
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 24 December 2012
doi: 10.3389/fnins.2012.00187

Systems biology, bioinformatics, and biomarkers in
neuropsychiatry
Ali Alawieh1, Fadi A. Zaraket 2, Jian-Liang Li 3, Stefania Mondello4, Amaly Nokkari 1, Mahdi Razafsha5, Bilal
Fadlallah6, Rose-Mary Boustany 1,7 and Firas H. Kobeissy 1,5*
1 Department of Biochemistry, College of Medicine, American University of Beirut, Beirut, Lebanon
2 Department of Electrical and Computer Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
3 Sanford-Burnham Medical Research Institute, Orlando, FL, USA
4 Department of Neuroscience, University of Messina, Messina, Italy
5 Division of Addiction Medicine, Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA
6 Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
7 Department of Pediatrics, American University of Beirut Medical Center, Beirut, Lebanon

Edited by:
Xiaogang Wu, Indiana
University-Purdue University
Indianapolis, USA

Reviewed by:
Scott H. Harrison, North Carolina A&T
State University, USA
Sudipto Saha, Bose Institute, India
Hussam Jourdi, Florida State
University, USA
Dan Xia, Harvard Medical School, USA

*Correspondence:
Firas H. Kobeissy , Division of
Addiction Medicine, Department of
Psychiatry, Center for
Neuroproteomics and Biomarkers
Research, University of Florida,
L4-100F, P.O. Box 100256, Gainesville,
FL 32610, USA.
e-mail: firasko@gmail.com

Although neuropsychiatric (NP) disorders are among the top causes of disability worldwide
with enormous financial costs, they can still be viewed as part of the most complex disor-
ders that are of unknown etiology and incomprehensible pathophysiology. The complexity
of NP disorders arises from their etiologic heterogeneity and the concurrent influence of
environmental and genetic factors. In addition, the absence of rigid boundaries between
the normal and diseased state, the remarkable overlap of symptoms among conditions,
the high inter-individual and inter-population variations, and the absence of discriminative
molecular and/or imaging biomarkers for these diseases makes difficult an accurate diag-
nosis. Along with the complexity of NP disorders, the practice of psychiatry suffers from a
“top-down” method that relied on symptom checklists. Although checklist diagnoses cost
less in terms of time and money, they are less accurate than a comprehensive assess-
ment. Thus, reliable and objective diagnostic tools such as biomarkers are needed that
can detect and discriminate among NP disorders. The real promise in understanding the
pathophysiology of NP disorders lies in bringing back psychiatry to its biological basis in
a systemic approach which is needed given the NP disorders’ complexity to understand
their normal functioning and response to perturbation.This approach is implemented in the
systems biology discipline that enables the discovery of disease-specific NP biomarkers for
diagnosis and therapeutics. Systems biology involves the use of sophisticated computer
software “omics”-based discovery tools and advanced performance computational tech-
niques in order to understand the behavior of biological systems and identify diagnostic
and prognostic biomarkers specific for NP disorders together with new targets of thera-
peutics. In this review, we try to shed light on the need of systems biology, bioinformatics,
and biomarkers in neuropsychiatry, and illustrate how the knowledge gained through these
methodologies can be translated into clinical use providing clinicians with improved ability
to diagnose, manage, and treat NP patients.
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INTRODUCTION
Neuropsychiatric (NP) disorders like Schizophrenia (SZ), Major
Depression Disorder (MDD), Bipolar Disorder (BPD), and Obses-
sive Compulsive Disorder (OCD) are among the top causes of
disability worldwide (Lopez and Murray, 1998). The WHO report
published in 1998 concerning the top causes of disability expected
for the year 2020 had four out of 10 diseases being NP diseases
with depression ranking first and BPD ranking seventh (Lopez
and Murray, 1998). The 2004 update of the report states that
NP disorders account for one third of the top causes of disability
worldwide with unipolar depression disorder still ranking first for
both sexes (WHO, 2009). A recent report commissioned by the
European Brain Council (Gustavsson et al., 2011) concluded that

brain disorders cost Europe almost C800 billion (US$1 trillion) a
year – more than cardiovascular disease, diabetes, and cancer put
together. No directly comparable reports exist elsewhere in the
world, but several studies looking at the costs of individual con-
ditions, such as BPD, attention deficit hyperactivity disorder, and
SZ, in both the United States and Europe have shown that health-
care costs per person are similar in both regions (Smith, 2011).
Simultaneously, there has been an increased appreciation of the
complexity of NP diseases and the inadequacy of the available
diagnostic, prognostic, and therapeutic approaches that depend
mainly on clinical diagnosis and lacks disease-specific molecular
biomarkers (Linden, 2012). The complexity of NP disorders arises
from the high level of etiologic heterogeneity and involvement of
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several multifactorial environmental and genetic factors (Schork
et al., 2007; Cacabelos et al., 2011; Gormanns et al., 2011; Mitchell,
2011; Ripke et al., 2011). Unlike classical Mendelian inherited dis-
eases,a single gene mutation cannot explain the overt phenotype of
NP disorders. Clinical appearances generally result from the con-
current influence of different genes along with several epigenetic
mechanisms (Cowan et al., 2002; Behan et al., 2009; Cacabelos
et al., 2011).

Many other limitations circumscribe the current study of NP
disorders including the inaccessibility to the brain tissue (Levin
et al., 2010; Villoslada and Baranzini, 2012), the overlap of symp-
toms among conditions that can result in diagnostic ambiguity,
and the inability to identify specific diagnostic biomarkers using
current imaging techniques like functional Magnetic Resonance
Imaging (fMRI), Positron Emission Tomography (PET-scan), Sin-
gle Photon Emission Computed Tomography (SPECT), and others
(refer to the review by Linden, 2012). Moreover, current avail-
able diagnostic systems like DSM-IV and ICP-10 rely principally
on clinicians’ assessment even if different disorders – treated dif-
ferently – have similar manifestations (Linden, 2012; Tretter and
Gebicke-Haerter, 2012). Molecular biology techniques may enable
these diagnostic strategies to be more accurate and objective, and
allow for disease classifications better suited for more targeted
personalized and effective therapy.

With these aims in mind, the previous molecular biology
approach that investigates the effect of a single gene or protein
appears insufficient to establish a complete understanding of the
NP disorders (Kitano,2002; Zhang et al., 2010). Such a reductionist
approach fails to provide an insight into the structure and dynam-
ics of biological systems. Biological systems are characterized by
hierarchy (having several layers of organization with interactions
among and between layers), emergence (having properties that
are visible at the system level and unexpected from the underly-
ing components alone), and robustness (having the capacity of
the system or network to operate normally under a wide range of
conditions). Meanwhile, the reductionist approach lags behind the
ability to detect emergent properties and combinatorial effects that
characterize biological systems. It also falls short of understand-
ing compensatory and synergistic responses of the system toward
perturbations (Lucas et al., 2011; Munk et al., 2011; Saetzler et al.,
2011; Westerhoff, 2011). Systems biology would address the mul-
tifactorial aspect of NP diseases to better chart the functionality
of complex biological systems for insights into the etiology and
pathophysiology.

In this review we will be discussing the potentials of systems
biology, bioinformatics, and biomarker research in the area of NP
disorders. Furthermore, we will be outlining how the knowledge
gained through these methodologies can be translated into clin-
ical use providing clinicians with improved ability to diagnose,
manage, and treat NP patients.

THE APPROACH OF SYSTEMS BIOLOGY
The revolution of systems biology in the twentieth century rep-
resented a “paradigm shift” of molecular biology from a reduc-
tionist approach to a holistic approach (Westerhoff and Palsson,
2004). The new approach tries to analyze the relationships within
a biological system to find how different components of that

particular system interact (Kitano, 2002; Hood and Perlmutter,
2004; Fang and Casadevall, 2011; Lucas et al., 2011; Westerhoff,
2011; Karsenti, 2012). This accelerating “shift” was grounded on
two lines of thought whose integration is believed to have trans-
formed molecular biology into the more sophisticated discipline
of systems biology (Westerhoff and Palsson, 2004). These are the
sequencing of the human genome, and the great advances in the
high-throughput (HT) discovery tools that allowed collection and
analysis of large data sets of genomics, proteomics, and others
(Ideker et al., 2001; Kitano, 2002; Food and Drug Administra-
tion, 2011; Ori et al., 2011). It is believed that systems biology will
help understand and simplify the complexity of biological systems
and the available datasets obtained by HT techniques. Such com-
plexity is impeding the development of new diagnostic tools and
therapeutics for several complex diseases especially in the areas of
neuropsychiatry (Hood and Perlmutter, 2004; Robeva, 2010; Fang
and Casadevall, 2011; Westerhoff, 2011).

Systems biology works by combining mathematical models
with experimental molecular information from in silico, in vivo,
and in vitro studies with HT data sets including genomics,
proteomics, metabolomics, and transcriptomics (Robeva, 2010;
Zhang et al., 2010; Westerhoff, 2011). For this purpose, the integra-
tive use of computational tools, bioinformatics, and engineering
systems analysis represents the working tools in systems biology.
Therefore, systems biology requires a strong computational infra-
structure and simulation software tools (Kitano, 2002; Hood and
Perlmutter, 2004) that are able to handle huge databases, and deter-
mine dependencies that can be correlated with biological functions
(Jamshidi and Palsson, 2006). In addition, HT genomics, pro-
teomics, and metabolomics infrastructure are needed to achieve
robustness and reproducibility (Kitano, 2002; Hood and Perl-
mutter, 2004; Westerhoff and Palsson, 2004; Jamshidi and Pals-
son, 2006). Finally, enough experimental data should be gath-
ered to provide raw material for analysis and to validate present
results generated from multidisciplinary fields of mathematics,
engineering, bioinformatics, and medicine (Robeva, 2010).

The holistic analysis of systems biology aims to solve the previ-
ously mentioned limitations of the reductionist approach. These
include (1) the inadequacy to investigate the hierarchy, robust-
ness, and emergence characteristics of a biological system, (2)
the incompetence in understanding and reconstituting system’s
dynamics, and (3) the failure to decipher the complexity of the
massive data output from HT techniques (Kitano, 2002; Zhang
et al., 2010; Lucas et al., 2011). Therefore, systems biology pro-
vides a mean to understand the normal functioning of the system
and to predict the systems’ response to perturbations (Ideker
et al., 2001; Kobeissy et al., 2008). With this approach, systems
biology increases diagnostic, prognostic, and disease-monitoring
potentials for clinical applications (Hood and Perlmutter, 2004).

The holistic approach of systems biology can be either a top-
bottom approach starting from “omics” datasets and drawing
inferences related to the flow of information within biological net-
works, or bottom-top approach starting from experimental mole-
cular data to draw models of these networks (Jamshidi and Palsson,
2006; Fang and Casadevall, 2011; Lucas et al., 2011; Wester-
hoff, 2011). The networks and sub-networks that systems biology
aims to study represent modules in the biological systems. These
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biological networks are characterized by non-linear interactions
between components providing the floor for organization and
structure (Ideker et al., 2001). Accordingly, most biological net-
works adopt a scale-free network characterized by a “power-law”
distribution where the majority of nodes (network components)
have few links, and only few nodes called “hubs” have a high
number of links (Zhu et al., 2007; Saetzler et al., 2011). Such orga-
nization has been associated with biological networks including
the large and diverse protein–protein interaction network. This
network has most of its regulation occurring at the level of the
“hubs” which are master protein regulators. It is also characterized
by the presence of buffers that help mitigate the effect of any poten-
tial noise in the system by preventing it from activating biological
processes. By studying and modeling these networks, researchers
can identify key nodal proteins, and their interactions along with
the major pathways involved. These components and pathways
would be the major players in the pathophysiology of a disease or
disturbance and are the first suggested targets of therapy (Hood
and Perlmutter, 2004; Zhu et al., 2007).

THE APPLICATION OF SYSTEMS BIOLOGY IN
NEUROSCIENCE AND PSYCHIATRY
The major quest in the field of NP disorders is to reduce behav-
ioral and mental phenomena into biochemical properties that can
be tested and examined objectively through molecular biology
techniques (Tretter and Gebicke-Haerter, 2012). This is carried
out by the application of systems biology to NP disorders and
neuro-systems starting by the integration of HT datasets from
the different levels of the system (Zhang et al., 2010). Disciplines
include genomics, transcriptomics, epigenomics, and proteomics
all of which can gather information on neurosystem structure and
dynamics in normal and disordered states at different echelons,
starting with organelle, synaptic, and neuronal levels and pro-
ceeding to brain circuitry and sub-networks up to the entire brain
level as illustrated in Figure 1.

The application of these“omics” approaches can be achieved by
either the HT techniques to constitute new datasets under desired
circumstances or through literature or data mining using high per-
formance algorithms discussed later. Systems biology incorporates
brain imaging techniques, in vitro and in vivo studies of neuronal
cell performance in different conditions and in silico modeling
techniques. These in silico modeling techniques can demonstrate
certain pathological or normal states and help draw inferences
about the dynamicity of the system and the perturbations caused
by drugs and interventions. All these data sources help to draw
accurate mathematical models of the interactions of the perturbed
system from which an insight can be taken into the physiology of
the system and pathophysiology of diseases (Robeva, 2010; Zhang
et al., 2010; Westerhoff, 2011).

SYSTEMS BIOLOGY APPLICATION IN SCHIZOPHRENIA
Systems Biology has been employed to investigate the patho-
physiology of complex diseases like SZ. Several hypotheses were
proposed to explain the etiology and pathophysiology of SZ. These
hypotheses include among others: (1) the neurodevelopmental
hypothesis that explains SZ in terms of abnormalities in perinatal
development (Arnold et al., 2005; Hayashi-Takagi and Sawa, 2010;

FIGURE 1 | Components of neuro-systems biology. The different sources
of information for the application of systems biology to NP diseases; the
components that are a common target of HT-discovery tools have been
grouped together.

Altamura et al., 2012; Khandaker et al., 2012; Miller et al., 2012),
(2) the neurodegenerative hypothesis that links SZ to excitotoxicity
caused by hyperglutaminergic signaling (Malaspina, 2006; Perez-
Neri et al., 2006; Kitabayashi et al., 2007; Archer, 2010), (3) the
classical dopamine hypothesis that associates SZ with dopamine
signaling dysfunction including hypo-dopaminergic signaling in
the prefrontal cortex and hyper-dopaminergic signaling in the
mesolimbic system (Snyder, 1976; Sayed and Garrison, 1983; See-
man, 1987; Baumeister and Francis, 2002), (4) the glutamate
hypothesis that associates SZ with hyperglutaminergic signaling
(Coyle, 2006; Stahl, 2007; Egerton and Stone, 2012; Moghad-
dam and Javitt, 2012), and (5) the revised dopamine hypothe-
sis that includes both glutaminergic signaling hyperactivity and
dopaminergic signaling dysfunction. Systems biology has been
incorporated to assess and provide evidence for current or new
hypotheses of SZ disease (King et al., 1981; da Silva Alves et al.,
2008; Howes and Kapur, 2009). One example of this application
involves the study of neurotransmitter (NT) dysfunction includ-
ing dopaminergic, GABA-ergic, and glutaminergic transmission
(discussed later).
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As supported by imaging techniques and postmortem analysis,
SZ is characterized by loss of inhibitory interneurons in several
brain regions involving GABA transmission disrupting both the
glutaminergic and dopaminergic transmission (Freedman, 2003;
Martins-de-Souza, 2010). The use of fMRI supports the idea of
loss of inhibitory interneurons in the hippocampus and dorso-
lateral prefrontal cortex as indicated by hyperactivity in these
areas (Freedman, 2003). Consequently, both hyperglutaminer-
gic transmission and dopaminergic transmission dysfunctions are
major hypotheses to explain the pathophysiology of SZ. More-
over, in an in vitro study by Martins-de-Souza et al. the treatment
of astrocytes with MK-801, an N -Methyl-d-aspartate (NMDA)
antagonist, revealed proteomic changes similar to those observed
in SZ human brain tissue. The use of clozapine, an antipsychotic,
reversed these changes (Martins-de-Souza et al., 2011).

Several meta-analyses of Copy-Number Variants (CNV) and
Single Nucleotide Polymorphism (SNP) studied susceptibility loci
for SZ. The studies performed by Allen et al. (2008), Crespi et al.
(2010) involving the SZGene database revealed the involvement
of deletions affecting the loci of Catechol-O-Methyltransferase
(COMT) gene responsible for dopamine metabolism, dopamine
receptors DRD1 and DRD2, and genes related to GABA and
Glutamate signaling. Similar associations of these genes were
determined by Major Depressive Disorder Working Group of the
Psychiatric GWAS Consortium (2012) using BEAGLE 3.0.4, a soft-
ware package for analysis of large-scale genetic data, to impute 1.2
million autosomal SNP. On the other hand, Abdolmaleky et al.
studied altered methylation patterns of postmortem brain samples
from frontal cortex using univariate, bivariate, and multivariate
statistical tests with large sample approximations to assess differ-
ences between cases, SZ or BPD, and controls. Results indicate
that the hypomethylation of the COMT gene was associated with
mRNA overexpression of the gene and decreased DRD1 expression
in both SZ and BPDs (Abdolmaleky et al., 2006). Similar statisti-
cal analysis was performed by Nohesara et al. who used saliva, a
comparable non-invasive source for DNA study to blood, to eval-
uate the methylation patterns in human SZ and BPD subjects (for
more information about the use of saliva as a DNA source, check;
Abraham et al., 2012; Simons et al., 2012). Results showed that
the same gene, COMT, was also hypomethylated (Nohesara et al.,
2011).

Moreover, in the study done by Kirov et al. (2008) CNVs in SZ
were analyzed by comparative genome hybridization using the
CGHPRO, software for the analysis, and visualization of array
CGH data. Results showed that deletion at the loci of NRXN1,
a neuronal cell adhesion molecule that modulates the recruitment
of NMDA receptor (Lett et al., 2011), and de novo duplication in
the amyloid precursor-binding protein A2 gene (APBA2) are asso-
ciated with SZ. The association of CNVs involving the NRXN1 was
reported in another study done by Kirov et al. (2012). In this new
study, the Affymetrix Genotyping Console 4.0 software was used
to integrate and visualize data related to CNVs implicated in SZ.
Along with the locus of NRXN1, the study implicated seven other
loci mainly related to post-synaptic density (PSD) proteins, and
NMDAR signaling. These data were subject to a systemic biology
approach that related the results of CNV studies to those of pro-
teomic analysis that showed PSD-proteome enrichment (Kirov

et al., 2012). In addition, another study by Lett and colleagues
supports this finding by associating a SNP at NRXN1 locus with
SZ. This study involved the statistical analysis of gene association
using UNPHASED 3.1, software for genetic association analysis
(Lett et al., 2011). Furthermore, a study by Le-Niculescu et al.
involved the integration of pharmaco-genomic mouse model with
human genetic linkage data and human postmortem brain data. In
this study, genomic and pathway analysis involved the use of: Gene-
Spring software for hierarchical clustering,NetAffx Gene Ontology
Mining Tool for categorizing genes into functional categories, and
Ingenuity Pathway Analysis to analyze direct interactions among
top candidate genes. Results showed the involvement of pathways
related to GABA transmission, glutamate transmission, synaptic
signaling, myelination, and lipid metabolism (Le-Niculescu et al.,
2007).

In addition to the above-mentioned genomic analyses, several
proteomic studies of postmortem brain tissues from several corti-
cal areas of SZ patients also supported the implication of dopamin-
ergic, glutaminergic, and GABA-ergic transmission dysfunction in
the pathophysiology of SZ (Pennington et al., 2008; Behan et al.,
2009; Nesvaderani et al., 2009; Martins-de-Souza, 2010). The study
done by Pennington et al. (2008) included a proteomic analysis of
the proteome of layer 2 of the insular cortex using DeCyder 5.0 for
statistical differential analysis and X!Tandem for protein identifi-
cation. Results involved 57 differentially expressed spots of which
17 of which being related to cell–cell communication and signal
transduction. Glial fibrillary acidic protein (GFAP), one of the pro-
teins related to glutaminergic NMDA signaling, has been shown to
be differentially expressed in several regions of postmortem brain
of SZ patients. These regions include:dorsolateral prefrontal cortex
(Martins-de-Souza, 2010), the Wernicke’s area (Martins-de-Souza,
2010), the anterior temporal lobe (Martins-de-Souza, 2010), the
hippocampus (Focking et al., 2011), and the anterior cingulate
cortex (Clark et al., 2006). Another protein (PRDX6), a phos-
pholipase 2 associated with reduced dopaminergic transmission,
has been implicated in SZ by linkage study of Hwu et al. (2003)
at the locus 1q25.1 and in proteomic studies involving several
brain regions (Nesvaderani et al., 2009; Martins-de-Souza, 2010).
These “omics” studies are consistent with the previous hypothesis
supporting the involvement of NMDR receptor signaling dysfunc-
tion, GABA-ergic hypofunction, and dopamine dysfunction in the
pathophysiology of SZ.

The relation between the loss of GABA inhibition, hyperglut-
aminergic signaling, and dopamine transmission dysfunction has
been emphasized by studies done by Martins-de-Souza (2010)
evaluating calcium homeostasis-related proteins in SZ. The study
involved network analysis using the STRING software to draw
protein–protein interactions implicated in the pathogenesis of
SZ. This analysis shows that in SZ, the disruption of proteins
related to calcium balance including glutamate may increase Ca+2-
dependent phospholipase A2 (PLA2) activity and account for
the accelerated phospholipid turnover and reduced dopaminer-
gic activity seen in the SZ frontal lobe (Martins-de-Souza, 2010).
In vivo studies on animal models further support these hypotheses
involving the signaling systems in SZ utilizing NMDAR antag-
onists like PCP on both mice (Enomoto et al., 2007) and rats
(Pollard et al., 2012).
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Studies of GLAST-knockout mice (GLAST is a protein involved
in glutamate clearance) supports the hypothesis that glutamate
hyper-transmission contributes to the pathophysiology of SZ
(Karlsson et al., 2008, 2009). One study by Karlsson et al. (2009)
on mice reveals that GLAST-knockout produce phenotypic abnor-
malities related to the negative and cognitive symptoms similar to
SZ patients. Moreover, the same group showed similar results in
a previous study on GLAST-knockout mice and supported the
antipsychotic potential of mGlu2/3 agonists that decrease Gluta-
mate release from neurons (Karlsson et al., 2008). Beyond this
integration, systems biology further expands to the predictive
part where several computational models have been designed
to mimic circuit alterations in SZ and provide a platform to
understand the pathophysiology of the disease and the effects
of drugs and therapeutics as will be discussed in the in sil-
ico modeling section (Vierling-Claassen et al., 2008; Spencer,
2009; Rotaru et al., 2011; Volman et al., 2011; Komek et al.,
2012).

However, the application of systems biology in SZ is not limited
to the study of synaptic transmission pathways associated with the
disease; other pathways have been implicated in the pathophysiol-
ogy of SZ involving neurodevelopment and synaptic plasticity, cell
cytoskeleton abnormalities, signal transduction pathways, cellu-
lar metabolism and oxidative stress, patterns of myelination, and
inflammation and cytokine production. We will briefly demon-
strate the results of the study of association between SZ and
neurodevelopment, although a detailed review of all the models is
beyond the scope of this review.

The association between neurodevelopmental changes and SZ
has been reported in several genomic, transcriptomic, and pro-
teomic studies (Rapoport et al., 2005). The GWA study launched
by the Psychiatric Genome-Wide Association Study (GWAS) Con-
sortium (2011), mentioned before, implicated MIR137 as a new
loci associated with SZ at the genome-wide-significance (GWS)
level. miRNA 173 is a known regulator of neuronal development
(neurogenesis). Transcription factor 4 (TCF4), CACNA1C, and
CALN1 (calneuron 1) are miRNA 173 predicted targets and are
also associated with SZ (Ripke et al., 2011). The study of Green-
wood et al. (2011) that analyzed several SNPs association to neuro-
physiological and neurocognitive endophenotypes of SZ revealed
the involvement of several genes involved in axonal guidance
(AKT-1, BDNF) and neurodevelopment (ERB4, NRG-1; Green-
wood et al., 2011). Implication of genes associated with SZ in
neurodevelopmental changes was demonstrated by the transla-
tional convergent functional genomics (CFG) study conducted
by Ayalew et al. (2012) including the DISC-1 (Disrupted in SZ)
gene, first identified in a Swedish population of SZ patient. These
genomic studies were also supported by further proteomic analy-
sis that demonstrated differential expression of several proteins
involved in neurodevelopment between SZ and normal individ-
uals. An example of which is the study of Behan et al. (2009)
of membrane microdomain-associated proteins in dorsolateral
prefrontal cortex (DLPFC). The study correlated three proteins
with neurite formation that is a critical step in neurodevel-
opment (Freedman, 2003). More associations were investigated
at the transcriptomic level as with the study of Hakak et al.
(2001) using DNA microarray analysis of the gene expression

levels in postmortem DLPFC (Hakak et al., 2001). The study
discovered differential expression of genes implicated in neurode-
velopment and synaptic plasticity such as MARCKS, GAP-43,
SCG-10, and neuroserpin (Hakak et al., 2001). Moreover, the
process of modeling SZ in terms of different pathways is not
contradictory but rather complimentary. Indeed, since several of
these pathways inter-relate and overlap, this approach should pro-
vide a better insight into the etiology and pathophysiology of the
disease.

SYSTEMS BIOLOGY APPLICATION IN BIPOLAR DISORDER
Another application of systems biology in NP disorders involves
the implication of signal transduction and synaptic plasticity in
BPD (Manji and Lenox, 2000). Recently, a study performed on
human genetic alterations in SZ and BPD by The SZ Psychi-
atric GWAS Consortium showed that the loci of CACNA1C,
ANK3, and ITIH3-4 genes have gained GWS level association
with BPD (Ripke et al., 2011). CACNA1C encodes for the a1C
subunit of the Cav1.2 voltage-dependent L-type calcium chan-
nel (LTCC) which is the major LTCC expressed in mammalian
brain (Bhat et al., 2012). It is involved in cell membrane depo-
larization and increasing calcium permeability affecting signal
transduction and synaptic plasticity. ANK3 encodes a protein
that is part of the integral membrane proteins associated with
axons. ITIH3-4 is involved in extracellular matrix stabilization
(Ripke et al., 2011). As reviewed by Bhat et al. (2012) a single
(SNP; rs1006737) in CACNA1C gene has been associated with
NP diseases in 12 studies associating it with BPD, SZ, MDD, and
other psychiatric conditions. These genomic results with their rel-
evance to the implication of signal transduction and synaptic
plasticity in BPD are further supported by transcriptomic stud-
ies and animal models studied below. Moreover, CFG approach
was used to analyze candidate genes, pathways, and mechanisms
for BPD. CFG draws upon multiple independent lines of evi-
dence for cross-validation of GWAS data to uncover candidate
genes and biomarkers involved in disease pathogenesis. These
lines of evidence include independent GWAS data, animal mod-
els and experiments, human blood analysis, human postmortem
brain analysis, and human genetic linkage and association studies
(Le-Niculescu et al., 2009). The study by Ogden et al. integrated
pharmaco-genomic mouse model that involve treatment of mice
with stimulants and mood stabilizers with human data including
linkage studies and postmortem human brain changes. Results
implicated several pathways including neurogenesis,neurotrophic,
NT, signal transduction, circadian, synaptic, and myelin related
pathways in the pathogenesis of BPD (Ogden et al., 2004). A simi-
lar study by Le-Niculescu et al. used also CFG to identify candidate
genes and mechanisms associated with BPD. Thirty-two potential
blood biomarkers were identified. The interactions between these
genes were analyzed independently by Ingenuity Pathway Analy-
sis and MetaCore softwares. The implicated pathways included
among others growth factor signaling, synaptic signaling, cell
adhesion, clock genes, and transcription factors (Le-Niculescu
et al., 2009).

Several transcriptomic studies of gene expression profiles in
humans have confirmed the involvement of glutamate transmis-
sion regulation, GTPase signaling, calcium/calmodulin signaling,

www.frontiersin.org December 2012 | Volume 6 | Article 187 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alawieh et al. Bioinformatics and systems biology in neuropsychiatry

and other signal transduction pathways in BPD (Eastwood and
Harrison, 2000; Nakatani et al., 2006; Ginsberg et al., 2012). A
study by Iwamoto et al. (2004) carried out a comparison of
gene expression profiles between BPD, MDD, SZ, and control
subjects in postmortem prefrontal cortices samples using Gene-
Spring 5.0. Results revealed downregulation of genes encoding
channels, receptors, and transporters. Moreover,proteomic studies
on postmortem brain tissue of BPD have shown several alter-
ations related to synaptic functions; these involve reduction of
synapsin in the hippocampus (Vawter et al., 2002) and altered
levels of synaptosomal associated protein SNAP-25 (Fatemi et al.,
2001). Behan et al. (2009) carried out proteomic analysis of mem-
brane microdomain-associated proteins in SZ and BPD. Results
demonstrated several protein alterations in BPD related to synap-
tic structure and plasticity (syntaxin-binding protein 1, brain
abundant membrane-attached signal protein 1, and others; Behan
et al., 2009). Other proteomic studies implicated similar pro-
teins involved in cell signaling and synaptic plasticity such as
brain abundant membrane-attached signal protein 1, prohibitin,
tubulin, and others (Beasley et al., 2006; Focking et al., 2011).

Studies on animal models further support the above-
mentioned hypothesis. Recently, Nanavati et al. (2011) using PSD
proteome profiles, found that mood stabilizers modulate pro-
teins related to signaling complexes in rats. These proteins include
ANK3 that has been implicated in BPD. An in vivo study by Du
et al. has implicated the role of AMPA glutamate receptors in
BPD. Rats treated with antimanic agents like lithium or valproate
reduced hippocampal synaptosomal AMPA receptor subunit glu-
tamate receptor 1 (GluR1) levels (Du et al., 2004) suggesting
that regulation of glutamatergically mediated synaptic plasticity
may play a role in the treatment of BPD (Du et al., 2004). Dao
et al. has emphasized the role of CACNA1C in BPD. Cacna1c
haplo-insufficiency was associated with lower exploratory behav-
ior, decreased response to amphetamine, and antidepressant-like
behavior in mice (Dao et al., 2010). Taken together, these data
demonstrate the implication of synaptic plasticity and signal
transduction in the pathophysiology of BPD. Further research is
required in this field as systems biology application to NP diseases
is still in infancy.

BIOINFORMATICS IN SYSTEMS BIOLOGY
Central to the practice of systems biology and the understanding of
complex biological systems and cellular inter-dependencies is the
use of HT computational techniques, which enable investigators
to figure out the global performance of a system. This is a major
challenge to comprehend inter-dependencies between pathways
given the complexity of biological systems (Mazza et al., 2012).
The diagram in Figure 2 illustrates the use of computational tools
in systems biology.

High-throughput computational techniques take as input a
large set of data points. Each data point in Systems Biology research
is a multidimensional vector where m-dimensions describe bio-
chemical, kinetic, and HT-omic features collected from con-
ducted experiments and public databases, and associated with
n-dimensions that describe phenotypic features that act as target
classes. The first target of the computational analysis in systems
biology is to cluster data points with similar features. This is

widely used in systems biology and involves, mainly, unsuper-
vised pattern-recognition, or machine-learning algorithms that
can identify patterns within the data provided by the HT-omic
techniques. Unsupervised algorithms are pattern discovery algo-
rithms that aim to understand the structure of a given data set.
The family of unsupervised learning methods includes several
techniques such as K -means, factor analysis, principal component
analysis (PCA), independent component analysis (ICA), hierar-
chical and self-organizing maps (SOMs), besides other variants
and extensions (Boutros and Okey, 2005). This is in contrast to
supervised learning methods where the training data specifies the
classes to be learned. In systems biology, such tools will group
together genes with similar gene expression patterns, metabolites
subject to similar variations or proteins with similar translation
patterns. Such pattern discovery is essential to handle the huge
data obtained from DNA microarray and mass spectrometric stud-
ies. Pattern discovery allows to discover co-expressed genes and
co-regulated proteins and also to relate proteomic regulation to
genomic regulation. Also, knowledge based clustering techniques
such as SOMs model neuronal network to discover data points
with similar orientations and align them in a connected topology.
SOMs are artificial neural networks (ANNs) typically trained in
an unsupervised fashion to reduce the dimensionality of an input
space. They were instrumental in a study by Noriega (2008) to
establish the absence of central focus in Autism.

In the following section, we outline the two main steps of the K -
means algorithm for a set of observations (x1, x2, . . ., xn), where
each observation is an m-dimensional vector, and an initial set
K -means (m(0)

1 , m(0)
2 , ..., m(0)

K ):
Step 1 (Assignment): Each observation is mapped to the cluster

having the closest mean.

A(t )
i =

{
xS :

∥∥∥xS −m(t )
i

∥∥∥ ≤ ∥∥∥xS −m(t )
j

∥∥∥ ∀ 1 ≤ j ≤ K
}

(1)

Step 2 (Update): Set the new means to the centroids of the new
formed clusters:

m(t+1)
i =

1∣∣∣C (t )
i

∣∣∣
∑

xj∈ C (t )
i

C (t )
i xj (2)

In the above equations, t refers to the iteration and i to the clus-
ter number. Convergence occurs when no change in assignments
occurs.

More recently, “semi-supervised” clustering algorithms have
been introduced to systems biology. These ontology based clus-
tering algorithms can identify gene expression groups in relation
to prior knowledge from Gene Ontology (Kang et al., 2010). Super-
vised clustering techniques are also incorporated to the study of
systems biology where gene/protein expression data are sorted
based on information from databases involving gene ontologies,
pathway databases, and others into a predictive model (Kotera
et al., 2012). Supervised clustering algorithms are more involved in
gene classification than clustering. These algorithms are associated
with several databases and network clustering software mentioned
in what follows.

Further involvement of computational methodologies in sys-
tems biology includes discovering computational models from
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FIGURE 2 | Computational tools in the context of systems biology.
Process of systems biology starting from the HT-discovery tools till
biomarker discovery and elucidation of biological network: results of
HT-discover tools are collected and appropriate validation procedure is run
like western blot. Data is then subjected to computational analysis,
preprocessed to fit into the different algorithms for clustering and
classification. These algorithms include supervised, semi-supervised, and
unsupervised statistical and heuristic algorithms along others. Knowledge
based and supervised/semi-supervised algorithms have information
feeding from public databases that include ontologies, signaling, and
interaction networks. Information from these databases are obtained
through appropriate data mining tools and software and fed into the
algorithms. These algorithms will give clustered data with an estimated
accuracy. This clustered data is imported to network analysis, modeling,
simulation, and visualization tools. These tools get also information from

public databases fed through data mining techniques and also utilize the
previous mentioned algorithms. The output of such tools is a model of the
implicated network. This model is subject to computational analysis and
in silico modeling and simulations for hypotheses screening using
computer models. These simulations and models allow refining the
proposed network and orient the design of appropriate in vitro and in vivo
experiments on a fit animal model or concerned human cells. These in vivo
and in vitro experiments are run to assess the hypotheses and predictions
of the modeled network and allow for support or refinement of the
network. After enough evidence is collected through these rounds of
experimentation and hypotheses testing, a final representation of the
system is devised that could account to a disease pathogenesis or normal
physiology. This representation allows for biomarker and new therapeutic
discovery, provides an insight into the pathophysiology or normal
physiology and can help update the online databases.

stochastic and probabilistic data points and n-gram analysis with
hidden variables using Hidden Markov Models (HMMs). HMMs
are stochastic models where the assumed system is a Markov
process with unobservable states. A Markov process can be defined
as a stochastic process whose behavior at time t only depends
on its behavior at some time t 0 and not times prior to it. These
techniques subsume almost all other techniques; however, they
require huge computational overhead when analyzing large data
sets with dense probabilistic networks. Heuristics can be used to
reduce the overhead. For example, the Markov clustering algo-
rithm (MCL; Bustamam et al., 2012) is used in bioinformatics
to cluster protein–protein interaction networks (PPI) and protein
similarity networks (Satuluri et al., 2010). It is a graph cluster-
ing algorithm that relies on probabilistic studies to analyze the
network components and the flow within network clusters. It

reduces the size of clusters and assigns probabilistic weights for
the components. The MLC algorithm does not perform well with
large data sets and forms a large number of imbalanced small clus-
ters. Therefore, Satuluri et al. (2010) used well known facts about
the structure of PPI networks to regulate MCL and introduced the
Multi-Level-Regularized-MCL (MLR-MCL).

In addition to clustering methods, computational tools
involved in systems biology include the use of distance metrics
that can vary from Euclidean to information based distance met-
rics. Distance metrics can help detect similarities of genes or other
obtained samples. These metrics are among the primary strategies
used in microarray analysis but have certain drawbacks. For exam-
ple, the main limitation of Euclidean distance (also referred to
as the l2 norm) resides in its sensitivity to any outliers in the
data. Alternatives include using measures of statistical dependence.
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The simplest measure of dependence is Pearson’s correlation. It is
widely used and is able to capture linear dependence between
two variables. Other measures of correlation like Spearman’s rho
and Kendall’s tau are also popular but can only capture monot-
one dependence. Non-linear dependence can be measured using
mutual information or other measures of association (Rényi,
1959). In general, the choice of a measure of dependence is gov-
erned by the availability of a solid estimator and a relatively low
computational burden. A popular rank-based measure of concor-
dance between variables, Kendall’s tau has been used in several
systems biology contexts (Bolboaca and Jantschi, 2006; Sen, 2008)
and can be defined as follows:

τ = 2
Ncp − Nncp

n (n − 1)
(3)

where in Eq. 3, N cp and N ncp respectively refer to the number of
concordant or discordant pairs, where, for a set of observations
(x1, y1), . . . , (xn , yn) :

A concordant pair is a pair where xi < xj and yi < yj or xi > xj and
yi > yj

A discordant pair is a pair where xi < xj and yi > yj or xi > xj and
yi < yj

Other computational methodologies have been also used in relat-
ing data points to existing public databases using data mining
techniques such as association rules, decision trees, and pattern
based searches. This can result in updating the public databases or
in refining the experiments.

The above-mentioned algorithms and strategies have been used
by several software libraries and programs available for use in the
database, data mining, and network clustering, modeling, and sim-
ulation areas (Table 1). Examples of these resources in the database
and data mining areas are: Genomics: (KEGG, Kanehisa et al.,
2012; Human Gene Expression Index, Haverty et al., 2002; and
TRED, Jiang et al., 2007), proteomics: (GELBANK, Babnigg and
Giometti, 2004; X Tandem, Craig et al., 2004; and PRIDE, Jones
and Cote, 2008), signaling pathways: (PANTHER, Mi and Thomas,

Table 1 | Examples of bioinformatic resources and computational tools.

Database URL Reference

DATA RESOURCES: DATABASES FOR ONTOLOGIES, GENOMICS, PROTEOMICS, SIGNALING PATHWAYS, AND INTERACTION NETWORKS

KEGG http://www.genome.jp/kegg/ Kanehisa et al. (2012)

Human Gene Expression Index http://www.biotechnologycenter.ora/hio/ Haverty et al. (2002)

TRED http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home Jiang et al. (2007)

GELBANK http://gelbank.anl.gov/ Babnigg and Giometti (2004)

X Tandem http://www.theapm.orq/TANDEM/ Craig et al. (2004)

PRIDE ftp://ftp.ebi.ac.uk/pub/databases/pride/ Jones and Cote (2008)

PANTHER http://www.pantherdb.ora/ Mi and Thomas (2009)

GenMAPP2 http://www.aenmapp.ora/ Salomonis et al. (2007)

Reactome http://www.reactome.org/ Croft et al. (2011)

TRANSPATH http://www.aenexplain.com/transpath Krull et al. (2006)

IntAct http://www.ebi.ac.uk/intact/index.isp Kerrien et al. (2012)

MIPSMPPI http://mips.gsf.de/proj/ppi/ Pagel et al. (2005)

aMAZE http://www.amaze.ulb.ac.be Lemer et al. (2004)

GeneNet http://wwwmgs.bionet.nsc.ru/mgs/gnw/qenenet/. Ananko et al. (2002)

GO – Gene Ontology http://www.geneontoloav.ora/GO.downloads.shtml Harris et al. (2004)

SO – Sequence Ontology http://obo.sourceforge.net/cgi-bin/detail.cgi?seauence

PhenomicDB http://www.phenomicdb.de Kahraman et al. (2005)

DATA ANALYSISTOOLS: NETWORK ANALYSIS, SIMULATION, AND/OR MODEL ASSESSMENT

MATLAB Simulink toolbox http://www.mathworks.com/products/simulink/ Ullah et al. (2006)

Virtual Cell http://www.nrcam.uchc.edu Moraru et al. (2002)

JWS online http://iii.biochem.sun.ac.za/index.html Olivier and Snoep (2004)

Ingenuity Pathway Analysis http://www.ingenuity.com/products/pathways_analysis.html Jimenez-Marin et al. (2009)

NetBuilder http://homepaqesstca.hertsac.uk/~erdqmjs/NetBuilder%20home/NetBuilder/

Copasi http://www.copasi.ora/ Mendes et al. (2009)

E-cell http://www.e-cell.org/ Takahashi et al. (2003)

Cell Designer http://www.celldesianer.ora/ Van Hemert and Dickerson (2010)

Cellware http://www.bii.a-star.edu.sq/research/sbq/cellware/index.asp Dhar et al. (2004)

SimCell http://wishart.biology.ualberta.ca/SimCell Tretter and Gebicke-Haerter (2012)

NETWORK VISUALIZATIONTOOLS

Cytoscape http://www.cytoscape.org/ Shannon et al. (2003)

BioLayout http://www.biolayout.org/ Theocharidis et al. (2009)

Cobweb http://bioinformatics.charite.de/cobweb/ cobweb von Eichborn et al. (2011)
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2009; GenMAPP2, Salomonis et al., 2007; Reactome, Croft et al.,
2011; and TRANSPATH, Krull et al., 2006), and interaction net-
works: (IntAct, Kerrien et al., 2012; MIPS/MPPI, Pagel et al., 2005;
and aMAZE, Lemer et al., 2004).

Other computational tools are involved in network visual-
ization, analysis, simulation, and/or model assessment. These
include MATLAB/Simulink toolbox (Ullah et al., 2006), V-Cell
(Moraru et al., 2002), JWS online (Olivier and Snoep, 2004),
Copasi (Mendes et al., 2009), E-cell (Takahashi et al., 2003),
Ingenuity Pathway Analysis (Jimenez-Marin et al., 2009), Cell
Designer (Van Hemert and Dickerson, 2010), Cellware (Dhar
et al., 2004), Cytoscape with the Network Analyzer Plugin (Shan-
non et al., 2003), and other tools like Simcell for more com-
plex automated simulations (Tretter and Gebicke-Haerter, 2012).
Some tools emphasize only network visualization like BioLay-
out (Theocharidis et al., 2009) and Cobweb (von Eichborn et al.,
2011). An important tool used in analysis and visualization of
HT-omics data is Bioconductor (Gentleman et al., 2004). Biocon-
ductor is a tool based on “R.” “R” is statistical package used in
several tools and softwares of systems biology. It is an environ-
ment dedicated for statistical computing and graphics involving
linear and non-linear modeling, classification, and clustering of
the obtained data. Its application through Bioconductor involves
several packages like HTqPCR for HT quantitative real-time PCR
assays, MassSpecWavelet, and PROcess for mass spectrometric
data processing, VegaMC for comparative genome hybridization
datasets (Morganella and Ceccarelli, 2012), easyRNAseq for RNA
sequence datasets (Delhomme et al., 2012), RedeR (Castro et al.,
2012), and graphite (Sales et al., 2012) for biological networks
amongst others.

These environments, algorithms, software, and databases con-
stitute the core of action of systems biology in its attempt to
decipher the complexity of biological systems. Furthermore, the
emergence of commodity multi-core and concurrent processing
technology with Graphical Processing Units (GPUs) and the algo-
rithmic advances and discovery of novel more efficient algorithms
enable novel and practical applications of systems biology.

APPLICATION OF BIOINFORMATICS AND IN SILICO
MODELING IN NEUROSCIENCE AND NEUROPSYCHIATRY
As NP disorders are categorized among the highest complex dis-
eases, they have been subject for advanced computational tools for
modeling, simulation, and network analysis. Predictive systems
biology has been applied to the analysis of SZ where several in sil-
ico models and several simulations have been proposed to draw
inferences on the relation between biophysical alteration and cor-
tical functions as it will be illustrated in this section (Han et al.,
2003; Qi et al., 2008, 2010; Vierling-Claassen et al., 2008; Spencer,
2009; Hoffman et al., 2011; Morris et al., 2011; Rotaru et al., 2011;
Volman et al., 2011; Waltz et al., 2011; Cano-Colino and Compte,
2012; Komek et al., 2012). Computational modeling may help to
bridge the gaps between postmortem studies, animal models, and
experimental data in humans (Spencer, 2009). One major appli-
cation of modeling is related to gamma band oscillations that are
found to be altered in case of SZ, and are responsible for sev-
eral alterations and symptoms. Gamma activity in people with SZ
appears to have less amplitude and less synchronization.

One study examining the relationship between schizophrenic
symptom profile and oscillatory activity in the gamma range have
identified that positive symptoms, such as reality distortion or
hallucinatory activity associated with increased gamma activity,
while negative symptoms, such as psychomotor poverty, are asso-
ciated with decreased gamma oscillations in human brain circuitry
(Vierling-Claassen et al., 2008). In this study, two computational
models illustrating gamma band changes in SZ patients were sug-
gested based on previous studies demonstrating that SZ expressed
decreased GAT-1 (GABA transporter) and GAD67 (responsible for
GABA synthesis). Based on experimental evidence, the blockade
of GAT-1 has been modeled as extended inhibitory pos-tsynaptic
current (IPSC) whereas GAD67 decrease can be modeled as a
decrease in strength of inhibition (Vierling-Claassen et al., 2008).

A recent study done by Komek et al. (2012) modeled the
effect of dopamine on GABA-ergic transmission and Schizo-
phrenic phenotype. Through its action on GABA-ergic neurons,
dopamine increases the excitability of fast-spiking interneurons.
The effect of dopamine was demonstrated through varying leak
K+ conductance of the fast-spiking interneurons and gamma band
oscillations. Results of the simulations indicate that dopamine
can modulate cortical gamma band synchrony in an inverted-U
fashion and that the physiologic effects of dopamine on single fast-
spiking interneurons can give rise to such non-monotonic effects
at the network level as illustrated in Figure 3. Figure 3 illustrates
how amphetamine administration increases gamma synchrony in
SZ patients but decreases it in controls. Patients lie on the left
side of the curve and controls at the optimal point (Komek et al.,
2012). Moreover, studying several impairments associated with
SZ such as working memory shows that these impairments follow
the same curve (Komek et al., 2012; Tretter and Gebicke-Haerter,
2012). This model allows for predicting-based on the initial posi-
tion on the curve-the effect that dopaminergic drugs can have on
cognitive function (Cools and D’Esposito, 2011). This inverted-U
association between dopaminergic stimulation and prefrontal cor-
tex activity has been previously reported in the literature by several
studies including those conducted by Goldman-Rakic et al. (2000)
and Seamans and Yang (2004).

Furthermore, Spencer simulated a model of human cortical
circuitry using 1000 leaky integrate-and-fire neurons that can sim-
ulate neuronal synaptic gamma frequency interactions between
pyramidal neurons and interneurons (for a review about the use
of integrate-and-fire neurons in brain simulation, check (Burkitt,
2006). Spencer (2009) studied the effect of varying several synap-
tic circuitry components on the gamma band oscillation and
network response, and proposed that a multimodal approach,
combining non-invasive neurophysiological and structural mea-
sures, might be able to distinguish between different neural circuit
abnormalities in SZ patients. Volman and colleagues modeled Par-
valbumin (PV)-expressing, fast-spiking interneurons that interact
with pyramidal cells (PCs) resulting in gamma band oscillations
to study the effect of PV and GAD67 on neuronal activity. This
model suggested a mechanism by which reduced GAD67 and PV
in fast-spiking interneurons may contribute to cortical dysfunc-
tion in SZ (Volman et al., 2011). The pathophysiology behind
NMDA hypofunction in SZ has been suggested by a model pro-
posed by Rotaru et al. (2011). Modeling a network of fast-spike
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FIGURE 3 | Predictive model of dopamine stimulation. Inverted-U graph
of prefrontal cortex function depending on the level of dopamine
stimulation; Dopamine agonists have a therapeutic effect on Schizophrenia
that is a state of reduced dopamine stimulation while these agonists cause
adverse effects to controls who have optimal dopamine stimulation.
(Adapted with modifications from Komek et al., 2012).

(FS) neurons and PCs, they found that brief α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated
FS neuron activation is crucial to synchronize PCs in the gamma
frequency band.

Neuro-computational techniques have been also employed
to detect possible mechanisms for several endophenotypes and
impairments in SZ. For example, the model by Waltz et al. (2011)
correlates deficit in procedural “Go” learning (choosing the best
stimulus at a test) with dopamine alterations. Another model by
Morris et al. (2011) suggests an association between weakened
representation of response values and the failure to associate stim-
uli with appropriate response alternatives by the basal ganglia.
Other models associate abnormal connectivity or NMDA recep-
tor dysfunction with SZ features including deficits of simple spatial
working memory (Cano-Colino and Compte, 2012), associative
memory recall (Han et al., 2003), and narrative language dis-
ruption (Hoffman et al., 2011). Therefore, these computational
models have also showed how abnormal cortical connectivity and
synaptic abnormalities concerning NMDA receptors and gluta-
minergic transmission tend to explain some of the endopheno-
types of SZ. These findings fortify the association between these
physiological changes and overt phenotype of SZ, and provide a
common way to study the etiological basis of several NP disorders
endophenotypes.

Models of dopamine homeostasis have been demonstrated
gain insight into the actual mechanisms underlying the dopamine
transmission, its role in SZ and other NP disorders, and the impli-
cations on therapy and disease management. Qi et al. (2008)
reviewed the hypotheses related to dopamine homeostasis and
revised them in the context of SZ using a proposed neuro-
computational model. Another mathematical model proposed by
the same author included a biochemical system theory that mod-
els a system of relevant metabolites, enzymes, transporters, and

regulators involved in the control of the biochemical environment
within the dopamine neuron to assess several components and
factors that have been implicated in SZ. Such a model is proposed
to act as a screening tool for the effect of dopamine therapies
ameliorating the symptoms of SZ (Qi et al., 2008).

Taken together, these models (dopamine homeostasis and
gamma band synchrony along with other proposed models) pro-
vide some aspect of the predictive part of systems biology. They
provide an insight on how mechanisms could predict the roles of
proteomic findings in the determination of the overt phenotype.
By this, they can complement hypotheses and results, presented
by the integrative branch mentioned before. For example, neuro-
computational modeling of cortical networks by Volman et al.
(2011) has provided one mechanism by which GAD67 reduction
helps in understanding the pathophysiology of SZ and demon-
strates clearly how systems biology – through both the integra-
tive and predictive faces – has the unique potential to dig into
the underlying mechanisms involved in the perturbed biological
system under certain disease condition.

Another similar application of NP computational modeling
involves autism. Vattikuti and Chow (2010) analyzing the mech-
anisms linking synaptic perturbations to cognitive changes in
autism, showed that hypometria and dysmetria are associated with
an increase in synaptic excitation over synaptic inhibition in cor-
tical neurons. This can be due to either reduced inhibition or
increased excitation at the level of the different synapses (Vattikuti
and Chow, 2010). This study draws inferences about the possi-
ble link between perturbation of cerebral cortical function and
autistic phenotype and demonstrates that different varied phar-
macological approaches should be used in treating the autism
symptoms. Other computational models used SOMs algorithms
to study sensory abnormalities in autism (Noriega, 2008). A study
by Noriega supported the notion that weak central coherence is
responsible for sensory abnormalities in autism. These findings
suggest that failure in controlling natural variations in sensitivi-
ties to sensory inputs could be referred back to faulty or absent
feedback mechanism (Noriega, 2008).

A previous study by Noriega (2007) uses the same SOM-
algorithm to study abnormalities in neural growth in the brains
of autistic children and sensory abnormalities associated with the
autism in these children. Neural growth abnormalities features
were compared to the effects of manipulating physical structure
and size of these SOM. Results did not show an impact of the
abnormalities on stimuli coverage but a negative effect on map
unfolding. Sensory abnormalities were studied through atten-
tion functions that can model hypersensitivity and hyposensitivity
(Noriega, 2007). The model successfully reproduced the potential
of autistic patients to focus on details rather than the whole and
proved no connection between noisy neuronal communication in
these individuals and the autistic phenotype. Moreover, hypoth-
esizing that the key to understanding mechanisms of autism dis-
orders relies in elucidating the perturbations affecting synaptic
transmission, a computational model of synaptic transmission
has been investigated. In a study by Gowthaman et al. (2006),
a computational model of the snapin protein and the SNARE
complex interaction which is involved in NT release have been
presented. This model allows for a better understanding of the
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role of snapin in SNARE regulation; thus, in NT release. These
models may have further implications on therapeutic discovery.
Several other computational models have been devised to ana-
lyze various symptoms and endophenotypes of autism (Neumann
et al., 2006; Triesch et al., 2006). Two independent studies by
Triesch et al. (2006) and Neumann et al. (2006) proposed com-
putational models of the emergence of gaze in children that can
predict possible processes underlying the gaze abnormality asso-
ciated with behavioral impairment in autism. Moreover, models
of cortical connectivity by Just et al. (2012) and Kana et al. (2011)
relate cortical under-connectivity between frontal and posterior
cortex to the impaired ability of autistic patients to accomplish
complex cognitive and social tasks; thus, suggesting an expla-
nation for cognitive and behavioral impairments in autism. In
conclusion, these models provide a sort of computational assay
of symptoms of autism and support the association of these
symptoms with the underlying cortical connectivity and synaptic
alterations

BIOMARKERS AND THEIR USE IN PSYCHIATRY
Biomarkers in psychiatry and application of HT technology are
still in infancy with very limited clinically useful markers (Les-
cuyer et al., 2007). A spike in biomarker research has occurred
during the last 10 years due to different applications and advan-
tages which have been applied to the field of neuroscience (Woods
et al., 2012). As one molecular biomarker alone may not have a
strong statistical power to predict outcomes, especially with com-
plex diseases, the current trend is using HT and systems biology
techniques to identify a set of biomarkers or surrogate markers
that can be used as a panel to characterize a certain disorder or
disease. This has been a continual major challenge in biomarker
discovery (Biomarkers Definitions Working Group, 2001; Woods
et al., 2012).

Biomarkers can be used as surrogate endpoints. Surrogate
endpoints are biomarkers that intended to substitute a clinical
endpoint (Biomarkers Definitions Working Group, 2001; Filiou
and Turck, 2012). Such biomarkers have been widely sought in
NP diseases especially in the body fluid. A perfect marker should
be easily accessible in a non-invasive manner. Therefore, blood
has been considered ideal as a source for the quest for biomarkers
(Lescuyer et al., 2007; Dao et al., 2010). In addition, it reflects the
entire homeostasis of the body and contacts every organ.

However, several difficulties are associated with the identifica-
tion process of clinically useful serum biomarkers, including the
large amount of proteins present with their high dynamic range
of abundance that can span 10–12 orders of magnitude. Such a
level cannot be reached even by the advanced HT techniques (Dao
et al., 2010; Korolainen et al., 2010; Juhasz et al., 2011). Thereby,
this causes high abundance proteins to mask lower abundant ones
(Juhasz et al., 2011) especially considering that only 22 plasma pro-
teins constitute 99% of the total plasma proteins (Lescuyer et al.,
2007). Other limitations include the presence of diverse analytes
including proteins, small lipids, electrolytes in the serum (Zhang
et al., 2005; Dao et al., 2010). Another candidate biofluid for
biomarker investigation is the cerebrospinal fluid (CSF). Because
CSF is in communication with cerebral extracellular fluid and is
less hampered by confounding factors, therefore more accurately

reflect cerebral pathological changes. CSF seems to be the most
promising source for both ND and NP diseases (Zhang et al.,
2005). Further advantages of CSF investigation include higher con-
centrations especially that several molecules cannot cross into the
plasma due to the blood brain barrier. In addition, CSF reflects the
metabolic processes occurring within the brain (Jiang et al., 2003;
Korolainen et al., 2010; Juhasz et al., 2011). However, problems
could be associated with CSF sampling as many still consider lum-
bar puncture as an invasive procedure (Jiang et al., 2003; Zhang
et al., 2005; Juhasz et al., 2011).

Biomarkers in NP can aid in staging and classification of the
extent of a disease (Biomarkers Definitions Working Group, 2001;
Domenici et al., 2010) allowing for disease stratification which is
the basis of personalized medicine (Zhang et al., 2010). Further-
more, biomarker discovery in the field of NP diseases allows for
the discovery of new pathways relevant to the pathophysiology of
that particular disorder. For example, miRNA 173 and its targets
TCF4 and CACNA1C were recognized as susceptibility genes in
SZ through GWAS studies previously mentioned. This discovery
allowed for the implication of abnormal neuronal development
(neurogenesis) into the etiology of SZ since miRNA 173 is a known
regulator of human neurogenesis (Ripke et al., 2011).

Diagnosis and treatment of patients with SZ is another exam-
ple of clinical challenge in psychiatry. Currently, there is not
enough understanding about pathophysiology of SZ and pharma-
cotherapy. This usually leads to multiple trials evaluating different
antipsychotics until desirable clinical effects are achieved (Schwarz
et al., 2012). In an attempt to gain insights into pathophysiology
of SZ, Cai et al. used a mass spectrometry-based metabolomic
analysis to evaluate altered metabolites in SZ patients. In their
work, they compared metabolic monoamine and amino acid NT
metabolites in plasma and urine simultaneously between first-
episode neuroleptic-naive SZ patients and healthy controls before
and after a 6-weeks risperidone monotherapy. Their findings
show that antipsychotic treatment (risperidone) can approach
NT profile of patients with SZ to normal levels, suggesting that
restoration of the NT may be parallel with improvement in psy-
chotic symptoms. They also used LC-MS and H nuclear magnetic
resonance-based metabolic profiling to detect potential markers
of SZ. They identified 32 candidates including pregnanediol, cit-
rate, and α-ketoglutarate (Cai et al., 2012). Further studies with
larger numbers of patients will be required to validate these find-
ings and to determine whether these markers can be translated
into clinically useful tests. So far, no biomarker has been approved
for clinical use in SZ (Macaluso and Preskorn, 2012).

As for drug discovery application, biomarkers identification can
have a direct application helping to identify new treatment targets.
For example, the recognition of DNA methyltransferase (DNMT)
inhibitors has been shown as a potential candidate for the treat-
ment of SZ studied on mouse model (Satta et al., 2008). Recent
studies have demonstrated the effects of DNMTs on hypermethy-
lation and downregulation of GAD67, a novel potential biomarker
for SZ (Ptak and Petronis, 2010).

Finally, clinically validated biomarkers would aid physicians in
early diagnosis and would allow a better and more rigid discrim-
ination between different NP diseases (Biomarkers Definitions
Working Group, 2001). Several studies have been established to
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discover biomarkers that can draw the line between different NP
diseases like MDD and BPD (Ginsberg et al., 2012), SZ and BPD
(Thomas et al., 2003; Harris et al., 2007; Glatt et al., 2009), SZ, and
depression (Domenici et al., 2010). Biomarker discovery can also
assist in determining the course of the disorder and when and how
to treat (Woods et al., 2012).

CONCLUSION
Neuropsychiatric disorders including SZ, major depression, BPDs
are difficult to tackle and track down since their occurrence
involves several genes, several epigenetic mechanisms, and envi-
ronmental effects. Therefore, the emergence of systems biol-
ogy as a discipline provides a mean to investigate the patho-
physiology of these NP disorders using a global and system-
atic approach. Systems biology allows a thorough investigation
of the system components, its dynamics, and responses to any
kind of perturbations at the base line level and the experimen-
tal level. It integrates mathematical models with experimental
molecular information from in silico, in vivo, and in vitro stud-
ies. In SZ, the application of systems biology underlined the
deleterious effects of GABA that disrupt both the glutaminergic
and dopaminergic transmission. When applied in BPD, systems
biology revealed the implication of a number of genes includ-
ing interactions of CACNA1C, ANK3, and ITIH3-4 genes via
genetic association analysis. In autism, systems biology high-
lighted a link between synaptic perturbations and cognitive
impairments.

The systems biology discipline makes use of available or novel
bioinformatics resources and computational tools to model bio-
logical systems in question. It enables a better comprehension of
the inter-dependencies between pathways, and the complexity of
biological systems. It provides simulation and prediction abilities
to investigate how systems react upon interferences.

Along the same lines, systems biology techniques require
significant data preprocessing to overcome a number of key
challenges. First, there are challenges pertaining to the bias in
statistical analysis, and the difficulties in performing clinical val-
idation (Frank and Fossella, 2011; Linden, 2012; Villoslada and
Baranzini, 2012). Second, many studies are confined to a small
sample size that hinders the ability to infer conclusions of high con-
fidence (Bhat et al., 2012). Third, the“omics”discovery approaches
suffer from the heterogeneity of the sampled populations which
involves interspecies and genetic variations (Cowan et al., 2002;
O’Tuathaigh et al., 2012). Such heterogeneity could account, in
part, for the conflicting results associated with the limited experi-
mental reproducibility (Fathi et al., 2009; Martins-de-Souza et al.,
2012). Furthermore, as most studies rely on postmortem human
tissue, challenges encompass the inability to find enough sam-
ples (Korolainen et al., 2010; Sequeira et al., 2012), along with the
inherent limitations of neuropathological analysis to discriminate
between changes caused by the NP disorders themselves and those
derived from postmortem artifacts, or other confounding factors
(Huang et al., 2006; Harris et al., 2007). Furthermore, most of
these studies are related to late-onset stages of the disease, and
only in few cases, researchers are able to reflect early changes that
characterize these NP disorders (Juhasz et al., 2011).

Systems biology in the areas of psychiatry and neuroscience
has provided limited insights into the pathophysiology and the
molecular pathogenesis of NP diseases. For all of these studies,
computational techniques used in systems biology are consid-
ered necessary tools to determine functional associations of key
factors and pathways involved in NP disorders. Finally, the pro-
jected utility of systems biology will be valuable for discovering
disease-specific NP biomarkers. Such markers are key tools for
disease assessment and for the discovery of novel treatments in
neuropsychiatry.
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