may be inconsistent. For
the hippocampus, such methods can achieve high reproducibil-
ity and good accuracy, and are regarded as more efficient than
hand-drawing (Tae et al., 2008; Morey et al., 2009). In regards to
the amygdala, commonly available automated methods appear to
yield unsatisfactory results with high-variability and low-validity
(Babalola et al., 2009; Morey et al., 2009, 2010; Dewey et al., 2010).
More rigorous approaches (e.g., Collins and Pruessner, 2010)

still yield automated amygdala segments that could be improved
and optimized with higher intra-class correlations and/or Dice
coefficients.

Here, we detail a novel method for volumetric segmentation
of the amygdala, adapted from open-source techniques employed
previously with the hippocampus (Suh et al., 2011; Wang et al,,
2011a,b). This approach consists of multi-atlas segmentation
and machine learning-based correction. Multi-atlas segmenta-
tion involves registering training images from different subjects
(structural MRI scans and corresponding manual segmentations)
to MRI data where the segmentation is not known, or what we
called test subjects (Aljabar et al., 2009). The resulting registra-
tion parameters are then used to propagate the known man-
ual segmentation to the test (novel subject) data. With multiple
training images, segmentation can be combined to improve accu-
racy. Information from these multiple images can be combined
using “label fusion” strategies which involve voxel-by-voxel voting
among the multiple training images. The success of segmenta-
tion is further increased when training images more similar to
the test image receive a greater weight. Such approaches have
been employed extensively (Klein et al., 2005; Heckemann et al.,
20065 Aljabar et al., 2009), with recent research finding multi-
atlas segmentation produced the best accuracy amongst four
different automatic methods (Babalola et al., 2009; Leung et al.,
2010).
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Our approach also involves machine learning-based correction
(AdaBoost), using a cross-validation strategy to train classifiers to
recognize and correct the errors made by the multi-atlas segmen-
tation relative to manual segments. Previous research on medial
temporal lobe segmentation (e.g., hippocampus) has found that
many of the common errors produced by multi-atlas fusion can
be reduced using AdaBoost post-processing (Wang et al., 2011a;
Wang and Yushkevich, 2012). Such corrective techniques were also
recently shown to significantly improve multi-atlas fusion in an
international challenge on brain segmentation with multi-atlas
labeling (Landman and Warfield, 2012). In this paper, we first
demonstrate how such a method yields high reproducibility and
good accuracy for automated segmentation of the amygdala. We
also show how these algorithms excel compared to currently avail-
able automated methods (e.g., Freesurfer — Fischl et al., 2002; Fischl
et al., 2004).

METHODS

Our automated amygdala segmentation first involved the cre-
ation of a template and generation of multiple reference (or
“training”) images. These training images were randomly cho-
sen adults where rigorous amygdala hand-tracing was completed
using a well-validated tracing protocol (i.e., Nacewicz et al., 2006).
After the development of these files, we report the application of
automated amygdala segmentation to novel (or “test”) subjects.

PARTICIPANTS IN TRAINING SET

T1-weighted images were collected from 20 participants (Mean
Age =18.55 4= 0.16 years; eight female) using a GE 750 3T scan-
ner equipped with high-speed gradients and an eight-channel
receive-only phased-array head coil (GE Medical Systems, Wauke-
sha, WI, USA). Three subjects met criteria for an anxiety disorder,
all others were free of psychopathology. All subjects were free of
neurological disease/neurodegenerative disorders. These anatom-
ical images were high-resolution 3-D, inversion recovery prepped
fast spin-echo images with the following parameters: TE = 1.8 ms,
TR=8.9ms, field of view (FOV)=240mm x 240 mm, flip
angle =10°, matrix =240 x 240, 124 axial slices, slice thick-
ness = 1.0 mm.

AMYGDALA HAND-TRACING PROCEDURES

As detailed in Nacewicz et al. (2006, 2012), T1-weighted images
from these 20 participants were skull-stripped (Cox, 1996), and
corrected for intensity bias using tissue segmentation with spa-
tial priors in FSLs FAST routine'. The resultant image was
automatically scaled (contrast adjusted) so that the peak of the
white matter histogram (mode of white matter intensity) was
at 80% of the 16-bit range using in-house software (written
in Python) and AFNT’s 3dcalc tool. Image intensities were then
squared for optimal peak separation and contrast adjustment was
repeated. The resultant images were then segmented using FAST
with spatial priors. This procedure produces images with superb
separation of all tissue types and optimizes contrast for viewing
variations in the gray matter distribution.

http://www.fmrib.ox.ac.uk/fsl

Amygdala ROIs were manually traced by baccalaureate-level
scientists (M]S and AAC) with extensive training in temporal lobe
neuroanatomy, according to established protocol (Nacewicz et al.,
2006). Hand-tracing took approximately 2 hours per amygdala per
subject to complete, with one subject taking 4-5 hours for bilateral
amygdala quantification. Briefly, the optic tract, optic radiations,
hippocampus, and inferior horn of the lateral ventricle defined
posterior borders; temporal lobe white matter, cerebrospinal fluid
(CSF), anterior commissure, and entorhinal cortex defined ante-
rior boundaries. Following initial tracing in the axial plane, the
sagittal view was used to confirm accurate separation of the amyg-
dala from hippocampus, entorhinal cortex, optic radiations, and
caudate/putamen; coronal view was used for refinement of the
dorsolateral and inferomedial boundaries.

Region of interest drawing of the amygdala was completed
using in-house software (Spamalize)? that allows for simultaneous
visualization and ROI definition in the three cardinal planes. All
tracing was carried out by raters blind to group, using a tech-
nique that was highly reliable (an inter-rater intra-class correla-
tion = 0.95 for volume and a high-spatial reliability: mean Jaccard
coefficient = 0.84).

NOVEL (OR TEST) SAMPLE USED FOR SEGMENTATION VALIDATION
T1-weighted images were collected from 35 participants (Mean
Age =18.63 +0.28 years; 19 female) again using a GE 750 3T
scanner equipped with same parameters specified above. Three
subjects met criteria for anxiety disorders, five subjects met crite-
ria for substance dependence (three alcohol, two cannabis), and all
others were free of psychopathology. All subjects were free of neu-
rological disease/neurodegenerative disorders. These subjects also
had amygdala tracing completed on their T1-weighted images but
were not used in template creation. This tracing was completed to
serve as a comparison to our volumes generated by our automated
approach.

AHEAD SEGMENTATION
Automatic Hippocampal Estimation using Atlas-based Delin-
eation (AHEAD)? algorithm detailed in Suh et al. (2011) was
adapted to automatically segment amygdalae. As shown in
Figure 1, this approach involved alignment to a T1-weighted
template (to define a smaller search space for our ROIs), diffeo-
morphic warping using our “training” brains, and then weighting
and averaging the resulting amygdala masks, for all novel (or test)
subjects.

Our scanner specific T1-weighted template was created through
an iterative averaging and diffeomorphic warping from the 20
(training) subjects referenced previously (final template shown in
Figure 2). These subjects had high-resolution T1-weight scans,
along with amygdala masks drawn by hand. Each subject’s amyg-
dala masks were transformed into this template space using the
warping parameters calculated from the Tl1-registration. This
yielded a summed amygdala image that was smoothed using a
1-mm?® Gaussian filter.

Zhttp://psyphz.psych.wisc.edu/~oakes/spam/spam_frames.htm
3http://www.nitrc.org/projects/ahead
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FIGURE 1 | Shows the basic AHEAD processing pipeline. For the first step
of the pipeline shown on the left side of this image, subjects were aligned to
our template via a rigid body transform. Next, shown in the middle of the

figure test subjects were aligned to our training brains. This yielded 60 warps

for both the left and right amygdala (20 training brains x three levels of detail).
As shown on the right side of the figure, amygdala masks were projected
from the training brains and combined in a weighted average. The match
between training and test determined the weighting for each amygdala mask.

Template with
amygdalae overlay W
i

FIGURE 2 | Shows the high-resolution template constructed from our
20 training subjects. All subjects had T1-weighted structural images along
amygdala region of interest drawings. Region of interest drawings were
transformed into this template space and summed (shown in red on this
figure). This summed amygdala mask was then smoothed with a 1 mm?®
Gaussian filter (as shown in light green in this figure).

T1-weighted structural scans for each novel (or test) subject
were first bias corrected to minimize field inhomogeneity. Next,
T1-weighted images of novel (test) subjects were deformably reg-
istered to a T1-weighted population template via Symmetric Nor-
malization (SyN: Avants and Gee, 2004). SyN was found to be
one of the top two performers in a recent evaluation study of
14 open-source deformable registration algorithms by Klein et al.
(2009). This step factored out much of the anatomical differences
between subjects and put all scans into a common space for sub-
sequent steps of our processing pipeline. Next, a ROI surrounding
of the amygdala in each hemisphere was defined automatically
using an average ROI, producing a smaller search space for our
later steps. Then, the T1-weighted structural scan from each novel
subject was warped with three increasing levels of detail (coarse,
middle, and fine, as shown in Figure 3) to each one of our train-
ing brains (the 20 subjects specified above). This registration
employed a maximum of 80 iterations at 4x subsampling (coarse),
80 iterations at 2x subsampling (middle), and 30 iterations at full
resolution (fine).

After this, consensus segmentation using similarity-weighted
voting was completed. This approach allows for the contribution
from each training segment to be weighted locally by the image
match between the T1-weighted image of the test subject and
the T1-weighted image of the training subject. The scheme is
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- Coarse

FIGURE 3 | Shows a structural image from a novel subject, displaying
the three levels of detail involved with warping and amygdala mask
back projection (overlaid in yellow).

local because voting occurs independently at each voxel. Addi-
tional details regarding this step are discussed in Wang et al.
(2012).

The initial segmentations produced using this pipeline were
further refined using a segmentation error correction strategy
(Wang et al., 2011a) that employs AdaBoost (Freund and Schapire,
1995). Initial segmentations produced by our processing pipeline
were compared to the ground truth manual segmentations, and
mislabeled voxels were identified. This correction step involves
two basic components-bias detection and bias correction. Bias
detection involves finding systematic biases in the initial seg-
mentation relative to the ground truth, whereas bias correction
simply involves adjusting mislabeled voxels based on appearance-,
contextual-, and spatial-features. This procedure is explored in
greater depth in Wang et al. (2011a), as well as Yushkevich et al.
(2010). Using these features, candidate voxels suspected to be
mislabeled in the initial segmentation were ouput and relabeled.
In total, generation of amygdala segments took approximately
4 hours per subject, using a AMD Quad Core 2384 computer with
16 GB memory and a CPU of 2.7 GHz.

AUTOMATED SEGMENTATION ROUTINE WITH FREESURFER

For comparison purposes, segmentation of the amygdala was
also performed for our 35 novel subjects in the Freesurfer
image analysis suite, which is documented and freely available
for download online*. Briefly, this processing includes motion

4http://surfer.nmr.mgh.harvard.edu/
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FIGURE 4 | Shows a scatterplot with automated segments of the left
amygdala generated by our approach on the horizontal axis, and
hand-drawn left amygdalae on the vertical axis.
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FIGURE 5 | Shows a scatterplot with automated segments of the right
amygdala generated by our approach on the horizontal axis, and
hand-drawn right amygdalae on the vertical axis.

correction, removal of non-brain tissue using a hybrid water-
shed/surface deformation procedure (Ségonne et al., 2004),
automated Talairach transformation, segmentation of the subcor-
tical white matter, and deep gray matter volumetric structures
(including the amygdala; Fischl et al., 2002, 2004).

RESULTS

Our automated amygdala segmentation of novel subjects yielded
high-agreement with our hand-drawn amygdala volumes con-
ducted on the same participants. The bivariate correlations
between hand-drawn amygdalae and our automatically generated
volumes was high (Left: r=0.831, p <0.001; Right: r=0.797,
p <0.001). Scatterplots of these relationships are shown in
Figures 4 and 5. Intra-class correlations between hand-drawn
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amygdalae and our automatically generated volumes were also
high [Left ICC (for consistency) =0.830; Left ICC (for absolute
agreement) = 0.819; Right ICC (for consistency) = 0.786; Right
ICC (for absolute agreement) = 0.783]. Amygdala segments gen-
erated from this automated routine also demonstrated high-spatial
reliability. Dice coefficients (comparing our hand-traces and our
automated volumes) for the left amygdala were 0.918 = 0.035, with
mean Jaccard coefficients of 0.850 = 0.055. For the right amygdala,
similar results were found with 0.916 £ 0.032, with mean Jaccard
coefficients of 0.846 & 0.053. Shown in Figure 6 is an example
T1-weighted image with amygdalae drawn by hand and segments
generated from our novel approach.

In comparison, automated segments of the amygdala gener-
ated by Freesurfer had lower bivariate correlations (Left: r = 0.563,
p < 0.001; Right: r =0.560, p < 0.001). Scatterplots for these vol-
umes are shown in Figures 7 and 8. Intra-class correlations
were also lower between Freesurfer and our hand-drawn amyg-
dalae [Left ICC (for consistency) = 0.537; Left ICC (for absolute
agreement) = 0.468; Right ICC (for consistency) = 0.504; Right
ICC (for absolute agreement) = 0.189]. Freesurfer produced auto-
mated amygdala segments with lower spatial reliability. Dice coef-
ficients (comparing our hand-traces and Freesurfer automated
volumes) for the left amygdala were 0.749 +0.03, with mean

Jaccard coefficients of 0.601 & 0.046. For the right amygdala, sim-
ilar results were found with 0.743 = 0.03, with mean Jaccard coef-
ficients of 0.592 % 0.04. These statistics for Freesurfer are similar
to previous reports (e.g., Morey et al., 2009). A comparison of
Freesurfer and our novel algorithm is shown Figure 9.

DISCUSSION
We demonstrate here that reliable and highly valid segmentation
of the amygdala can be achieved via automated algorithms that
rely on multi-atlas diffeomorphic registration followed by label
fusion. Such procedures yield segments that have high bivariate
correlations, intra-class correlation, and spatial overlap with hand-
drawn amygdala segments. Such methods have broad applications
in addressing a wide range of questions in basic affective neu-
roscience research, neurobiological studies of major depression,
and studies on the neural bases of autism. We also demonstrate
here that these novel methods outperform conventional publicly
available methods of automated segmentation of amygdala (i.e.,
Freesurfer), providing a more valid approach to the study of the
medial temporal lobe.

Previous research (Morey et al., 2009) has found other pub-
licly available methods of amygdala segmentation (e.g., FMRIB
Integrated Registration and Segmentation Tool) correlate poorly

FIGURE 6 | Shows an example structural image from a novel subject (top
portion of each section) with amygdalae overlaid (bottom portion). Slices
move anterior to posterior, with the top left showing more anterior portions of
the amygdala while the bottom right show more posterior sections. The

overlap between automated segments generated from our approach and
hand-drawn volumes appear in aqua. Portions of hand-drawn amygdala
volumes not capture by automated segmentation appear in orange (for the
right) and yellow (for the left amygdala).
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FIGURE 7 | Shows a scatterplot with segments of the left amygdala
generated by Freesurfer on the horizontal axis, and hand-drawn left
amygdalae on the vertical axis.
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FIGURE 8 | Shows a scatterplot with segments of the right amygdala
generated by Freesurfer on the horizontal axis, and hand-drawn right
amygdalae on the vertical axis.

with manual tracing; this motivated our use of Freesurfer as a
comparison. Future research should attempt to compare our novel
method with cutting-edge techniques such as automatic non-
linear image matching and anatomical labeling with label fusion
(e.g., Collins and Pruessner, 2010). Many of these methods are
however not currently publicly available (Personal communica-
tion, Louis Collins, October 3, 2012).

Of important note, subtle differences exist in the amygdala
quantification routines employed in our automated processing
and with other tools (e.g., Freesurfer). Different boundaries and
landmarks may explain a portion of the differences seen across the
tools. Future research is needed to compare across routines, to aid
in determining the tracing routine most appropriate for medial

AHEAD Freesurfer ~ AHEAD

Freesurfer

Left Amygdala Right Amygdala

Dice Coefficients

FIGURE 9 | Shows bar graphs of the spatial statistics (Dice
coefficients) for automated amygdala using the AHEAD processing
pipeline (in red) and for Freesurfer (in blue). These spatial statistics were
generated by examining the amount of spatial overlap between automated
amygdala segments generated by each, compared to our rigorous
hand-tracing amygdala routine.

temporal lobe quantification. Future research could also expand
on this work and aim to automatically segment subregions of the
amygdala based on existing protocols (e.g., Saygin et al., 2011;
Solano-Castiella et al., 2011; Entis et al., 2012).

This approach also has a number of important limitations
that must be considered before universal implementation. We had
access to highly reliable and rigorously quantified amygdala draw-
ing acquired on a GE 750 scanner. Future applications of such
a technique to novel subjects should employ training data that
most closely matches new scans to be segmented. A fair number
of training subjects (20) were employed in this study that other
research groups may not have access to. All training subjects were
adults; additional training subjects with greater variability in age
and other demographic factors may led to a wider application of
this novel segmentation approach.

To our knowledge, this is one of the first studies to obtain highly
valid automated segmentation of the amygdala. Few previous
research reports have compared automatic methods to such rigor-
ously defined hand-drawn routines (e.g., hand-tracing with spa-
tial reliability <0.8 and inter-rater intra-class correlation <0.9).
Based on these findings, we believe this new technique has broad
application to research that has begun to employ increasingly large
sample sizes.
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