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Complex behavior typically relies upon many different processes which are related to
activity in multiple brain regions. In contrast, neuroimaging analyses typically focus upon
isolated processes. Here we present a new approach, combinatorial brain decoding, in
which we decode complex behavior by combining the information which we can retrieve
from the neural signals about the many different sub-processes. The case in point is
visuospatial navigation. We explore the extent to which the route travelled by human
subjects (N = 3) in a complex virtual maze can be decoded from activity patterns as
measured with functional magnetic resonance imaging. Preliminary analyses suggest that
it is difficult to directly decode spatial position from regions known to contain an explicit
cognitive map of the environment, such as the hippocampus. Instead, we were able to
indirectly derive spatial position from the pattern of activity in visual and motor cortex.
The non-spatial representations in these regions reflect processes which are inherent
to navigation, such as which stimuli are perceived at which point in time and which
motor movement is executed when (e.g., turning left at a crossroad). Highly successful
decoding of routes followed through the maze was possible by combining information
about multiple aspects of navigation events across time and across multiple cortical
regions. This “proof of principle” study highlights how visuospatial navigation is related
to the combined activity of multiple brain regions, and establishes combinatorial brain
decoding as a means to study complex mental events that involve a dynamic interplay of
many cognitive processes.
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INTRODUCTION
The days in which brain imaging was mostly used for localization
and neo-phrenology seem far behind us, if such days ever existed
at all. In recent years many neuroimaging studies have tried to
find out not only where processes and representations are imple-
mented neurally, but also how these processes and representations
come about and what their characteristics are. A powerful group
of methods to find answers to such questions has been variously
referred to as brain decoding, brain reading, pattern classifica-
tion methods, and multi-voxel pattern analyses. Typically, brain
decoding fMRI studies have determined how isolated aspects of
perception and cognition can be decoded from patterns of neural
activity in functionally specialized brain regions, in cases where
the occurrence of mental events is under maximal control of the
experimenter (Haxby et al., 2001; Cox and Savoy, 2003; Haynes
and Rees, 2005a,b; Kamitani and Tong, 2005; Norman et al.,
2006; Haynes et al., 2007; Kay et al., 2008; Miyawaki et al., 2008;
Williams et al., 2008; Hassabis et al., 2009; Chadwick et al., 2010;
Op de Beeck et al., 2010; Morgan et al., 2011). Advanced methods
have been applied for the decoding of perceptual and cogni-
tive attributes. For example, some studies have focused upon
patterns of activity distributed over multiple brain regions and
related these activity patterns to a semantic model (e.g., Mitchell

et al., 2008). As another example, several studies have successfully
reconstructed visual pictures and movies from patterns of activity
in visual cortex (Kay et al., 2008; Nishimoto et al., 2011).

However, the complexity of everyday mental events goes far
beyond the typical application of fMRI-based brain decoding.
Such mental events are by definition changing dynamically and
involve multiple brain regions and multiple cognitive processes.
In order to apply brain decoding methods to such situations the
methods have to be adapted to take into account the dynamic and
multi-faceted nature of neural processing.

Here we focus in particular upon the specific example of visu-
ospatial navigation. Invasive research in other animals has allowed
a detailed characterization of the underlying neural mechanisms
at the level of single neurons and population activity. Clearly, the
process of navigation as a whole is served by many brain regions
(Whitlock et al., 2008; Derdikman and Moser, 2010; Wolbers
and Hegarty, 2010; Morgan et al., 2011). The most detailed
studies have been performed in rats, in which active navigation
was accompanied by selective responses in a wide set of func-
tionally defined neurons, including head direction cells, border
cells, and grid cells in parahippocampal cortex, and place cells
in hippocampus (Derdikman and Moser, 2010). In addition to
these “direct” spatial representations, visuospatial navigation also
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involves many cortical regions, such as visual, somatosensory,
and motor regions. The activity of these regions is indirectly
related to spatial processes in the sense that these non-spatial
representations convey the information necessary to construct
the spatial representations in parahippocampal and hippocampal
regions.

In humans, such detailed knowledge is not available. Brain
imaging studies, which have focused on virtual navigation given
that subjects must remain still during scanning, confirm that mul-
tiple brain regions are active during navigation (Gron et al., 2000;
Jordan et al., 2004; Rosenbaum et al., 2004; Morgan et al., 2011).
Furthermore, these studies have shed some light upon the specific
role of each of these brain regions, mostly by using a cognitive
subtraction strategy in which the involvement of particular cog-
nitive processes was manipulated by changing task or stimulus
attributes during navigation. Specific properties of the functional
organization of grid cell representations have also been used to
indirectly infer the existence of grid cells in human entorhinal
cortex based upon a macroscopic fMRI signal (Doeller et al.,
2010).

However, human brain imaging studies have not yet revealed
how the content of neural representations in these brain regions
relates to what happens when a person is navigating through a
(virtual) spatial environment. A few studies have applied brain
decoding to retrieve spatial information from neural signals, for
example, the quadrant of a virtual room to which a participant
has navigated (Hassabis et al., 2009). Based on the signal from
hippocampus, the primary area expected to contain a cognitive
spatial map (Andersen, 2007), performance in this four-choice
decoding problem was close to 50% accuracy (chance perfor-
mance would be 25%).

Despite the importance of such a success, its limits are immedi-
ately obvious and provide the impetus of our current study. First,
it was obtained in a very simple environment, and it is known
from studies in rats that spatial representations are complicated
and hard to make sense of in more complex environments (Crick
et al., 2004; Derdikman and Moser, 2010). Thus, given the suc-
cessful but still limited performance of fMRI-based decoding in
a very simple environment, the reliability of reading out the hip-
pocampal spatial map in a more complex environment might be
low. So it would seem that decoding someone’s location from
fMRI data is still very limited, in contrast to the detailed informa-
tion contained about current and even past spatial position in the
responses of single hippocampal neurons (Davidson et al., 2009).
Second, only the hippocampus was involved in this fMRI-based
decoding, while, as mentioned above, many other brain regions
are active during navigation. Visuospatial navigation is a com-
plex event that involves the concerted and dynamically changing
activity in multiple brain regions, which is related to the many dif-
ferent motor, sensory, and cognitive processes that are involved
in navigation (Wolbers and Hegarty, 2010). Thus, it might be
worthwhile to develop a method to use the content of these non-
spatial representations in many different cortical regions in order
to decode navigation behavior.

Here we provide the first “proof of principle” study demon-
strating the potential of brain decoding methods to decode
how subjects navigate in a complex environment based on

the dynamically changing pattern of activity in multiple brain
regions, a method we refer to as “combinatorial brain decoding.”
Subjects navigated in a complex virtual environment with many
hallways, doorways, and rich visual cues. We illustrate the diffi-
culties faced by traditional decoding methods to decipher spatial
location during navigation in a complex maze based on direct
spatial information from human hippocampus. Nevertheless, we
were able to decode non-spatial information from visual and
motor-related processing based on activity patterns in multiple
cortical regions. We then adapted our decoding approach to con-
vert this non-spatial information into spatial knowledge taking
into account the activity patterns at multiple time points, related
to multiple aspects of navigation events, and in multiple brain
regions. Using this combinatorial brain decoding approach, we
obtained high success in decoding the route that subjects followed
through the complex maze.

MATERIALS AND METHODS
PROCEDURES
Subjects and ethics information
Three subjects participated in the fMRI study, one co-author (S1)
and two naive subjects (S2 and S3). Subjects were male, right-
handed, and 28 years (S1 and S2) and 25 years (S3) old at the
time of testing. One additional subject (male, 23 years old) par-
ticipated in a behavioral experiment only. The procedures were
approved by the Medical Ethical Committee of the KU Leuven
and complied with the code of ethics of the world medical asso-
ciation (Declaration of Helsinki). Written informed consent was
obtained from each participant.

Virtual maze environment
The layout of the virtual maze and first-person screenshots along
a particular route are shown in Figure 1A. The virtual maze was
constructed using Matlab (MathWorks) and the Virtual Reality
Toolbox (MathWorks). We created a prototype textured box that
provided the building blocks for our maze. By using this tech-
nique, the whole maze was completely controlled through Matlab
routines. The maze layout could be read in from an image file
(22 by 22 pixels or “tiles”). The position of walls and corridors
was kept constant throughout the experiment. There were seven
pairs of doors located throughout the maze, and on each trial
only one door from each pair was open. The variable status of
the doors forced subjects to adapt their planned route through-
out a trial. A total of nine pictures (from the internet, some of
them obtained through a subscription to photos.com) hung on
the walls of the maze at fixed positions. The subjects navigated
through the environment by pressing buttons on an MRI compat-
ible button box (Current Designs): three buttons for left, straight
on, and right, respectively. The speed of travelling was one tile per
0.78 s. At this speed, travelling the full extent of the long corri-
dors around the outside of the maze would take about 17 s. The
“straight on” button had to be pressed continuously in order to
move forward (without pressing a button the subject would just
stand still), and multiple/long left or right button presses were
required for extensive turns. Scenes were refreshed at a rate of
20 frames per s. Supplemental Movie S1 shows the actual maze
during the first part of the track shown in Figure 1.
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FIGURE 1 | Virtual maze environment and behavioral parameters.

(A) Map of the maze with the position of brick walls, hallways, doors that
could be closed or open, pictures on the wall, and rewards 1–4. On the right
are a few snapshots taken at the position and viewing direction indicated by
the arrows and with one possible status of the doors. For example, in the
top-right screenshot the first door is open but the second door behind is
closed. (B) Example route (track) taken by a subject. The map of the maze is
the same, but now doors are either open (indicated by light-gray squares) or
closed (shown in “green,” as are the walls). The color code of the track

indicates time (start = “dark blue”). The division of the maze into four
quadrants is shown by the dotted rectangles. Other relevant parameters that
can identify this track are shown as well: times at which each of the nine
pictures is visible and their size, rotational motion (left = positive values),
times at which the subject is informed about the next reward to collect, and
information about scene content in the spatial domain (differences between
pixels, “RMS”) and in the temporal domain (differences across time,
“Temp”). These parameters are sub-sampled to the scanning frequency of
1 time point per 3 s (28 time points for this track).

Five rewards were present in the maze. The rewards were in
the form of a C2 coin. Four of the rewards were located at fixed
positions in the maze. Only one, the current target reward, was
visible at any given time. An additional fifth reward was always

visible, and could be found at one of four positions along the
outer corridor of the maze.

In each trial the order in which the four fixed rewards had to
be collected varied. The status of the rewards collected and the
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current reward goal was indicated below the main window. This
area contained five small rectangles numbered 1–5, of which the
current target reward was colored yellow, the collected rewards
green, and the remaining rewards black. The fifth reward had to
be collected before the trial was considered complete, but subjects
were free to collect it anytime during the trial.

One hundred and six trials were completed across all scan ses-
sions, each following a different route/track. In the additional
behavioral experiment, a control subject completed four re-runs
of the 106 fMRI trials performed by S1 and S2. For each re-run the
environment and task were exactly the same as during the cor-
responding scan run: the same doors were open/closed, and the
four fixed rewards had to be collected in the same order (again
the timing of collecting the fifth reward was up to the subject).
This resulted in an additional 284 tracks that differed from those
collected during the scan sessions.

Before the start of the experiment, subjects were made famil-
iar with the maze and the task through a practice session. As a
result, the duration of trials did not change progressively during
scanning. Across all trials obtained during scanning and in the
additional behavioral experiment, the trial duration ranged from
57 to 195 s.

During scanning, the stimuli were presented on a Barco
RLM 6+ projector using a PC running Windows XP. During
behavioral sessions, stimuli were presented on a CRT monitor
using a PC running Windows Vista.

EXTRACTION OF BEHAVIORAL AND STIMULUS PARAMETERS
DURING TRIALS
Several variables were extracted from the route followed by sub-
jects on each individual trial. These variables were tested as a
source of information to decode a subject’s route based on fMRI
activity. Each variable was first calculated for each time point in
the resolution of the virtual maze software, i.e., 20 frames per s.
Afterwards all 60 values falling into the acquisition time (TR) of
3 s for one functional MRI image were averaged to obtain a vari-
able in the same temporal resolution as the fMRI images. These
variables are illustrated for one example track in Figure 1B.

Quadrant location
The average (x, y) position of a subject in the maze was calculated
per TR, and this average was converted into a four-value variable
indicating in which quadrant a subject was situated at each point
in time. Figure 1B shows the boundaries of the four quadrants.
Positions in the middle were not assigned to a quadrant and these
time points were not used to train the decoding classifiers.

Picture visibility
This variable was calculated for each of the nine pictures sep-
arately. The score was equal to the visible area of the picture
when the image was at least partially visible. A non-visible pic-
ture would have value zero. A maximal value of one would mean
that the picture would fill the total scene (nothing else visible).

Motion path
Rotational motion from one frame to the other. This vari-
able can have negative values (turning right), zero values

(stationary or moving straight ahead), or positive values (turning
left).

Timing of reward planning
This variable is one for the TR when a subject first received
information on which reward to collect next, and zero otherwise.

Stationary scene content (scene RMS)
Each scene was divided into a grid of 5 × 5 squares. The mid-
dle square was further divided into four smaller squares, yielding
28 values per scene. For each square and each scene/time point
we summarized the content of each square region by the standard
deviation of the luminance (gray-level) across the scene pixels in
the area of the square.

Temporal scene content (scene Temp)
The same 28 squares were used. Per pixel in a square we calculated
the difference in gray-scale value between two frames, we only
retained the positive values (increase in gray-scale values are most
easily interpreted as onset of stimuli), and summed these positive
values over all pixels in a square.

We decided to use these summaries of scene content in terms of
a small subset of squares to keep the decoding task tractable (each
of the squares is in fact a separate variable on which a classifier
was trained). As a consequence, scene RMS and scene Temp only
contain a very crude representation of scene content, and most
scene information is not used. Nevertheless, given the relatively
poor spatial resolution of fMRI, we hoped we would retain these
aspects of the scene content that would dominate the pattern of
fMRI activity and that is most responsible for decoding natural
image content as shown in a few recent studies (Kay et al., 2008;
Miyawaki et al., 2008; Nishimoto et al., 2011). While these studies
were merely using this information to classify the scenes itself, we
are going a step further and infer spatial location from it.

Note that the scenes, and our summarized version of it, are all
very similar to each other, much more than most random pairs of
natural images. First, most scenes have a similar layout, with e.g.,
a triangular darker region on top indicating the sky surrounded
by two walls (see Figure 1B). After reduction to the 28-square for-
mat, little information seems available to decide where a subject
is or what he/she is looking at. Second, scene content was deter-
mined without taking eye movements into account, and any eye
movements would be expected to degrade decoding based on the
activity pattern in a retinotopic map (see Section Eye movements
during navigation).

EYE MOVEMENTS DURING NAVIGATION
During the first scan session subjects were free to make eye move-
ments (there was no instruction to fixate, nor was a fixation cross
present). After this session subjects were instructed to fixate, and
several training trials with a fixation point present were com-
pleted outside the scanner. For two of the subjects, subjects (S1
and S2), we recorded eye movements during a period of 6 min
of navigation with an EyeLink I infrared eye tracker. The eye fixa-
tion data revealed that subjects mostly fixated straight ahead when
moving forward, which is the most prevalent direction of motion.
When moving left or right, they made horizontal saccadic and
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pursuit eye movements. Some saccades were also made to the
bottom of the screen where information was given about which
reward to collect next, which usually occurred around the time
of finding the previous reward. Overall subjects fixated in the
central two visual degrees for 11% (subject S1) and 40% (S2) of
the time.

In the second scan session, a fixation cross was present and all
three subjects were instructed to fixate, which avoided most of
the horizontal eye movements when turning. Testing with an eye
tracker prior to this scan session showed that subjects were able
to fixate in the central two visual degrees for 90% (S1) and 66%
(S2) of the time.

For the decoding of people’s whereabouts we partially rely
on visual information (the “scene content” cue). This informa-
tion was determined without taking eye movements into account,
and any eye movements would be expected to degrade decoding
based on the activity pattern in a retinotopic map. Nevertheless,
the decoding results show that scene content information was
extremely useful for the decoding of a subject’s location for both
scan session 1 (in which subjects were freely viewing) and scan
session 2 (in which subjects were requested to fixate centrally),
without an obvious difference between the two scan sessions in
the decoding based upon this variable. This indicates that the
variation in eye position during navigation as reported above does
not have a strong influence on fMRI decoding based on patterns
of activity in visual cortex.

SCANNING PARAMETERS
A Siemens 3 T Magnetom Trio MRI scanner (Siemens, Erlangen,
Germany) with an eight-channel head coil was used for image
acquisition. For both subjects, a high resolution T1-weighted
structural image was acquired using a magnetization prepared
rapid gradient echo sequence [MPRAGE; TR = 2300 ms, echo
time (TE) = 2.98 ms, 1 × 1 × 1.1 mm voxels, field of view (FOV):
240 × 256, 160 sagittal slices]. Functional data (fMRI) were
acquired with a descending gradient EPI pulse sequence for
T2∗-weighted images (TR = 3000 ms, TE = 30 ms, flip angle =
90◦, 50 oblique axial slices each 2.8 mm thick, inter-slice gap
0.028 mm, in-plane resolution 2.5 × 2.5 mm, 80 × 80 matrix).

fMRI ANALYSES
Pre-processing
The Statistical Parametric Map software package (SPM5,
Wellcome Department of Cognitive Neurology, London) was
used for pre-processing fMRI data, which involved correction for
timing of slice acquisition, realignment (correction for motion; in
two steps with registration to the mean and 3rd-degree B-spline
interpolation), coregistration of anatomy to the mean functional
image, segmentation and spatial normalization of the anatomy to
an MNI (Montreal Neurological Institute) template, normaliza-
tion of the functional images (images resliced to a resolution of
2.5 mm isotropic), and spatial smoothing of the functional images
with a Gaussian kernel of 5 mm full-width-at-half-maximum.

Statistical whole-brain analysis
The data from the first session of each subject were modeled
with a general linear model applied to pre-processed images, with

one independent variable indicating the time and duration of
navigation blocks and six covariates (the translation and rota-
tion parameters derived from re-alignment). To find voxels acti-
vated by navigation, the contrast of navigation vs. rest (fixation
blocks) was calculated and thresholded at p = 0.00001, family-
wise corrected for multiple comparisons and only included clus-
ters above 40 voxels. An example activation map is shown in
Figure 2.

The hippocampus was not activated in this contrast in any of
the subjects, even at much more lenient thresholds (e.g., p = 0.05,
uncorrected). We implemented some expanded general linear
models with specific variables chosen to activate hippocampus.
We hypothesized that this area, directly involved in the repre-
sentation of a spatial map of the environment, might not be
active during the whole navigation period but only at times when
a new route has to be planned. We expected such route plan-
ning to be most prominent at the start of each trial and when
the identity of the next reward is revealed, which is also the
moment at which the previous reward has been collected. The
inclusion of an independent variable indicating these moments
still did not reveal any activated voxels in hippocampus (uncor-
rected threshold of p = 0.001). It is possible that hippocampal
activation would have been found with other functional MRI
sequences, e.g., with a higher spatial resolution. In addition, sev-
eral studies in the literature have indicated that a resting period
is not a good contrast condition to find differential hippocampal
activation, because hippocampus is part of the default mode net-
work which is typically active during rest breaks (Greicius et al.,
2004).

Selection of regions of interest
The cortical regions of interest (ROIs) are defined based
on a conjunction of anatomical and functional criteria.
Primary visual cortex (V1) was defined anatomically by
a mask based on a probabilistic map of area 17/V1 in
MNI space, derived from the Anatomy toolbox for SPM
(www.fz-juelich.de/ime/spm_anatomy_toolbox). In this anatom-
ical region, we included all voxels that were activated by naviga-
tion (using the contrast and threshold mentioned above; subject
S1: 1561 voxels, S2: 953 voxels, S3: 669 voxels). Ventral visual cor-
tex (Ve) was determined anatomically at the ventral surface of

FIGURE 2 | Cortical regions activated more during virtual maze

navigation than during resting blocks. Activity was thresholded at
p < 0.0001 (corrected for multiple comparisons). The cortical regions of
interest defined in our analyses are circled: primary visual cortex (V1),
ventral visual cortex (Ve), superior parietal cortex (Pa), primary motor cortex
(M1), and dorsal premotor cortex (PM).
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the occipital and temporal lobes. We included all voxels in this
region activated by navigation (S1: 1101 voxels; S2: 840 voxels;
S3: 330 voxels). The parietal (Pa) ROI was located in the more
anterior and superior parts of the parietal lobe (S1: 515 voxels;
S2: 607 voxels; S3: 563). The anatomical definition of ventral and
parietal cortex was conservative in the sense that these ROIs only
included a part of the region that would normally be considered
for inclusion, namely the part furthest removed from area V1.
This definition assures that these regions and V1 were clearly sep-
arated from one another. The definition of primary motor cortex
M1 (S1: 114 voxels; S2: 171 voxels; S3: 122 voxels) and dorsal pre-
motor area PMd (S1: 221 voxels; S2: 349 voxels; S3: 254 voxels) was
also based on their typical location and activation in the contrast
of navigation vs. rest epochs. We selected these five brain regions
because they represent the whole extent of activity which we see
when comparing the navigation periods with the baseline, and
because from the literature we can expect them to contain sensory,
motor, or cognitive representations which are at least indirectly
implicated during visuospatial navigation.

Hippocampus (Hi) was determined solely on anatomical cri-
teria due to the absence of any navigation-related activation (S1:
384 voxels; S2: 273 voxels; S3: 635 voxels). Importantly, inspec-
tion of the EPI images and the extent of susceptibility artifacts
suggested that there was sufficient signal around the location of
the hippocampus.

Finally, a white-matter ROI was selected around the corpus cal-
losum as a control region (S1: 935 voxels; S2: 674 voxels; S3: 830
voxels).

Extraction of fMRI signal in ROIs
For each voxel in each ROI, we selected the fMRI signal in the pre-
processed images for each time point, i.e., a resolution of 1 time
point every 3 s. This raw signal was normalized for any differ-
ences between runs by subtracting the mean fMRI signal across
all ROI voxels across all time points of each run. Furthermore, the
signal was normalized for any linear and quadratic drifts across
each run. To account for the typical delay in the hemodynamic
response function, the fMRI signal was taken from two TRs (6 s)
after each point in time.

DECODING OF MAZE BEHAVIOUR AND TRACKS FROM fMRI SIGNALS
General training and cross-validation procedure of support vector
machine (SVM) classifiers
Linear support vector machine (SVM) was implemented using
the OSU SVM Matlab toolbox (www.sourceforge.net/projects/
svm/), with its default parameters (e.g., parameter C = 1). We
trained a classifier using all time points from all trials minus one,
and tested it on the individual time points of the remaining trial.
This procedure was repeated so that each trial was tested. The
time points of the training trials were used for training the classi-
fier to find a hyper plane in the multidimensional voxel space that
best separates the voxel response vectors of the two categories that
the classifier is required to separate. All time points of the one
remaining trial were then used to test the classifier. In particu-
lar, the classifier’s output was used to determine the probability
of which category occurred at each time point of the trial (see
further paragraphs on SVM output and Choosing a track).

We included a separate training/test cycle (separate decoding)
for each source of information. These sources of information were
calculated as specified before (see Section Eye movements during
navigation), but in addition each source was transformed into a
binary variable (e.g., the motion path variable was transformed
into “turning left” vs. “turning right”). Furthermore, for most
sources of information only a subset of time points from the
training trials were used to train the classifier. For the quadrant
location, the selection was already made during the calculation of
the variable (positions at the boundaries between quadrants were
not used). For the motion path, which in principle combines dif-
ferent information (turning vs. not turning and turning left vs.
turning right) the training time points were restricted to the time
points with the lower third (negative values, turning right) and
the upper third (positive values, turning left) of the values. This
way the classifier is mostly trained on discriminating the direction
of turning. For reward timing and picture visibility, only a subset
of the no-reward and the no-visible trials were used to avoid a
larger than 3–1 relative frequency of “no” to “yes” time points
during training. Finally, for scene content all values in a square of
the scene were used, and the categories were determined as below
or above the median value of all values in that square across all
training trials. All these choices were made a priori, and none of
them was changed a posteriori to improve decoding performance.
This avoids any statistical bias in our findings, but it also means
that decoding performance can probably still be improved signif-
icantly by systematically manipulating these factors and finding
the best combination of values.

Figure 3 uses simulated data to illustrate SVM training.
Figure 3A shows the visibility (in this case, 0 or 1) for 10 “tri-
als” (the individual line plots), each with 10 time points (time
is on the X-axis). Nine trials, shown in blue, are used for train-
ing the classifier, with one remaining trial (shown in red) left out
from training and used to cross-validate the classifier. Figure 3B
shows the fMRI signal in two simulated voxels at each of the
10 × 10 time points. For each of the 9 × 10 blue time points we
have a vector in the two-dimensional voxel space and the asso-
ciated visibility label (represented by the “+” and “∗” symbols),
and these (vector, label) pairs are used for training the classifier to
find the optimal decision boundary to separate the visible from
the non-visible category.

For cross-validating the classifier with the fMRI data from the
test trial, data from each time point in the test trial are placed
in the voxel space (red points in Figure 3B). Two parameters
describing the relationship of this point to the decision bound-
ary are relevant for what is done next. The first parameter relates
to the side of the boundary the point falls in. This determines
the category that is chosen by the classifier, i.e., whether it is pre-
dicted to be a “visible” or a “non-visible” time point. In this case,
the classifier made a correct decision for 7 out of 10 time points in
the test trial (the three errors are circled). The second parameter
is the distance of the point in space from the decision bound-
ary. This distance can be seen as the certainty of the classifier
for classifying this time point as belonging to one or the other
category.

Note that many classifiers were trained for each trial. First,
separate classifiers are trained for each ROI. Second, there were
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FIGURE 3 | Simulation dataset to illustrate the pattern classification

approach applied to the fMRI data. (A) Visibility (0 or 1) for 10 ‘trials’. Nine
trials, shown in blue, are used for training the classifier, with one remaining
trial (shown in red) left out for cross-validation. (B) The fMRI signal in two
simulated voxels at each of the 10 × 10 data points. The 9 × 10 blue data
points are involved in training together with the associated visibility label
(represented by the ‘+’ and ‘∗’ symbols). The dashed line represents the
optimal decision boundary to separate the visible from the non-visible
category. The 10 red data points represent the cross-validation data, 3 out of

which are classified wrongly (encircled points). (C) The probability of visibility
in the training data as a function of the decision variable of the classifier. The
blue plus-signs represent the data from the training dataset (binned so that
each point is an average of 9 data points), and the red plus-signs represent
the cross-validation data. The blue curve shows a sigmoid function fitted to
the training data. (D) The actual visibility in the 9 training trials and in the
cross-validation trial from panel (A) complemented with the predicted
visibility (bold red line) in the cross-validation trial as obtained from the
voxel-based classifier.

six sources of information, as specified above. Some of these
information sources were themselves decomposed into multiple
variables: quadrant location provides six possible pairs of quad-
rants, picture visibility has nine variables (one per picture), and
stationary and temporal scene content each contain 28 variables.
A classifier was trained for each variable. Summing across all
sources of information (see Section Extraction of behavioral and
stimulus parameters during trials, for the list) and across all vari-
ables per source, there is a total of 73 classifiers per ROI per
trial.

SVM output: binary classification vs. predicted probability
SVM output is typically expressed as a binary classification.
Successful decoding is reflected by a higher than chance clas-
sification of the individual time points of the trial used in the
cross-validation test. In a two-choice situation with equal occur-
rence of both alternatives, expected chance performance is 50%.

However, we often have an unequal occurrence of both alterna-
tives, and then the expected chance performance is higher. To
control for this, we calculated the proportion of hits (e.g., the
classifier responding “visible” when a picture was indeed visible)
and false alarms (e.g., the classifier responding “visible” when a
picture was not visible), and we derived the performance that
would be achievable with the difference between hits and false
alarms if both alternatives would have an equal probability of
occurring. Take, for example, a classifier that reaches 90% correct
by simply classifying all input patterns into the response alterna-
tive that would be correct for 90% of the patterns. In this case,
the actual accuracy, obtained without extracting any informa-
tion from the input patterns, would be 90%, but the corrected
accuracy would be 50% correct. These are the accuracies men-
tioned in this text, so for all of these values 50% is the expected
chance performance when the input patterns do not convey any
useful information for the classification problem. To calculate this
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corrected accuracy, we first calculated the psychophysical measure
of sensitivity (d′) as follows:

d′ = z(H) − z(F)

(with H the proportion of hits, F the proportion false alarms, and
z the inverse of the normal cumulative distribution.)

And we derived the corrected proportion correct as follows:

P = normcdf (d′/2)

(with normcdf the value of the normal cumulative distribution)
As mentioned above, the classifier bases its decision on the

position of a data point in the input voxel space. There is more
to this position than the category (side of the decision bound-
ary) it falls in. The classifier also informs us about the certainty
of this decision, which is a more graded and more informa-
tive measure than the binary classification. This certainty is
reflected by the distance between a data point and the deci-
sion boundary. We related this distance and its sign (side of
the decision boundary) to the expected value of the input data
by fitting a function to the observed relationship between the
value of input data points and the decision and certainty of the
classifier.

This is illustrated further in Figure 3. In Figure 3C, the X-axis
shows different values of the “decision variable” (DV) computed
by the classifier, which is the signed (negative or positive) dis-
tance from the decision boundary [these data are binned: each
point is a mean of 9 time points; the leftmost point is the aver-
age (x, y) of the 9 time points with the most negative DV; in the
actual data, averages of 20 time points were used for binning].
The Y-axis shows the mean probability of the visibility for each
of the mean DV values shown on the X-axis. The blue plus-signs
are the data from the training dataset, and the red plus-signs are
from the remaining trial used for cross-validation. This plot illus-
trates how different values of the DV relate to the probability of
picture visibility. In order to use this relationship for all possi-
ble values that might be encountered in the test data, we need
to obtain a continuous function. To do this, the (x, y) pairs were
fitted with a sigmoid of the type

y = f (x) = c + (1.0 − c − d)/(1 + exp((x − a)/b))

(a, b, c, and d are the fitted parameters)
The decision to use this fitting procedure and this function

with these parameters was made after visual inspection of the
typical relationship between the DV and the probability of pic-
ture visibility in the first subject. There are other mathematical
approaches to characterize this relationship between the DV and
probability, such as regularized linear discriminant analysis and
regularized logistic regression.

This sigmoid function is approximated by the blue line in
Figure 3C. This function is fit in each cross-validation fold using
the training trials. This same function was then used to link
the observed DV values for the test trial to a predicted value
of the input variable, e.g. picture visibility (red plus signs in
Figure 3C). Another format to display these predicted values, is

with the 10-point time line in Figure 3D. The dark red line con-
nects the same 10 predicted values, but now in order of time.
A comparison of the dark red (predicted values) and light red
(actual values) lines reveals that the prediction is clearly incor-
rect for three time points (time points 1, 3, and 4), which are
the data points that were incorrectly classified (circled crosses in
Figure 3B).

Choosing a track: comparison of predicted values with actual
information
The decision of which track a subject followed in a specific trial
was based on a comparison of the predicted values calculated by a
classifier with the actual values encountered in all available tracks.
In Figure 3D, this would be a comparison of the dark red line with
the other 10 lines.

The metric used to compare the predicted values with the
actual values encountered in each track was a sum of squares
measure (SS_diff) of the difference between predicted and actual
values. If the information source included multiple variables, such
as picture visibility (which included nine variables; one for each
picture), then all variables and their predicted values were con-
catenated to yield two long vectors of predicted vs. actual values.
To calculate SS_diff, each pair of predicted and actual values was
first re-sampled by linear interpolation to have the same num-
ber of time points across all tracks (the number of samples was
set to the number of time points contained in the longest track),
and standardized separately to a mean of 0 and a variance of 1.
Then, the difference between the predicted and actual values was
calculated per time point, this difference was squared, and then
summed across all time points to obtain SS_diff. Finally, all avail-
able tracks were ranked according to this SS_diff, with the smallest
SS_diff given rank 1. The track with rank 1 is the track that the
classifier output picks as the best possible guess of the actual track
followed during the trial.

One way to summarize the decoding performance is to deter-
mine the number of trials in which the correct track comes out on
rank 1. Another approach is to investigate the mean rank of the
correct track across all trials. With random data, and as verified
by our control data (see further), the expected rank is

rank(random) = (nrTrials + 1)/2

(nrTrials equals the number of alternative tracks. With data
containing reliable information, this correct-track rank will be
lower).

The rank expected by chance depends on the number of alter-
native tracks. We started with the pool of tracks/trials performed
in single scan sessions, giving a total number ranging from 16
to 19. In further analyses, we worked with a pool of all 106 tri-
als completed during the scans, and we determined the rank of
the correct track for each of the 106 trials. Finally, we extended
the pool to include the 284 additional trials completed outside the
scanner by subject VS, and in this case we determined the rank of
the correct track, which could now range between 1 and 390, for
each of the 106 fMRI trials.

The dependence between expected rank and number of
alternative tracks can be taken into account by dividing the
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correct-track rank by the total number of trials plus 1. This “nor-
malized correct-track rank” is expected to be 0.5 in a case in which
decoding fails. It will be one divided by the number of alternative
tracks if the correct track is chosen on every trial (100% accuracy).
The data show that performance is relatively invariant to the
number of tracks when expressed with this normalized correct-
track rank (e.g., the high similarity of the 106-alternatives and the
390-alternatives panel in Figure 5). Thus, we can use the perfor-
mance of our methods with a particular number of alternatives to
predict how accuracy will scale with much higher numbers.

STATISTICAL NOTES
Threshold for significance
The distribution of correct-track ranks that is expected by chance
has an expected mean equal to the number of trials plus 1 divided
by two, resulting in a normalized correct-track rank of 0.5. A crit-
ical test that this assumption holds for our data was provided
by a white-matter ROI. Classifiers were trained and tested using
input data from these white-matter voxels (separately for the three
white-matter ROIs of the three subjects), and with all the sources
of information and pools of alternative tracks (individual sessions
or larger pools) shown in the Results section. The obtained val-
ues and a normal distribution fitted to these values are shown
in Figure 4. Across all 40 values, the normalized correct-track
rank had a mean of 0.482 and a standard deviation of 0.068. We
considered decoding to be significant if the normalized correct-
track rank fell below 2.4 times the standard deviation (normalized
rank ≤ 0.32), which corresponds to a significance level of 0.01
when assuming a normal distribution.

This threshold is not corrected for multiple comparisons and
is not sufficiently conservative for assessing significance for each
combination of sources and ROIs in each participant. Thus, for
statistics, we additionally relied upon consistency across all six
scan sessions. With random data, the probability of observing
that a particular combination of source and ROI is on average
below the same threshold for significance is much lower than the

FIGURE 4 | Statistical distribution of correct-track ranks in the absence

of signal. Here we show the distribution of the correct-track ranks
observed when applying pattern classification on the data from the
white-matter ROI using the various sources of information and ROIs that
are shown in Figure 6. The black spikes represent the individual values, the
blue line is a normal distribution fitted to these data. The red line
corresponds to the statistical threshold used for determining whether
decoding performance was better than chance.

0.01 probability of observing this value in a single scan session.
To assess this probability of on average crossing the threshold
given random data, we used the distribution of 40 values obtained
with the white-matter ROIs; We randomly selected six out of
these 40 values and computed the mean of these six values;
we performed this procedure 5000 times and we calculated the
mean and standard deviation of this “mean of 6 values” dis-
tribution. This distribution had a mean 0.48 and a standard
deviation of 0.027. The threshold of 0.32 is 5.97 times the SD
lower than this mean, corresponding to an (uncorrected) proba-
bility of p < 10−8. Even a conservative Bonferroni correction for
100 multiple comparisons (which is much more than the actual
number) results in a corrected significance level of p < 10−6. In
Figure 5A, 17 combinations of information sources and ROIs
demonstrated a mean (across all six scan sessions) correct-track
rank below this threshold. These 17 combinations were later used
to test for the effect of integrating across sources and ROIs.

In further analyses we tested decoding performance by select-
ing the correct track from a larger pool of alternative tracks,
namely all fMRI trials and even trials completed outside the scan-
ner. In these analyses, effects of combining ROIs and sources
of information (Section Combinatorial brain decoding: combin-
ing predictions across ROIs and across sources of information
and Table 1), or effects of similarity (Section Specific benefits of
combining ROIs and/or sources of information) were tested sta-
tistically by determining how consistent the effects were across the
106 fMRI trials.

Statistical bias
Another matter of importance in fMRI decoding methods is
the possibility of statistical bias in the analyses. In general, it is
advisable that ROIs are selected based on criteria that are statis-
tically independent of within-trial information and between-trial
consistency (because the latter is what matters for classifier per-
formance). In our case the ROIs are selected based on the contrast
of navigation vs. rest in the first scan session. This contrast does
not rely on within-trial information and between-trial consis-
tency of this within-trial information. A further assurance of any
statistical bias is that the source × ROI combinations that resulted
in better than chance performance in the first scan session, also
performed well (and overall at least as good) in the second scan
session (as mentioned in the previous paragraph), even though
the data from the second session were not used to determine
which voxels were activated.

A more subtle statistical bias might arise when we combine
ranks across source × ROI combinations (see Results section).
In this procedure, we weighted each source × ROI according to
its decoding performance by subtracting its normalized correct
track-rank from 0.5.

In this case, the data used to determine this weight are not
independent from the data that we use to test the effect of inte-
grating ranks across sources and ROIs. We performed two tests
to make sure that the beneficial effect of integrating ranks is not
due to statistical bias. First, we applied the procedure of inte-
grating ranks to the more limited problem of finding the correct
track among all tracks completed in the same scan session (so
with a small pool of alternative tracks). We compared the effect
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FIGURE 5 | Accuracy of fMRI decoding in predicting the track that

subjects followed in each trial. The fMRI data are used to predict the
occurrence of particular sources of information (e.g., picture visibility) at
every time point, and the alternative tracks are ranked based on how much
they resemble this prediction across all time points. Accuracy is
represented by the correct-track rank (left Y -axis), which is the rank given
to the correct track when all alternative tracks are ranked according to how
much they deviate from the prediction. The right Y -axis shows the
normalized correct-track (CT) rank, which is the correct-track rank divided
by the number of alternative tracks plus 1. A normalized correct-track rank
of 0.5 corresponds to chance performance (no decoding ability; black

dotted line). Values below the red dotted line represent decoding
performance that is significantly better than chance. Data are included for
the following regions of interest: primary visual cortex (V1), ventral visual
cortex (Ve), superior parietal cortex (Pa), primary motor cortex (M1), dorsal
premotor cortex (PM), and hippocampus (Hi). (A) Decoding performance
when the correct track is ranked among all tracks completed in a single
scan session (18 on average). The different lines represent the different
scan sessions. (B) Decoding performance when the correct track is ranked
among all 106 tracks completed in the fMRI sessions (left panel), or
among all 390 tracks completed overall (right panel). The different colors
represent the different sources of information.

of integrating ranks between two situations. In the first situa-
tion the weights were determined based on decoding performance
in the same session as the data used to test the effect (but note that
the decoding performance itself is still based on a cross-validation
with independent data!). In the second situation the weight selec-
tion was based on data from a different session than the data
used to test the effect. The beneficial effect of integrating infor-
mation was equally large in the two situations. This is actually not
surprising given the finding described in the previous paragraph
that decoding performance was very highly correlated between
sessions.

A second test was based on the decoding performance of the
white-matter ROI in the 355-alternatives problem. This ROI was
trained with each source of information, and the average normal-
ized correct-track rank based on a single source of information
was 0.45. Then we integrated the ranks across sources, using
the correct-track rank to weight each rank, exactly as we do for
the source × ROI combinations with successful decoding. The
average rank of the correct trial was 170, corresponding to a nor-
malized correct-track rank of 0.43, which is below 0.50. Thus, our
procedure for determining the weight given to sources and ROIs
when integrating information does not introduce a statistical bias.

Frontiers in Neuroscience | Brain Imaging Methods May 2013 | Volume 7 | Article 78 | 10

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Op de Beeck et al. Brain decoding of visuospatial navigation

RESULTS
We first demonstrate the limits of typical decoding methods
to decipher spatial location in more complex mazes, and we
implement a new decoding approach that is not subject to these
restrictions. In our study, subjects navigated in a complex virtual
maze (Figure 1A). This environment was very rich in terms of
potential routes or tracks, changing from trial to trial because of
the presence of doors that could be open or closed, and in terms
of visual input—including the presence of pictures on the walls
showing stimuli such as a face, hand, or car. On each trial, sub-
jects started at an outer side of the maze, and were asked to collect
five rewards, of which four were in a fixed location and had to be
collected in a specified order. The path taken by a subject on a
representative trial is shown in Figure 1B. Three subjects (S1–S3)
completed a total of 106 trials (average of 18 trials per session for
each subject).

LIMITS IN DECODING SPATIAL LOCATION FROM ACTIVITY PATTERNS
IN HIPPOCAMPUS
We first implemented a traditional decoding approach, and we
attempted to decode in which of two quadrants of the maze
the subject was at every single time point based on the pattern
of activity in the hippocampus. We trained a SVM classifier on
pair-wise quadrant discriminations using the fMRI data from
all first-session trials but one, and we cross-validated the clas-
sifier on the classification of the individual time points in the
remaining trial (this leave-one-trial-out procedure was repeated
for each trial, and for each quadrant pair). The equal-bias
(assuming equal number of time points in each quadrant, so
that chance performance is 50%) classification performance on
this two-choice task was not significantly better than 50% (S1:
52 ± 2%; S2: 54 ± 2%; S3: 50 ± 2% correct; error term repre-
sent the standard error across trials). So even on this admittedly
very simple question, the traditional decoding approach largely
fails in a complex maze. Given the low number of subjects in
our study it is possible that a larger study with more subjects
might still find an effect that reaches significance in decoding
the same two-choice task in this complex maze environment,
but we can safely conclude from this first test that the absolute
performance level will not be high. Thus, decoding spatial posi-
tion in a complex maze from hippocampal patterns of activity
is unreliable at best at the spatial resolution and field strength
used here.

DECODING INDIRECT SPATIAL INFORMATION: PICTURE VISIBILITY
AND VENTRAL VISUAL CORTEX
Many distributed brain areas are activated during visuospatial
navigation in our virtual maze (Figure 2). Only a few areas, such
as the hippocampus and the entorhinal cortex, are known to
contain direct navigational information in the form of a cog-
nitive map. However, place cells in hippocampus and grid cells
in entorhinal cortex have access to multiple sources of informa-
tion to “know” where an animal is in the environment, including
visual information (such as the position of environmental land-
marks) and motor information (how far and in what direction
did the subject move). Our approach in the remainder of this text
will be to mimic what these cognitive map neurons do: Decode a

subject’s track and hence position in the maze from the available
visual and motor information in the activated cortical areas.

To illustrate our approach, consider as a potential source of
information the nine pictures within the maze, each changing in
visibility and size when the subject moves (Figure 1B). Ventral
visual cortex, part of the object-vision pathway, is expected to be
a primary brain region carrying information about whether spe-
cific pictures are visible or not. We trained and cross-validated
SVM classifiers on decoding picture visibility (visible or not at
each time point) from brain activity patterns in this ROI, tak-
ing advantage of the modular organization of the ventral visual
cortex where e.g., faces activate an anatomically distinct area com-
pared to houses. Classification performance on this two-choice
task was indeed significantly higher than 50% (S1: 61 ± 1%; S2:
67 ± 2%; S3: 60 ± 2%; p < 0.01 in each subject according to a
t-test across trials as well as according to a permutation analy-
sis with permuted labels), indicating that the pattern of activity
in ventral visual cortex is informative about the visibility of
individual pictures.

FROM PICTURE VISIBILITY TO SPATIAL POSITION AND ROUTE
INFORMATION
fMRI decoding studies mostly stop here, at the point of classi-
fying brain activity at individual time points or averaged across
time points based on the pattern of selectivity in a specific ROI.
However, here we extend this typical decoding approach in several
ways to select which route or “track” was followed by a subject
from the 18 tracks completed in a typical fMRI session. The pro-
cedure is explained in detail in methods Section Decoding of maze
behavior and tracks from fMRI signals. First, for the test track
(on which the classifier was not trained) we extracted an un-
thresholded, predicted probability of picture visibility from the
classifier to estimate how likely it is that a picture was visible or
not given the observed pattern of fMRI selectivity in the test track.
Second, we used a sum of squares difference measure for compar-
ing the predicted probability across all time points and all pictures
of the test track to the actual visibility in all possible tracks, the
test track included. All tracks were ranked, with the track with the
least difference between predicted probability and actual visibility
on rank 1. Ideally, the correct track would be given rank 1.

Based on picture visibility decoded from ventral visual cortex,
the average rank of the correct track was significantly closer to 1
(S1: 4.2; S2: 3.9; S3: 5.24) than expected by chance (expected rank:
9.5; see Section Statistical notes for explanation of how signifi-
cance was determined). Significant decoding of the followed track
based on picture visibility was also found based on primary visual
cortex (V1), and parietal cortex, but not based on motor regions,
hippocampus, or a white-matter control region (Figure 5A; first
panel). Thus, the decoded probability of picture visibility based
on activity patterns in visual regions is a useful source of informa-
tion to decide which track subjects followed in a particular period
of time.

DECODING ROUTES FROM OTHER SOURCES OF NON-SPATIAL
INFORMATION
Other sources of information might also be related to patterns
of activity in these cortical regions (see Figure 1B). Apart from
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picture visibility, we trained separate classifiers on (1) the motion
path followed by subjects (the degree of turning left or right at
specific time points), (2) the times at which subjects learned about
which reward to find next, (3) a measure of the local spatial con-
trast in the visual scenes (scene RMS, which reflects the difference
between nearby pixels in each scene), and (4) a measure of the
local temporal contrast in the visual scenes (scene Temp, which
reflects how much pixel content changes across time). All of these
sources of information elicited reliable patterns of selectivity in
V1, ventral, and parietal cortex that were useful for classifiers, and
the motion path was also useful in combination with activity in
motor regions (Figure 5A). In some cases, identifying the correct
track was very successful. In the best combination, activity pat-
terns in V1 associated with scene RMS information, almost all
tracks in a session were assigned correctly as the average correct-
track rank was close to 1 (S1 session 1: 1; S1 session 2: 1; S2 session
1: 1.05; S2 session 2: 1.11; S3 session 1: 1; S3 session 2: 1).

In Figure 5A, 17 combinations of information sources and
ROIs demonstrated a mean (across all six scan sessions) correct-
track rank below the threshold of significance (see Section
Threshold for significance).

The between-session replicability of the decoding perfor-
mance of particular source × ROI combinations was very high.
Specifically, the correlation between the correct-track rank in
the first session and the correct-track rank in the second ses-
sion across all source × ROI combinations shown in Figure 5
(N = 24; a few other combinations and other ROIs, e.g., includ-
ing basal ganglia and Brodmann area 45, were explored but were
always at chance) was very high in each subject (S1: r = 0.88;
S2: r = 0.89; S3: r = 0.88). This observation provides an inter-
nal replication within our study. The correlations in correct-track
rank across source × ROI combinations were also very high
(always > 0.8) when comparing sessions of different subjects, thus
we find essentially the same pattern of decoding performance in
the three subjects.

DECODING ABILITY WITH A LARGER SPACE OF ALTERNATIVE ROUTES
We further tested the robustness of our method by increasing
the number of possible tracks to all trials completed in fMRI
over all scan sessions, i.e., 106, or even to a larger pool of 390
tracks. Performance remained high, particularly for scene RMS
and the V1 ROI, with a mean correct-track rank of 1.97 with 390
alternative tracks to choose from (Figure 5B).

This performance was related to the fact that we combined
information across time points: the more time points included,
the better the correct-track rank. This is illustrated in Figure 6 for
the decoding of tracks based on patterns of activity in area V1
related to scene RMS. This was the source × ROI combination
that resulted in the best decoding performance overall. As was
typical for all source × ROI combinations with significant decod-
ing ability, the correct-track rank improved (lower rank) as a
function of the number of time points. Sometimes there was a
small bump with a low number of time points (also visible in
Figure 6), which might be related to the fact that we always started
with a very informative time point (start of a trial, often with full-
screen viewing of a wall picture). However, overall the decoding
of the route taken in a trial improved by adding time points.

FIGURE 6 | Effect of the number of time points considered on the rank

obtained by the correct track. These data are based on the use of scene
RMS information in combination with the V1 ROI to choose among
390 tracks (correct-track rank expected by chance is 196).

Note that the different ROIs were not equal in size. Typically,
pattern classification performance goes up with a larger number
of voxels, which is the reason why we did not reduce all ROIs
to the size of the smallest ROI (it would compromise decoding
performance of the larger ROIs). It is important to note that our
white-matter control region had a relatively large size, so the lack
of decoding based on selectivity patterns in this region is not due
to a small number of voxels. Thus, even with a large number of
voxels, random data are shown to result in no decoding ability.
As a result, the varying number of voxels across ROIs is not a
problem for determining the statistical significance of our find-
ings. Nevertheless, a small part of the variation in performance
among the successful ROI × source combinations can be expected
to be related to ROI size. As an extreme test, we reduced the largest
ROI, V1 (1257 voxels), to 100 voxels, which is smaller than any of
the ROIs tested (the 100 voxels were selected randomly). When
combined with the scene RMS source of information, the nor-
malized correct-track rank for this reduced V1 ROI was 0.21. This
value is still much lower than the value expected by chance (0.50)
or our criterion value for significance (0.32), but it has gone up
compared to the normalized correct-track rank of 0.005 obtained
with all V1 voxels.

COMBINATORIAL BRAIN DECODING: COMBINING PREDICTIONS
ACROSS REGIONS OF INTEREST AND ACROSS SOURCES OF
INFORMATION
Decoding based on the data from individual ROIs and one specific
source of information provided a ranking of the different alterna-
tive tracks according to how close the predicted values were to the
actual values in each track. Here we combine these rankings of
the different source × ROI combinations. Ranks were combined
by a weighted average. Indeed, some source × ROI combina-
tions were better than others, and these differences were very
consistent across sessions/subjects (see Materials and Methods
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section). Thus, the source × ROI combinations that provided
the best decoding were weighted most to come to a combined
prediction. Decoding performance was expressed as the aver-
age correct-track rank (lower value is better). The weight of a
source × ROI combination was an inverse linear function of this
average correct-track rank so that rank 1 would give a weight of 1
and chance performance would result in a weight of 0.

When combining all sources of information, and all brain
regions, the average correct-track rank was 1.07 when choosing
among 390 alternative tracks. To characterize how good this per-
formance is, we computed the percentage of the 106 fMRI trials
that were picked out correctly (correct-track rank of 1) from the
total database of 390 trials. Chance performance in this 1 out of
390 choice task is 0.3%. When combining all sources of informa-
tion, and all brain regions, the percentage of correctly identified
trials was 94% (correct performance on 100 out of 106 tracks).

Note that this successful decoding is based upon the combined
effort of many classifiers. Given the number of SVM classifiers
trained for each source of information for each ROI [also see
Section General training and cross-validation procedure of sup-
port vector machine (SVM) classifiers], and given the number
of source × ROI combinations with significant decoding, this
accuracy of 94% is based upon the training of 203 classifiers.

The benefit of combining information across sources and ROIs
is most obvious with sources × ROI combinations that were
not close to perfect in isolation. If we leave V1 aside, which was
the best ROI in many cases, the best performance on the 390-
track problem was obtained by scene RMS combined with ventral
visual cortex, giving an average correct-track rank of 13.50 (rank
expected by chance is 196). If we combine all sources with all non-
V1 ROIs, they nevertheless yielded an average correct-track rank
of 1.48 (SEM across trials: 0.13). Thus, combining information
across sources and ROIs helps significantly.

Average correct-track rank and the associated percentage of
correct identification of the tracks is a quantitative but rather
non-intuitive way of conveying the performance of our decod-
ing approach. In Figure 7 we illustrate the performance of our
decoding approach in a more visual way. Suppose we take the
time period of one specific trial from our scanning data and con-
sider the (un)certainty we have about which route subjects have
followed during this time period. Without any information from
brain activity, each of the alternative routes has an equal proba-
bility. In Figure 7 this is illustrated on the top row by averaging
the scenes across the different routes with each route having an
equal weighting. At the beginning of the track, when some of
the pictures are seen at full-screen width, the scene is a mixture
of those pictures. Later in the track, the guessed scene is very
uninformative and constant: a blurry version of a straight and
unidentifiable hallway.

Then we consider how much this uncertainty is reduced by
what the decoding approach reveals about the probability of
cue visibility. Using picture visibility information provided by
all ROIs together, the performance of picking the correct track
increases from the expected 0.3 to 8%. In Figure 7 this is illus-
trated on the second row by averaging the scenes across the
different routes with the correct route having a weight of 8%.
The uncertainty about the correct track is clearly reduced as some

structure becomes apparent in the averaged image. The uncer-
tainty is even more reduced based upon the motion track (third
row of Figure 7), which is associated with a decoding perfor-
mance of 30%. The uncertainty is finally reduced even more when
based upon an integration of all sources of information and all
ROIs which gave a decoding performance of 94% (Bottom row of
Figure 7).

SPECIFIC BENEFITS OF COMBINING ROIs AND/OR SOURCES OF
INFORMATION
We performed more in-depth analyses to find out what type of
combination helps most: integrating across ROIs that were all
combined with the same source of information, or integrating
across sources of information all combined with the same ROI.
The result can be found in Table 1. The first column shows the
source × ROI combinations that were integrated, followed by the
average correct-track rank obtained by this integration, the stan-
dard error of this mean across the 106 trials, and finally the best
correct-track rank that was achieved by using only one of the
investigated single source × ROI combinations. Note that a rank
of 196 would be chance performance as there were 390 tracks in
our total pool of tracks.

Rows 2–6 in this table represent cases in which we integrated
across ROIs that were all trained with the same source of infor-
mation. Integrating across ROIs had a variable effect, and did
not always result in better performance than the best single ROI.
A very different picture emerged when we integrated across all
sources of information combined with the same ROI (rows 7–9).
The integrated correct-track rank, now with integration across
sources, was always better than the best single-source case.

Why does it help to combine across sources of information?
One hypothesis is that combining across sources of information
makes decoding more robust against confusing tracks that are
similar in one particular aspect. We tested this for tracks that were
either similar in picture visibility or in motion path. Similarity to

Table 1 | Correct-track ranks obtained when combining the

predictions of ROIs and sources of information.

Combined sources/ROIs Rank SEM1 Best single Control

rank rank2

1. All sources, all rois (N = 17) 1.07 0.03 1.97 165.46

2. Only visibility, all 3 ROIs 66.58 8.17 80.38 187.79

3. Only motion, all 5 ROIs 11.40 2.24 10.68 200.81

4. Only RMS, all 3 ROIs 3.82 0.69 1.97 131.22

5. Only Temp, all 3 ROIs 13.21 2.57 37.79 168.81

6. Only Reward, all 3 ROIs 12.51 2.38 22.82 183.13

7. Only V1, all sources 1.31 0.10 1.97 165.46

8. Only ventral, all sources 5.58 1.18 13.50 165.46

9. Only parietal, all sources 6.64 1.55 22.13 165.46

10. Everything except V1 1.48 0.13 13.50 165.46

1For each of 106 fMRI trials the correct track is selected from a pool of

390 tracks, SEM is the standard error of the mean across the 106 fMRI trials.
2“Control rank” is the rank obtained with the white-matter control region when

using the same sources as in the other columns.
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FIGURE 7 | Combinatorial decoding decreases the uncertainty about

which track subjects have followed. The impact of decoding upon
uncertainty is illustrated visually for one track by the degree of averaging
visual scenes across multiple tracks. Four time points of the track are

shown (the arrows in the maze icon above correspond to the different
columns). The exact face picture was changed for display purposes
because the face picture in the actual experiment was purchased from a
commercial website.

the correct track in motion path had a very strong effect on the
rank of an incorrect track when the classifier providing that rank
was trained using motion path information. When all ROIs are
combined (cf. the weighted-average approach explained above),
the rank of the five most motion-similar tracks was 57, compared
to rank 333 for the five least similar tracks (difference significant
across the 106 trials, paired t-test, p < 0.000001). No effect of
similarity in motion path was present when decoding was based
on picture visibility (correct-track rank of 181 vs. 193, p = 0.09).

A very different picture emerged when tracks were ranked
according to how similar they are in terms of picture visibility.
In this case, similarity in picture visibility had a strong effect
on the rank of a track when classifiers were trained on picture

visibility (tracks similar to correct track: 149; dissimilar tracks:
248, p < 0.000001), but smaller (albeit still significant with p =
0.0054) when classifiers were trained on motion path (similar
tracks: 177; dissimilar tracks: 201). Thus, we have a double dis-
sociation between the way in which tracks are similar and which
sources of information will be most useful to differentiate the
tracks. This illustrates the importance of using multiple sources of
information for brain-based decoding of complex mental events.

DISCUSSION
We related the pattern of activity in multiple brain regions to the
continuously changing position of subjects in a complex spatial
environment. A direct decoding of a person’s position in such
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an environment from the spatial map in hippocampus turned
out to be difficult. Instead, we derived the route taken by sub-
jects from patterns of fMRI activity in multiple brain regions that
are related to sources of information which are only indirectly
spatial. For example, pictures were hanging at fixed positions in
the environment and thus the visibility of these pictures could
potentially be used as a spatial cue. We found that picture vis-
ibility could be decoded based on patterns of activity in visual
cortex, and the route taken by subjects could be derived, at least to
some degree, from this decoded picture visibility. The same indi-
rect decoding of spatial position also worked for other sources of
information, including direction of movement and visual scene
information. Decoding was far from perfect using single ROIs and
single sources of information, but could be enhanced significantly
by combining predictions across ROIs and sources of informa-
tion. Many questions remain after this first study with a limited
number of subjects, but it does serve as a “proof of principle” that
it is in fact possible to decode detailed aspects of the behavior
of subjects in very complex situations based on the dynami-
cally changing pattern of activity in multiple brain regions, a
methodology we refer to as “combinatorial brain decoding.”

The failure to decode spatial position directly from hippocam-
pal activity is important in relative terms, in the sense that
the direct decoding of spatial position is far worse relative to
the indirect decoding of position from non-spatial information.
This difficulty to decode spatial position directly is not in con-
trast with the literature. For example, several studies (Hassabis
et al., 2009; Rodriguez, 2010) showed better-than-chance perfor-
mance in a one-room spatial environment, but even in this very
simple situation performance was already far from perfect. In
a one-room environment, many hippocampal cells have a very
simple place field that can be modeled by one preferred spot
(strongest responses when the animal is at that spot) with a grad-
ual decrease as distance increases from this preferred spot. With
such a response profile it is relatively straightforward to derive
spatial position from neural activity. However, in multiple-room
environments, hippocampal cells typically do not code for the
position of an animal in the overall environment. Instead, cells
tend to have multiple place fields, with a preferred position in
multiple rooms, and often the place fields of different rooms bear
little relationship to each other (Derdikman and Moser, 2010).
Such a spatial code is ill-suited to find out the overall position of a
subject in a multiple-room environment using a simple decoding
approach.

We must note, however, that our current study is very limited
in terms of the number of subjects, that we only implemented rel-
atively simple pattern classification techniques and one of many
possible classification tasks (namely, a distinction in four quad-
rants), and that we did not perform a direct comparison of
single-room vs. multiple-room environments. Further studies are
needed before we can conclude with certainty that decoding of
spatial position deteriorates as the complexity of the spatial envi-
ronment increases. In addition our imaging parameters might
not be optimal to pick up a reliable signal from hippocampus,
e.g., scanning at higher resolution might have a beneficial effect.
Nevertheless, it is clear that decoding spatial position in a complex
spatial environment directly from fMRI patterns of activity that

represent spatial information is less reliable than decoding spatial
position indirectly from non-spatial sources of information.

There is a wealth of prior reports showing that fMRI patterns
of activity are informative about many aspects of sensory and
motor processing (Norman et al., 2006), including object cate-
gory membership and shape properties in ventral visual cortex
(e.g., Kriegeskorte et al., 2008; Op de Beeck et al., 2008; Drucker
and Aguirre, 2009; Walther et al., 2009; Kravitz et al., 2011) and
visual features in primary visual cortex (e.g., Kamitani and Tong,
2005; Kay et al., 2008; Swisher et al., 2010). The present study is
the first in which the content of such non-spatial neural repre-
sentations in multiple cortical regions is related to navigational
behavior. Here we have mostly focused on decoding performance
in order to highlight the potential of our decoding methods to
provide a detailed picture of these representations. Nevertheless,
this is only a first step, and future studies will have to include
many additional manipulations in order to specify the exact
nature of these representations.

Here one of the strengths of our approach, that we can inves-
tigate navigational events in their full complexity, is at the same
time a weakness, in that we are limited in the way in which
we can de-compose these navigational events into separate fac-
tors and cognitive processes. We identified multiple sources of
information, but during navigation these sources of information
are related to multiple factors that are confounded. For exam-
ple, decoding of the motion track from V1 responses is expected
to depend on visual processing, while decoding the same source
of information from M1 responses is expected to reflect motor
signals. While this result highlights the fact that during natural
behavior most areas of the brain work together and convergence
exists between the information encoded in very different brain
systems, it does not take away from the fact that regions like V1
and M1 contain very different representations and are active for
very different reasons. In this respect, the value of the current
study lies mostly in the demonstration of the feasibility and high
power of brain decoding fMRI to analyze behavior in very com-
plex situations, providing the necessary basis for applying these
methods in the context of further studies on the differences in
what is represented in the multiple brain regions that are involved
directly and indirectly in spatial navigation.

Because of the very different nature of the representations in
regions such as V1 and M1, combining across ROIs representing
the same source of information, which did not seem to help much
in our current study, will have specific benefits that might be
missed when focusing upon overall accuracy in the present study.
In particular, combining across ROIs from different systems (e.g.,
visual and motor areas) will make decoding performance less
susceptible to specific foils. For example, it might be difficult to
differentiate passive viewing of a track from active navigation
based on just visual regions, while the inclusion of motor cortex
should make this task much easier. Thus, a multi-ROI approach
would be necessary to avoid trivial pitfalls in the fMRI decoding of
such complex events. Future studies that include such manipula-
tions are needed to further pinpoint the specific content of neural
representations during navigation.

In our approach, classifiers were developed for each individ-
ual ROI and classification results were combined a posteriori.
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This is a reasonable approach because ROIs differ in their decod-
ing ability for different sources of information. For example, our
approach allows us to only use motor cortex for those sources of
information for which it contributes to decoding success. A dif-
ferent approach would be to use the voxels from all ROIs together
and train classifiers with voxels from all ROIs, with in the limit a
whole-brain approach. Such approach would necessitate the addi-
tion of feature extraction steps to the decoding, which would be
an obvious extension of our methodology.

In sum, using combinatorial brain decoding we relate patterns
of brain activity to the route followed by subjects in a com-
plex maze environment. The decoding performance as shown
here is most likely an under-estimation of the actual poten-
tial of our methods, because we have not yet explored further
improvements, such as using different classifiers, specific feature
extraction methods, improving spatial resolution, and more opti-
mal approaches to weigh different cues and regions according
to their reliability (e.g., Bayesian). Other interesting extensions
could involve real-time decoding and combinations with other
techniques such as EEG.

Even without these measures, our methods already signifi-
cantly extend the potential of fMRI to decode complex natural
thought during the execution of daily activities that typically
engage multiple cognitive processes and brain regions. Rather
than seeing these characteristics of natural behavior as a draw-
back for designing controlled experiments, we have adapted our
methods in order to use these characteristics to our advan-
tage by combining multiple sources of information, multiple

brain regions, and multiple time points. Intriguingly, spatial rep-
resentations in hippocampus and nearby cortex also integrate
information across multiple sensory modalities and about self-
motion, information that comes from multiple brain regions and
that evolves dynamically over time (O’Keefe, 1976; Sharp et al.,
1995; Andersen, 2007). From this perspective, the combinatorial
methods that we developed in our study to decode how sub-
jects navigate are a very crude version of how the brain itself
constructs a cognitive spatial map of the environment and the
subject’s position.
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Movie S1 | The actual visual input received by the subject in the first part

of the track shown in Figure 1B. In order to reduce the size of this movie

file, the sampling rate is 4 frames per s. The rate was 20 Hz during the

actual experiment.
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