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Functional magnetic resonance imaging (fMRI) during a resting-state condition can reveal
the co-activation of specific brain regions in distributed networks, called resting-state
networks, which are selected by independent component analysis (ICA) of the fMRI
data. One of the major difficulties with component analysis is the automatic selection of
the ICA features related to brain activity. In this study we describe a method designed
to automatically select networks of potential functional relevance, specifically, those
regions known to be involved in motor function, visual processing, executive functioning,
auditory processing, memory, and the default-mode network. To do this, image analysis
was based on probabilistic ICA as implemented in FSL software. After decomposition,
the optimal number of components was selected by applying a novel algorithm which
takes into account, for each component, Pearson’s median coefficient of skewness of
the spatial maps generated by FSL, followed by clustering, segmentation, and spectral
analysis. To evaluate the performance of the approach, we investigated the resting-state
networks in 25 subjects. For each subject, three resting-state scans were obtained with
a Siemens Allegra 3 T scanner (NYU data set). Comparison of the visually and the
automatically identified neuronal networks showed that the algorithm had high accuracy
(first scan: 95%, second scan: 95%, third scan: 93%) and precision (90%, 90%, 84%).
The reproducibility of the networks for visual and automatic selection was very close:
it was highly consistent in each subject for the default-mode network (≥92%) and the
occipital network, which includes the medial visual cortical areas (≥94%), and consistent
for the attention network (≥80%), the right and/or left lateralized frontoparietal attention
networks, and the temporal-motor network (≥80%). The automatic selection method may
be used to detect neural networks and reduce subjectivity in ICA component assessment.
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INTRODUCTION
Functional magnetic resonance imaging (fMRI) measures the
hemodynamic response induced by neural activity and permits
the detection of active brain regions associated with one or
more tasks. In a resting-state condition, a state of a sponta-
neous and endogenous brain activity not intentionally induced
externally or voluntarily generated by the subject, fluctuations
in the blood oxygenation level-dependent (BOLD) signal reflect
the brain’s baseline activity (Biswal et al., 1995; Raichle et al.,
2001; Greicius et al., 2002; Mulert and Lemieux, 2010). Although
the role of these networks is not yet fully understood, their
modifications are studied in disease states such as Alzheimer’s
disease (Greicius et al., 2004). During a task, the most com-
monly used method to analyze fMRI data is the hypothesis-
driven, voxel-based statistical method as a correlation method
(Bandettini et al., 1993) and the general linear model (GLM)
(Friston et al., 1995). However, because GLM and correlation
methods are unable to identify spontaneous brain activity, other

techniques are required to identify the spatial patterns of coherent
BOLD activity.

The simplest technique currently being developed for the anal-
ysis of resting-state data is to extract the BOLD time course from a
region of interest (seed region) and then determine the temporal
correlation between the extracted signal and the time course from
all other brain voxels. A more complex approach is the clustering
technique. In the context of resting-state functional connectiv-
ity analysis, clustering algorithms have been used to partition the
brain into regions (clusters) functionally connected to each other
(van den Heuvel et al., 2008). The most commonly employed
methods are reviewed in Margulies et al. (2010). Nonetheless,
in the absence of a standard paradigm design, a multivariate
approach/analysis such as independent component analysis (ICA)
is the one most often used.

ICA is an important technique for data-driven analysis as it
aims to overcome the problem of blind source separation of sig-
nals by dividing the imaging data into several spatial patterns or
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independent activation maps. With this method, fMRI data can
be analyzed in the absence of spatial bounds or a priori knowledge
about the activation time courses of the different components,
or when a component is activated by specific psychophysiological
systems or related to machine noise or other artifacts (McKeown
et al., 1998). Furthermore, it has recently been shown that ICA
can extract task-related and physiologically-relevant non-task-
related components, as well as artifactual components.

Three main methodological issues involve handling of the ICA
results. First, each time an analysis is performed, it can induce
changes in the estimated independent components (ICs) prob-
ably due to either the assumption of statistical independence,
which may not hold for the data, or the additive noise that can
modify the solution (Vlipaavalniemi and Vigario, 2008). Second,
ICA can extract only the number of components defined a priori,
and the components are not ranked during decomposition (Boly
et al., 2008). This results in overestimation of the dimensional-
ity of the fMRI data for ICA, leading to an excessive number of
components with dissociated sources. But the data dimensionality
may also be underestimated, rendering the phenomena of inter-
est difficult to separate (Beckmann et al., 2001). While different
toolboxes can automatically estimate the number of components,
in practice, the dimensions are more often estimated by the user.
The third problem is how to identify and isolate the sponta-
neous networks, so that one can discard non-neuronal noise such
as scanner instability, environment noise, head movements, and
physiological fluctuation (cardiac and respiratory cycles).

Several methods that order output components have been
developed (McKeown, 2000; Formisano et al., 2002; Lu and
Rajapakse, 2003; Moritz et al., 2003; De Martino et al., 2007;
Schöpf et al., 2010). Lu and Rajapakse order the ICs either
according to kurtosis or by incorporating a priori information
as constraints; McKeown suggests an hybrid method to sepa-
rate the task-related components from the artifactual sources, but
employing a priori hypothesis to guide the analysis; Formisano
and colleagues propose three measures for each IC to solve the
selection problem: kurtosis of the component’s distribution of the
voxel values ranked in descending order, the degree of spatial clus-
tering of its suprathreshold voxels, and one-lag serial correlation
of its time course. Finally, algorithm fully exploratory network
ICA (FENICA), introduced in the context of ICA group analysis,
explores spatially consistent resting-state networks over a group
of subjects; it does not require an a priori template definition or
visual inspection or single-subject component selection (Schöpf
et al., 2010).

Various different approaches to classifying a network across
individuals have also been advanced (Calhoun et al., 2001;
Greicius et al., 2004; Wang and Peterson, 2008). Greicius and
colleagues used the template-matching approach in group-level
ICA analysis to detect the default-mode network. Although
template matching is an effective means to consistently select
analogous networks across individuals, it relies on assuming
appropriate templates (Margulies et al., 2010). Calhoun and col-
leagues addressed the problem of combining components across
individuals by entering the individual data sets into a single
ICA analysis and then back-reconstructing them. This proce-
dure ensures that the components are consistently ordered across

individuals but it is computationally intensive. Another group-
level approach (Wang and Peterson, 2008) is based on a clustering
algorithm, partner-matching, which automatically identifies the
components by clustering them according to robust measures of
similarity in their spatial configurations either within or between
subjects.

So although ICA decomposition in fMRI is widely used to
identify networks, a gold standard selection criterion to select net-
works with potential functional relevance (i.e., those involved in
motor function, visual processing, executive functioning, audi-
tory processing, memory, and the default-mode network) is still
lacking.

The aim of this study was to develop a method for auto-
matic selection which could identify the signals representing
the networks of interest. Based on a four-step algorithm, the
method comprises spatial map filtering, statistical tests and spec-
tral analysis. To test the method, we compared the selection of
components on the basis of visual inspection vs. automatic selec-
tion in a previously published resting-state fMRI data set of 25
subjects scanned three times on two different occasions (NYU
CSC TestRetest, http://www.nitrc.org/projects/nyu_trt/). The first
two fMRI resting-state scans were obtained in two scan sessions
performed from 5 to 16 months apart, and the third scan about
30 (<45) min after the second one (Shehzad et al., 2009).

MATERIALS AND METHODS
DATA SET AND EXPERIMENTAL PARADIGM
Twenty-five participants (mean age, 29.4 ± 8.6 years, 10 males)
were scanned three times. The participants had no history of
psychiatric or neurological illness, as confirmed by clinical assess-
ment. Informed consent was obtained prior to participation. Data
were collected according to protocols approved by the institu-
tional review boards of New York University (NYU) and the NYU
School of Medicine (Shehzad et al., 2009; Zuo et al., 2010).

fMRI DATA ACQUISITION
For each participant, three resting-state scans were obtained using
a Siemens Allegra 3.0 Tesla scanner. Each scan consisted of 197
contiguous EPI functional volumes (TR = 2000 ms; TE = 25 ms;
flip angle = 90◦, 39 slices, matrix = 64 × 64; FOV = 192 mm;
acquisition voxel size = 3 × 3 × 3 mm). Scans 2 and 3 were
obtained in a single scan session, 45 min apart, between 5 and 16
months (mean, 11 ± 4 months) after scan 1. All individuals were
asked to relax and remain still with their eyes open during the
scan. For spatial normalization and localization, a high-resolution
T1-weighted magnetization prepared gradient echo sequence was
also obtained (MPRAGE, TR = 2500 ms; TE = 4.35 ms; TI =
900 ms; flip angle = 8◦; 176 slices, FOV = 256 mm) (Shehzad
et al., 2009; Zuo et al., 2010).

IMAGE PROCESSING AND ANALYSIS
Pre-processing and PICA decomposition
The functional data were pre-processed using the Multivariate
Exploratory Linear Decomposition into Independent
Components (MELODIC) version 3.09, part of FSL toolbox
(www.fmrib.ox.ac.uk/fsl). The images were smoothed with a
Gaussian kernel of full-width at half-maximum of 5 mm but
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without motion-correction (Bannister et al., 2001). A slice
timing correction was used to correct for the different acqui-
sition times. The data were then pre-processed with high-pass
temporal filtering (cut-off of 100 s) and with the removal of
non-brain structures from the echo planar imaging volumes
[Brain Extraction Tool (BET)].

The probabilistic PICA method, implemented in FSL soft-
ware and used in this study, is an extension of the classical
spatial ICA framework and estimates sources by maximizing non-
Gaussianity in terms of negentropy (Beckmann and Smith, 2004).
PICA decomposes a resting-state fMRI dataset into a linear mix-
ture of spatially ICs plus Gaussian noise. The fMRI data set is
represented as a space-time matrix X, having in its M columns
the N-dimension time series. The relationship between X and the
IC matrix S can be written as:

X = AS + E (1)

where A is an N × K mixing matrix with K ≤ N (the number K
of sources is less than the size N of data), S is a K × M matrix,
and E is an N × M matrix that represents the Gaussian noise
(Figure 1A). The mixing matrix A is estimated from the data

using the maximum likelihood estimation (Beckmann and Smith,
2004); given A, the maximum likelihood source estimates (S) are
obtained using generalized least squares.

The pre-processed data underwent PICA decomposition with
the same toolbox. After data reduction by means of principal
component analysis (PCA), the number of dimensions (with
waveform and spatial maps) for each subject was estimated
using the Laplace approximation to the Bayesian evidence of
the model order (Minka, 2000; Beckmann and Smith, 2004).
The maps were thresholded at a posterior probability thresh-
old of p > 0.5 (Beckmann and Smith, 2004). A threshold of z
scores was then used to visualize the IC maps. Negative z scores
indicate voxels whose fMRI signals are modulated opposite the
IC waveform.

A new method for automatically selecting independent components
Starting from the ICs, as estimated by PICA, a new method was
developed to select the optimal number of components related to
networks with functional relevance. This algorithm, implemented
in Matlab (Mathworks, Sherborn, MA), consists of Pearson’s
index evaluation and spectral analysis (steps 1–4) to reduce the
number of ICs, whereas clustering and segmentation methods

FIGURE 1 | (A) PICA of fMRI data. X represents a space-time matrix
having in its M column the N dimension time series, the columns of
mixing matrix A are the time courses, and the rows of matrix S are the
independent components. Matrix A is a rectangular matrix and the

number of components K is less than the size N of data. (B) Schematic
representation of the method applied to matrix S. Steps 1 and 4 operate
on the row of matrix S (setting some ICs to 0), steps 2 and 3 on the
elements (setting some voxels to 0).
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(steps 2–3) are used to filter the spatial maps (matrix S) at the
voxel level. The four steps (schematized in Figure 2) are briefly
presented below.

Pearson’s index evaluation (on ICs). The method takes into
account, for each component, Pearson’s index of skewness of each
row of the spatial map (matrix S) generated by FSL in order to
determine whether the data are symmetric or skewed. Given a sta-
tistical distribution with measured mean, statistical median, and
standard deviation σ, Pearson’s median skewness coefficient is:

Pearson’s coefficient =3×(mean-median)/σ (2)

Assuming that the noise has a zero-mean Gaussian distribution,
the noise-related components are expected to have a Pearson’s
coefficient close to 0 (Figure 3). The algorithm thus rejects the ICs
if Pearson’s median coefficient of skewness of the elements in the
corresponding row of S matrix is lower than a selected threshold
(TH), evaluated for each subject as the median of the Pearson’s
indexes of all elements in the S matrix. The ICs and the rows of S
matrix are then re-ordered so that the rejected ICs are moved to
the last positions and set to 0; thus, the matrix S has a number of
non-zero rows I ≤ K (Figure 1B).

Clustering (on map). Cluster analysis, implemented by using
a k-means clustering algorithm (MacQueen, 1967; Golay et al.,

FIGURE 2 | A schematic representation of the four steps for the automatic selection of ICA components. TH, threshold value; PC, Pearson’s median
coefficient of skewness.
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FIGURE 3 | Histograms of S matrix rows related to the default-mode
network (DMN) (A); the occipital network, the medial visual cortical
areas (m-OCC) (B); the attention network, the left lateralized

frontoparietal attention networks (l-ATT) (C); and a noisy IC (D). The
x-axis ranges from negative to positive values. The solid black line
represents a Gaussian fit.

1998; Goutte et al., 1999), eliminates those voxels associated with
low values for each component. The k-means cluster analysis was
applied to each non-zero row of S, based on the one-dimensional
Euclidean distance between activation values. It was performed
to divide the candidate of each non-zero row of S in K clus-
ters. It works on the elements of each non-zero row of S (each
component selected in step 1), setting to 0 some elements of
the M columns, i.e., the voxels. After creating the clusters, the
algorithm eliminates the voxels belonging to the cluster with the
centroid nearest to 0. The centroid with value nearest to 0 repre-
sents the voxels in the cluster with the lowest activation values. In
order to optimize clustering quality, the silhouette index was used
(Kaufman and Rousseeuw, 1990) since it reflects the compactness
and separation of clusters. In particular, assuming a specific i-th
row of S, the optimal number of clusters to be used for the values
of this selected row, i.e., K-value, was determined by using the
method proposed in Zhang et al. (2011) based on the evaluation
of the silhouette index. For the values of the selected i-th row of S
and for the j-th data point, it is defined as follows:

SHj = (bj – aj)/max(aj, bj) (3)

where aj is the average Euclidean distance of the j-th point to other
points in the same cluster and bj is the average distance of the j-th
point to points in its nearest neighbor cluster. This index ranges
from +1 to −1: a value of unity indicates that the point is very
distant from its neighbor clusters, whereas a value of −1 indicates
that the j-th point is closer to points in its nearest neighbor cluster
than to those in its own cluster. The number of clusters was deter-
mined by maximizing the average silhouette value over a range
of k, since a larger average silhouette indicates better clustering
quality (Zhang et al., 2011).

Segmentation (on map). PICA decomposition models the
signal also in subcortical structures since the S matrix
includes signals from white matter and ventricles. To mini-
mize pulsation effects from the cerebrospinal fluid and restrict
the activations to the gray matter, the fMRI data were
segmented with Statistical Parametric Mapping (SPM) ver-
sion 8 (http://www.fil.ion.ucl.ac.uk/spm/). The voxels in each
component with at least a 90% probability of belonging
to the white matter or cerebrospinal fluid were cancelled
(Keihaninejad et al., 2010; Polanía et al., 2012).
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Spectral analysis (on ICs). For each component i, selected in
step 1, the voxels si,m selected in step 3 were identified. The rel-
ative fMRI time courses xn,m = an,i · si,m, with m = 1 . . . M and
n = 1 . . . N were baseline corrected, detrended and averaged. For
each component, the fast Fourier transform (FFT) (using the
periodogram method) was then applied to the mean fMRI time
course, and the relative power was estimated in the three bands of
interest: P1

[
0 − f1 Hz

]
, P2

[
f1 − f2 Hz

]
and P3

[
> f2 Hz

]
, accord-

ing to Equation 4:

P1 =
∫ f1

0 Px(f )
∫ a

0 Px(f )
df , P2 =

∫ f2
f1

Px(f )
∫ a

0 Px(f )
df , P3 =

∫ a
f2

Px(f )
∫ a

0 Px(f )
df (4)

where f1 = 0.01 Hz and f2 = 0.1 Hz. Px(f ) (μV2/Hz) is the power
spectral density and a depends on acquisition parameters. Since
resting-state networks are characterized by slow fluctuations of
functional imaging signals between 0.01 and 0.1 Hz (P2) (Cordes
et al., 2000; Damoiseaux et al., 2006; De Martino et al., 2007;
Mantini et al., 2007), the components with P2 < 50% and with
P1 + P2 < 90% were rejected. After spectral analysis, matrix S has
J ≤ I columns (i.e., components) (Figure 1B). Because intrinsic
connectivity is detected in the very low-frequency range (Cordes
et al., 2001), also other researchers have applied a frequency fil-
ter to remove any components in which a high-frequency signal
(>0.1 Hz) constituted 50% or more of the power in the Fourier
spectrum (Greicius et al., 2004). In keeping with this hypothesis,
we applied those thresholds.

Assessment
To quantify the method’s ability to select meaningful ICA com-
ponents, the resting-state networks identified by the automatic
method were compared against those visually identified based on
accuracy and precision defined as:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (5)

Precision = TP/(TP + FP) (6)

where:

- true positives (TP) are the number of resting-state networks
identified by an expert and correctly recovered by the automatic
method,

- false positives (FP) are the number of false resting-state
networks,

- false negatives (FN) are the number of missed resting-state
networks,

- true negatives (TN) are the components correctly rejected by
the automatic method.

Careful attention was paid to the selection of the resting-state net-
works. Visual selection for each subject entailed visual inspection
by two experts (a neurophysiologist and an bioengineer expert
in neuroscience) who recognized the components independently.
All networks were evaluated and compared with those reported
in the literature. Few disagreements were discussed within the
group and resolved by reference to a third author that assessed

those components. The networks listed in Tables S1, S2 reflect
this final result, however, the components discussed within the
group were highlighted. Two different situations can occur: (a)
the IC, evaluated discordantly by the two evaluators, is accepted
after discussion within the group (∗) and (b) the IC, evaluated
discordantly by the two evaluators, is rejected (§). Twelve com-
ponents were accepted after discussion within the group (5 in the
first scan, 3 in the second scan and 2 in the third scan). In the
first scan 3 components were rejected after discussion. The net-
works detected on the visual inspection have potential functional
relevance and consist of regions known to be involved in motor
function, visual processing, executive functioning, auditory pro-
cessing, memory, and the default-mode network. Eight of the
most common and consistent resting-state networks were visu-
ally identified: the default-mode network; the attention networks
(right and left lateralized frontoparietal attention networks); the
executive-control network; the occipital networks (medial and
lateral visual cortical areas); the temporal network; and the sen-
sorimotor network (Cole et al., 2010; Figure 1). The components
were defined on the basis of networks well known in the literature
and anatomical information.

The reproducibility (e.g., how many components would be
consistent when the resting scan is repeated in the same subject)
was also tested for the components detected by visual selection
and by automatic selection. The first and the second fMRI resting-
state scans were compared to test the reproducibility of the
networks in the same subject after a period of several months had
elapsed, whereas the second and the third scans were compared to
test the reproducibility on the same day.

RESULTS
Tables S1, S2 summarize the performance of our method in 25
subjects (three recordings per subject): in the first scan 194 out
of a total of 577 components decomposed by PICA were true
positives, i.e., the number of resting-state networks the method
correctly recovered; 22 were false positives; 7 were false nega-
tives; and 354 were true negatives with an accuracy of 95% and
a precision of 90%. In the second scan 191 out of a total of
506 components selected by FSL were true positives; 21 were
false positives; 2 were false negatives; and 292 were true nega-
tives with an accuracy of 95% and a precision of 90%. In the
third scan 182 out of a total of 533 components selected by FSL
were true positives; 34 were false positives; 5 were false nega-
tives; and 312 were true negatives with an accuracy of 93% and
a precision of 84%. Tables S1, S2 underline that in 27 out of
75 recordings the algorithm fully detected the visually identified
networks. The automatic method missed only 14 of the visually
chosen components. In several other cases, it also selected addi-
tional components not identified as neuronal activations. More
important for the recognition of resting-state networks, however,
is the number of false negatives.

Although the number of components selected by FSL and then
provided to the algorithm varied widely (range, 16–53 compo-
nents) (Tables S1, S2), the algorithm performed similarly.

The frequency with the largest amplitude in P2 was identified
by spectral analysis as the dominant frequency for all resting-state
networks. This is exemplified in Figure 4, which shows for one

Frontiers in Neuroscience | Brain Imaging Methods May 2013 | Volume 7 | Article 72 | 6

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Storti et al. Automatic selection of resting-state networks with fMRI

FIGURE 4 | (A) and (B) Power spectral densities (μV2/ Hz) of two IC
time courses selected by the algorithm: the default-mode network
(DMN) and occipital network, the medial visual cortical areas (m-OCC),

after clustering and segmentation. (C) Power spectral density of an IC
time course related to cerebrospinal fluid (CSF) and rejected by the
spectral analysis.

subject the power spectra of two IC time courses selected by the
algorithm (default-mode network and occipital network) after
clustering and segmentation, as well as the power spectrum of
an IC time course related to cerebrospinal fluid and rejected by
the spectral analysis. Because of the wide variability of resting-
state network time courses, it was difficult to make an objective
evaluation in the time domain. When we applied the FFT to the
time course of the fMRI data, we observed recognizable peaks at
low frequencies for the resting-state networks, with the highest
percentage of power contained in P2.

Figure 5 shows an example of selected networks in a sin-
gle subject: the default-mode network, a baseline activity that is
suspended during specific goal-directed behaviors; the attention
networks (right and left lateralized frontoparietal attention net-
works) implicated in working memory and cognitive attentional
processes; the executive-control network involved in planning,
decision making, and error detection; the occipital networks
(medial and lateral visual cortical areas) associated with visual
processing; the temporal network; and the sensorimotor network.

Summing up, the default-mode network was present on
almost all recordings but one (scan 1 sub47000); the occipital net-
work, which includes the medial visual cortical areas, was present
in all subjects and scans. Also the other networks were highly
present as described in Tables 1, S1, S2. At this level of decom-
position, the sensorimotor IC included also auditory areas in the
majority of the subjects.

As detailed in Table 1, the reproducibility of the networks
by means of visual and automatic selection was very close,
although the latter was somewhat smaller. The reproducibility
was highly consistent in each subject for the default-mode net-
work (≥92%) and for the occipital network, which includes the
medial visual cortical areas, (≥94%), and it was consistent for the
attention network (≥80%), the right and/or left lateralized fron-
toparietal attention networks, and the temporal-motor network
(≥80%).

DISCUSSION
The aim of the method described here is to provide for the
automatic selection of ICA components, which is usually done
visually, thus eliminating the subjectivity in component selection

while reducing the time needed to analyze fMRI data. The method
integrates time, frequency and spatial processing within an auto-
matic selection procedure that is reliable, flexible and widely
applicable. When applied to the NYU data set, consisting of fMRI
images of 25 healthy subjects, the algorithm demonstrated high
accuracy (first scan: 95%, second scan: 95%, third scan: 93%)
and precision (first scan: 90%, second scan: 90%, third scan:
84%), confirming its ability to automatically detect the visually
identified networks. Our results are in line with previous studies
which have demonstrated the presence of well-known resting-
state networks. The reproducibility of the default-mode network,
the occipital network, which includes the medial visual cortical
areas, the attention network, the right and/or left lateralized fron-
toparietal attention networks, and the temporal-motor network
is high; nevertheless, it depends on the reproducibility of the net-
works separated at ICA decomposition. An elevated number of
false positives is less critical than an elevated number of false
negatives. In fact, an higher number of false negatives, i.e., the
method is not able to detect components visually identified as
resting networks, implies a loss of useful information that cannot
be recovered. Differently, a high number of the false positives, i.e.,
additional components not visually identified as neuronal activa-
tions, implies components that had to be re-evaluated by the user.
Actually, the number of false negatives, i.e., the number of missed
resting-state networks, was well controlled: the automatic method
missed only 14 of the visually chosen components. Conversely, a
higher number of false positives were detected.

In this method, the first step is to evaluate Pearson’s median
coefficient of skewness of each row of the spatial map. This serves
to reject the components that show an index close to 0, i.e.,
those related to the noisy components in agreement with the
model specifications of additive Gaussian noise presence. In the
K-means clustering and segmentation steps, some specific vox-
els are set to 0. The iterative partitioning of K-means minimizes
the sum, over all clusters, of the within-cluster sums of point-
to-cluster-centroid distances. The importance of the clustering is
that it groups voxels with similar characteristics and, as result,
the active clusters are concentrated without weak and isolated
activations. Also the white matter and cerebrospinal fluid seg-
mentations are an important step in the analysis to determine the
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FIGURE 5 | Example of resting-state networks detected by the

method in a single subject. The anatomical and functional data
were registered by using affine registration on fMRIB’s Linear

Image Registration Tool (FLIRT), using the anatomical images as
the reference. The images were visualized using the FSLView
toolbox.

Table 1 | Subjects nos. 1–25, NYU data set.

RSN PRESENCE IN VISUAL AUTOMATIC

1 2 3 1 vs. 2 2 vs. 3 1 vs. 2 2 vs. 3

DMN 96% 100% 100% 96% 100% 92% 98%

m-OCC 100% 100% 100% 100% 100% 96% 94%

l-OCC 56% 80% 64% 44% 56% 44% 56%

ATT 96% 88% 96% 84% 84% 80% 82%

EXC 64% 56% 48% 40% 28% 38% 24%

TEMP-MOT 96% 88% 88% 84% 76% 80% 72%

Presence of resting-state networks in the three scans and measure of reproducibility of the visual selection (VISUAL) and the automatic selection (AUTOMATIC).

For each network, the visual and method reproducibility are the percentage of subjects in which the network has been identified in the two considered recordings

by visual and automatic selection, respectively. Recordings 1 vs. 2 and 2 vs. 3 are compared.

RSN, resting-state networks; DMN, default-mode network; m-OCC, medial visual cortical areas; l-OCC, lateral visual cortical areas; ATT, right-left lateralized

frontoparietal attention networks; EXC, executive-control network; TEMP-MOT, auditive system-sensorimotor cortex.

activations only on the cortical surface of the brain and improve
the method’s accuracy. Other solutions can be hypothesized:
remove components with main representation in the white mat-
ter or cerebrospinal fluid voxels or apply the segmentation before
PICA, limiting the activation in the gray matter. These alternatives
could be considered to possibly improve accuracy and precision of
the method. Both clustering and segmentation work at voxel level
improving the signal-to noise ratio of the component mean time
course.

Consequently, the spectral analysis was applied only to vox-
els selected by previous steps. In the frequency analysis step,
the FFT (Kiviniemi et al., 2000), the cross-correlation analysis
with the prior definition of a reference region (Biswal et al.,
1995), the frequency analysis of cross-correlations (Cordes et al.,
2001), the coherence analysis with a user-defined seed region (Sun

et al., 2004), and spectral coherence analysis without seed regions
(Thirion et al., 2006) used in this field showed that the waveforms
of these spontaneous activity patterns have a prominently low-
frequency contribution and that only the frequencies less than
0.1 Hz contribute significantly to interregional functional con-
nectivity (Cordes et al., 2000; Laufs et al., 2003; Damoiseaux et al.,
2006; De Martino et al., 2007; Mantini et al., 2007).

In order to discriminate the resting-state networks from physi-
ological fluctuation, Soldati et al. (2009) recently applied spectral
analysis to group-ICA time courses using a statistical approach
to determine if the two classes were statistically different.
Differently, we investigated the power spectra of the ICs to iden-
tify the power concentrated in the range of interest (0.01–0.1 Hz)
and found high power in the low-frequency range for the
resting-state networks, as typically observed in the literature.
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In MELODIC, automatic estimation of the number of spatial
maps for each subject is useful when one does not want to sub-
divide the networks into different components (Beckmann and
Smith, 2004). At low dimensionalities, the signal sources merge
into singular components, whereas high orders of decomposi-
tion can allow for detailed evaluation of resting-state networks.
We noted, however that increasing the dimensionality further
reduced reliability. The choice of the dimensionality in ICA is a
critical point, but the automatic estimation of FSL software pro-
vides a tradeoff between the two solutions. Networks, such as
the default mode network, the attention network and the motor-
temporal network, split into multiple components on more than
half of the recordings, in which they were detected; whereas
other networks, such as the occipital networks and the executive-
control network, below the 25%. Nevertheless, the method of
selection can be used without this pre-selection, i.e., on a number
of ICs equal to the number of time points in the data.

For the physiological classification of the networks related to
neuronal activity, the BOLD networks may be classified as uncon-
strained behavior or mental activities similar to modulations
induced by external stimuli and as intrinsic activity similar to the
anatomy. The origin of these networks is still an open question.
It is unclear whether the fluctuations are independent of neu-
ronal function or reflect neuronal baseline activity without task
(Damoiseaux et al., 2006). Our study confirms the presence of
various networks distinguishes as: the default-mode network, the
attention network; the occipital network; and the motor-temporal
network.

In 2001 Marcus Raichle and colleagues coined the term
“default-mode” to describe a resting-state brain function demon-
strating the existence of an organized, baseline default mode of
brain function that is present as a baseline or default state and is
suspended during specific goal-directed behaviors (Raichle et al.,
2001). This network has been identified in both animals (Lu et al.,
2007; Vincent et al., 2007) and humans. In a positron-emission
tomography (PET) and fMRI study, the default-mode network
showed a consistent decrease from a relative baseline during a
specific goal-directed behavioral task (Raichle et al., 2001). The
default-mode network closely resembles the brain areas found to
be involved in random episodic silent thinking and it is putatively
associated with internal processing (Andreasen et al., 1995). Also,
the network sustains its activity despite decreasing vigilance.

The default-mode network component includes the posterior
cingulated cortex/precuneous, the medial prefrontal cortex, and
the bilateral temporoparietal junctions. Two studies (Laufs et al.,
2003; Mantini et al., 2007) described a bilateral frontoparietal
pattern, including the intraparietal sulcus and frontal eye field,

a network mediating goal-directed stimulus-response selection
associated with alpha desynchronization, which is probably due
to unconstrained behavior or a metal activity of which a subject is
consciously aware (Laufs et al., 2003; Mantini et al., 2007). Recent
studies on functional connectivity have demonstrated the pres-
ence of differentiation inside the default-mode network, linking
the precuneus (a site with the highest degree of interactions) and
posterior cingulated cortex with visual-spatial and attention net-
works and the medial prefrontal cortex with the motor control
circuit (Uddin et al., 2008). Fox and colleagues found activations
in two attentional systems that persist also in the absence of exter-
nal stimuli: a bilateral dorsal attention system usually involved in
top–down orienting of attention and a right-lateralized ventral
attention system which reorients attention in response to salient
sensory stimuli. Many hypotheses can be advanced regarding
spontaneous activity and its similarities to task-evocated activity.
What might serve is to organize neuronal activity conceived of as
either a memory of previous use or a prediction regarding future
use (Fox et al., 2006).

Finally, a network dedicated to visual processing (the occip-
ital networks) involving the retinotopic occipital cortex and the
temporal-occipital regions have been identified, and the BOLD
signal fluctuations associated with it may be correlated with
the electroencephalographic power variations of alpha (Mantini
et al., 2007).

In conclusion, although several previous studies used data-
driven techniques to assess functional activity during the resting-
state condition, they did not develop a selection criterion to
separate the ICs related to neural networks from those related
to noise. With the algorithm described here, these “rhythms”
can be identified and an adequate number of activation maps
obtained with high accuracy and precision. This time-saving
method allows to automate the selection of components related to
resting-state networks, and reducing subjectivity in the classifica-
tion of the ICs. Furthermore, the method increases the repeatabil-
ity of resting-state network selection, making it particularly useful
in multicenter studies or in studies where a major concern is to
minimize the variability in results due to the subjectivity of visual
selection.
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