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RNA localization and regulation play an important role in the developing and adult nervous
system. In navigating axons, extrinsic cues can elicit rapid local protein synthesis that
mediates directional or morphological responses. The mRNA repertoire in axons is large
and dynamically changing, yet studies suggest that only a subset of these mRNAs are
translated after cue stimulation, suggesting the need for a high level of translational
regulation. Here, we review the role of RNA-binding proteins (RBPs) as local regulators of
translation in developing axons. We focus on their role in growth, guidance, and synapse
formation, and discuss the mechanisms by which they regulate translation in axons.
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INTRODUCTION
Spatial localization of mRNA is a well conserved mechanism for
restricting gene expression to a specific subcellular site in many
cell types across animal and plant phyla (Condeelis and Singer,
2005; Holt and Bullock, 2009). In neurons, localization and trans-
lational regulation of mRNA plays a key function in dendrites
and post-synaptic compartments (Bramham and Wells, 2007),
and mounting evidence points to a similarly important role in
axons (Jung et al., 2012). The response to several guidance cues
require local protein synthesis in the tip of the growing axon, the
growth cone (GC), (Campbell and Holt, 2001; Wu et al., 2005;
Leung et al., 2006; Piper et al., 2006; Yao et al., 2006) and axonal
mRNA translation is critical for axon survival (Hillefors et al.,
2007; Cox et al., 2008; Yoon et al., 2012) and regeneration (Zheng
et al., 2001; Verma et al., 2005). A large number of mRNAs are
found in both growing (Andreassi et al., 2010; Zivraj et al., 2010)
and mature axons (Taylor et al., 2009; Gumy et al., 2011), with
some transcripts restricted to specific neuronal subtypes, axonal
compartments (Zivraj et al., 2010), or developmental time points
(Zivraj et al., 2010; Gumy et al., 2011).

Different guidance cues ultimately lead to the translation of
distinct subsets of mRNAs (Wu et al., 2005; Leung et al., 2006;
Piper et al., 2006; Yao et al., 2006), yet, puzzlingly, cause an
increase in the activity of markers of global translation in the GC
(Campbell and Holt, 2001; Leung et al., 2006; Piper et al., 2006).
This begs the question of how translation of specific mRNAs is
locally regulated. The specificity is likely mediated, at least in
part, via RNA-binding proteins (RBPs). RBPs comprise a large
family of proteins that form ribonucleoprotein (RNP) complexes
with their target mRNAs and can act as cytoskeletal adaptors
and/or translational silencers to transport their cargo to subcellu-
lar locations (Besse and Ephrussi, 2008). Once on site, RBPs can
either act as translational repressors or activators of their mRNA

targets, thus providing a way to control translation spatially and
temporally. Here, we review the role of RBPs as regulators of
local protein synthesis in the axon during development, from
axon elongation, to axon guidance and synapse formation in
target-arrived axons. Lastly, we discuss the possible mechanism
by which RBPs regulate the specificity of local translation in axons
and GCs.

AXONAL GROWTH CONE RBPs REVEALED BY
PROTEOMIC ANALYSIS
RBPs are widely expressed in the central nervous system (CNS)
and many exhibit region-specific expression in the developing
brain, suggesting that RBPs may play a major role in establish-
ing cell-type specific function during development (McKee et al.,
2005). However, most of our knowledge of the function of RBPs
in neurons stems from distinct cellular or dendritic compart-
ments, and although RBPs have been found in axons (Zhang et al.,
2001; Rossoll et al., 2002, 2003; Leung et al., 2006; Price et al.,
2006; Yao et al., 2006; Christie et al., 2009; Akten et al., 2011),
their full repertoire has not been determined and little is known
about their abundance and distribution in axonal compartments.

An unbiased proteomic study has been performed recently on
GCs from whole rat embryonic brain (Estrada-Bernal et al., 2012)
and we have interrogated this dataset to determine the reper-
toire of RBPs. Interestingly, our analysis indicates that about 1%
of all GC proteins are putative RBPs. This estimate is likely to
be an under-representation because the experimental design of
the study favors proteins expressed in the majority of GCs with-
out taking into account any regional-or cell-specific expression
of RBPs. Consistent with this line of reasoning, RBPs previously
identified in axons, such as HuD (Akten et al., 2011; Fallini et al.,
2011), the Fragile X mental retardation protein (FMRP) (Antar
et al., 2006; Price et al., 2006; Christie et al., 2009; Akins et al.,
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2012) and cytoplasmic polyadenylation element-binding protein
(CPEB) (Kundel et al., 2009) were not identified in this screen,
indicating that these RBPs may only be present in specific subsets
of axons. Nonetheless, the study provides unparalleled insights
into the repertoire of GC RBPs. Out of the 22 putative RBPs iden-
tified, only two, zipcode binding protein 1 (ZBP1, also known as
IMP-1 and Vg1RBP) and survival motor neuron 1 (SMN) have
previously been identified in GCs (Zhang et al., 2001, 2003, 2006;
Leung et al., 2006; Fallini et al., 2011; Welshhans and Bassell,
2011). The single largest group of RBPs, comprising about 50%
of all RBPs identified in the GCs, were the heterogenous nuclear
ribonucleoprotein family (hnRNP) family of RBPs, a large fam-
ily of RBPs that varies greatly in both function and structure
(Han et al., 2010). To date, only one family member has pre-
viously been identified in axons and GCs (Rossoll et al., 2002,
2003; Glinka et al., 2010), but their striking enrichment in the
GC proteome suggests that they may have a widespread role in
developing axons. Members of the hnRNP family have also been
identified in post-synaptic densities (Jordan et al., 2004; Zhang
et al., 2012), indicating that they may serve key functions in both
pre- and post-synaptic compartments. However, it is worth noth-
ing that the hnRNPs enriched in post-synaptic densities differs
from the hnRNPs most abundant in GCs (Zhang et al., 2012).

Of the other RBPs identified in GCs, four were RNA-
recognition motif (RRM) containing proteins previously identi-
fied for their role in splicing and transcription (Imai et al., 1993;
Patturajan et al., 1998; Kataoka et al., 2000; Guo et al., 2003;
Cazalla et al., 2005; Chuang et al., 2011; Albers et al., 2012). Many
hnRNPs also have known nuclear functions, and it is interest-
ing to note that the majority of RBPs identified in this study,
including hnRNP K (Expert-Bezancon et al., 2002; Lynch et al.,
2005; Stains et al., 2005), U (Kukalev et al., 2005; Huelga et al.,
2012), F (Min et al., 1995; Martinez-Contreras et al., 2006; Huelga
et al., 2012), E1 (Kim et al., 2005; Akker et al., 2007), H1
SMN (Pellizzoni et al., 2002) and RNA binding motif protein
8a (RBM8a, also known as Y14) (Kataoka et al., 2000; Chuang
et al., 2011; Albers et al., 2012), have well-established nuclear
functions as regulators of splicing and transcription. In fact, of
all RBPs found in GCs, only ZBP1 is best known for its cyto-
plasmic function. This raises the intriguing possibility that many
neuronal RBPs may have a dual role both in the nucleus and
cytosol. Interestingly, both proteins and mRNAs of splicing fac-
tors have been found in GCs (Zivraj et al., 2010; Estrada-Bernal
et al., 2012), suggesting that axonal mRNA regulation may be
more complex than previously thought.

RBP-MEDIATED LOCAL REGULATION OF AXON GROWTH,
GUIDANCE, AND SYNAPSE FORMATION
While the role of RBPs in dendrites and post-synaptic compart-
ments has traditionally received more attention (Bramham and
Wells, 2007; Swanger and Bassell, 2011), several studies are start-
ing to focus on the role of RBPs in axons. Some of these RBPs,
like hnRNP R and SMN, appear to localize mainly in axons out-
side of the nucleus. Others, such as FMRP and ZBP1, have both
dendritic and axonal functions. In this section, we review the role
RBPs play as local regulators during axon growth, guidance, and
synapse formation (Table 1).

AXON GROWTH
Axon outgrowth and the continuous regulation of axon growth
are key steps during axon guidance and regeneration. Two RBPs
associated with neurodegenerative disorders affecting motor neu-
rons have been implicated as local regulators of axon growth
suggesting that translational regulation in axons during this pro-
cess may be broadly crucial for the survival and health of motor
neurons. These RBPs are SMN and TDP-43.

SMN is a ubiquitously expressed RBP most known for its role
in assembling small nuclear ribonucleoprotein (snRNP) com-
plexes involved in splicing (Burghes and Beattie, 2009). Depletion
of SMN is the cause of spinal muscular atrophy (SMA) and loss of
SMN leads to degeneration of motor neurons. However, why the
loss of a ubiquitously expressed gene causes a specific defect in
motor neurons is not well understood. SMN has been detected in
axons (Rossoll et al., 2002; Zhang et al., 2003, 2006; Fallini et al.,
2011), and cultured motor neurons from a SMN mouse model
display axonal defects including reduced axon growth, smaller
GCs and reduced levels of β-actin mRNA in the axon and GC
(Rossoll et al., 2003). In zebrafish and Xenopus tropicalis, knock-
down of SMN leads to truncated motor neuron development
in vivo (McWhorter et al., 2003; Ymlahi-Ouazzani et al., 2010).
SMN can interact with several other RBPs (Mourelatos et al.,
2001; Rossoll et al., 2002; Wang et al., 2002; Piazzon et al., 2008),
and is thought to regulate translation indirectly via these interac-
tions as SMN itself lacks any known RNA-binding domains. One
of these RBPs, hnRNP R, is reduced in GCs and axons of cultured
motor neurons lacking SMN (Rossoll et al., 2003), and deple-
tion of hnRNP R in zebrafish gives a similar phenotype to SMN
knockdown (Glinka et al., 2010). hnRNP R can associate with
β-actin 3′ UTR and co-localizes with β-actin in GCs (Glinka et al.,
2010). Knockdown of hnRNP R leads to a decrease in β-actin
mRNA levels in GCs but no change in total mRNA levels, sug-
gesting that hnRNP R specifically alters the subcellular location
of β-actin mRNA. Overall, these findings suggest that SMN and
hnRNP R co-regulate β-actin mRNA localization and translation
in the distal axon during axon growth in motor neurons.

The TAR DNA binding protein 43, TDP-43, is also impli-
cated in axonal regulation of motor neuron outgrowth. TDP-43
is mostly a nuclear DNA/RNA-binding protein involved in many
parts of mRNA post-transcriptional regulation such as splicing,
stability, and transport (Lee et al., 2012). TDP-43 is implicated in
neurodegenerative diseases such as amyotrophic lateral sclerosis
(ALS) and frontotemporal lobar degeneration (FTLD-U) where
TDP-43 is found in large insoluble granules in the cytoplasm,
but the pathogenesis of these granules is not clear. Apart from its
nuclear location, TDP-43 has been found in axons of motor neu-
rons where it co-localizes with other RBPs (Fallini et al., 2012).
Axonal TDP-43 levels increase after BDNF stimulation in cul-
tured motor neurons, and depletion of TDP-43 increases axon
length and branching (Fallini et al., 2012). However, in mouse
neuroblastoma neuro-2a cells TDP-43 depletion inhibits neu-
rite outgrowth (Iguchi et al., 2009), and in zebrafish embryos
zTDP-43 depletion causes reduced axon length in motor neu-
rons (Kabashi et al., 2010), suggesting that TDP-43 may have
different roles during neuronal development in different neuronal
populations and species.
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Table 1 | RBPs in axons.

RBP Species Cell type Function Target mRNA References

CPEBs Rat
X.laevis

Hippocampal neurons
RGCs

Axon growth, branching
Axon guidance

β-catenin Kundel et al., 2009
Lin et al., 2009

FMRP Mouse Hippocampal neurons GC motility
Axon guidance
Synapse formation

map1b Antar et al., 2006
Li et al., 2009
Hanson and Madison, 2007

Drosophila Mushroom body motor
neurons

Branching, synapse
formation
Branching, synapse
formation

futsch Pan et al., 2004; Tessier and Broadie,
2008
Zhang et al., 2001; Gatto and Broadie,
2008

FMRP,
FXR2,
FXR1

Rat Developing brain Synapse formation? Christie et al., 2009; Akins et al., 2012

hnRNP
R

Mouse
Zebrafish

Motor neurons Axon growth
Axon growth, synapse
formation

β-actin Rossoll et al., 2003; Glinka et al., 2010
Glinka et al., 2010

HuD Mouse Motor neurons Axon growth, branching cpg15 Fallini et al., 2011

SMN Mouse

Zebrafish
X.tropicalis

Motor neurons
Motor neurons
RGCs
Motor neurons
Motor neurons

Axon growth
Branching, synapse
formation
Axon growth,
Branching

β-actin Rossoll et al., 2003
Kariya et al., 2008; Kong et al., 2009
Liu et al., 2011
McWhorter et al., 2003
Ymlahi-Ouazzani et al., 2010

TDP-43 Mouse
Drosophila
Zebrafish

Motor neurons Axon outgrowth
Synapse formation
Axon growth, branching,
synapse formation

futsch
Fallini et al., 2012
Godena et al., 2011; Lin et al., 2011
Kabashi et al., 2010

ZBP1 X.laevis, chick, mice RGCs,
cortical neurons

Axon guidance β-actin Zhang et al., 2001; Leung et al., 2006;
Yao et al., 2006; Sasaki et al., 2010

AXON GUIDANCE
Local protein synthesis plays a key role during axon guidance
in vitro (Campbell and Holt, 2001; Wu et al., 2005; Leung et al.,
2006; Piper et al., 2006; Yao et al., 2006) and in vivo (Leung et al.,
2013) and although many mRNAs have been identified in axons
(Taylor et al., 2009; Andreassi et al., 2010; Zivraj et al., 2010;
Gumy et al., 2011), the identity of those that are actively trans-
lated and how they are regulated is less clear. RBPs are needed
to transport mRNA to the GCs, but what regulatory role they
play in the GCs during axon guidance is not well known. Some
RBPs, depicted in Figure 1, can mediate the response to guid-
ance cues by regulating local translation of their target mRNAs.
ZBP1 was the first RBP found to regulate axon guidance, and its
local regulation of β-actin mRNA in response to guidance cues
is conserved in several species (Zhang et al., 2001; Leung et al.,
2006; Welshhans and Bassell, 2011). In Xenopus laevis, the ZBP1
ortholog, Vg1RBP, mediates turning toward the attractive guid-
ance cue Netrin-1 (Leung et al., 2006) and to brain-derived neu-
rotrophic factor, BDNF (Yao et al., 2006). Stimulation of retinal
ganglion cell (RGC) axonal GCs by a Netrin-1 gradient induces
polarized movement of Vg1RBP toward the Netrin-1 source, and
this is accompanied by an asymmetrical increase in activated

eIF-4E-binding protein 1 (4EBP1) and β-actin translation (Leung
et al., 2006). A BDNF gradient also leads to asymmetric β-actin
and Vg1RBP localization in spinal cord neuron GCs, and prevent-
ing the β-actin-ZBP1 interaction abolishes both Ca2+-mediated
attraction and repulsion (Yao et al., 2006). This suggests that
ZBP1 is crucial for regulating both the translation and spatial
location of β-actin during GC turning. Together these two studies
gave the first insight into how an RBP can spatially restrict trans-
lation in the GC. Translational dysregulation of β-actin can cause
morphological defects in axons of several types of neurons (Zhang
et al., 2001; Huttelmaier et al., 2005; Leung et al., 2006; Yao et al.,
2006; Welshhans and Bassell, 2011), and several axonal RBPs have
β-actin mRNA among their targets (Zhang et al., 2001; Rossoll
et al., 2003; Huttelmaier et al., 2005; Leung et al., 2006; Glinka
et al., 2010; Welshhans and Bassell, 2011), suggesting that trans-
lational regulation of β-actin may be of particular importance
in axons. In dendrites, ZBP1-mediated dysregulation of β-actin
perturbs branch development (Perycz et al., 2011), but whether
or not ZBP1 has a similar function in axonal branching is not
known.

FMRP is best known for its role as a translational regulator in
the post-synaptic compartment, but it is also gaining attention
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FIGURE 1 | Diagram summarizing RBP-mediated regulation of different

cue-stimulated responses in axonal growth cones. In the growth
cone, RBPs mediate translation of specific mRNAs after cue stimulation.
Netrin-1 induces ZBP1 localization and translation of β-actin close to the
source of Netrin-1, and this is crucial for growth cone turning (Leung
et al., 2006; Lin and Holt, 2007). BDNF induces Src-mediated ZBP1
phosphorylation, β-actin translation and growth cone turning toward the

BDNF source (Yao et al., 2006; Sasaki et al., 2010). Growth cone
collapses and Map1B mRNA translation in response to Sema3a is
attenuated in axons depleted of FMRP, suggesting a role for FMRP in
Sema3A-mediated axon guidance (Li et al., 2009). NT3 induces CamKII
mediated phosphorylation of CPEB1, which activates polyadenylation and
translation of β-catenin mRNA crucial for axon elongation and branching
(Kundel et al., 2009).

for its role in axons (Christie et al., 2009; Deng et al.,
2011; Till et al., 2011; Akins et al., 2012). FMRP is present
in axons and GCs (Antar et al., 2006), and knockdown of
FMRP in hippocampal neurons leads to reduced GC motil-
ity, excess filopodia (Antar et al., 2006), and attenuated col-
lapse in response to the repulsive guidance cue Semaphorin
3A (Sema3A) (Li et al., 2009). Sema3A stimulation increases
the levels of phosphorylated eukaryotic translation initiation
factor eIF4E and MAP1b translation in distal axons, but this
increase is abolished in FMRP deficient neurons (Li et al.,
2009), suggesting a role for FMRP in axons during Sema3A-
mediated GC steering via regulation of MAP1b translation in
the GC.

AXON ARBORIZATION AND SYNAPSE FORMATION
Translational regulation is crucial for synaptic function, and a
number of cognitive disorders are linked to mRNA dysregula-
tion. For example, Fragile X syndrome (FXS), the most com-
mon form of inherited mental retardation, is caused by the loss
of FMRP function and subsequent dysregulation of its target
mRNAs (Bassell and Warren, 2008). Although FXS is thought
to be caused mainly by the loss of FMRP function in the post-
synaptic compartment, several lines of evidence suggest that
FMRP may also have a pre-synaptic role at the synapse. FMRP
binds to many mRNAs encoding pre-synaptic proteins (Akins
et al., 2009; Darnell et al., 2011), and several pre-synaptic pro-
teins are differentially regulated in fmr1 knockout (KO) mice
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(Klemmer et al., 2011). In Drosophila, the mushroom body
neurons of dFMRP null mutants have over-branched axonal
arbors and form abnormal synapses, (Pan et al., 2004; Tessier
and Broadie, 2008), and abnormal pre-synaptic structures at the
neuromuscular junction (NMJ) (Zhang et al., 2001; Gatto and
Broadie, 2008). Furthermore, in a mosaic mouse model of FXS,
neurons lacking FMRP function form fewer synaptic connections
than wild type neurons, suggesting that pre-synaptic FMRP func-
tion may determine the likelihood of forming a synapse (Hanson
and Madison, 2007). Pre-synaptic expression of FMRP appears
restricted to a subset of neuronal circuits where it is present in
granules (Fragile X granules; FXGs) in association with its par-
alogs FXR2p and FXR1p (Christie et al., 2009; Akins et al., 2012).
The expression of these granules peak during the time of synapse
formation and pruning (Christie et al., 2009; Akins et al., 2012),
indicating a possible pre-synaptic role for FMRP and its paralogs
during synapse formation in a subset of axon population.

Disruption of SMN also causes pre-synaptic abnormalities. In
a mouse model of SMA, axons at the NMJ terminals are poorly
arborized and display abnormal neurofilament accumulation in
the nerve terminals (Kariya et al., 2008). Furthermore, SMN
knockdown causes abnormal synaptic transmission (Kariya et al.,
2008; Kong et al., 2009), lower synaptic vesicle density at the pre-
synaptic site (Kong et al., 2009) and a reduction of Cav2.2 Ca2+
channels at the NMJ (Jablonka et al., 2007). Interestingly, knock-
down of hnRNP R leads to a similar phenotype (Glinka et al.,
2010), indicating that SMN and hnRNP R may co-regulate trans-
lation both during axon growth and synapse formation. SMNs’
function has mostly been studied in motor neurons, but sim-
ilar defects have been reported in the retina of a mouse SMA
model (Liu et al., 2011), suggesting that perhaps SMN has a con-
served role in axon elongation and connectivity in several axon
populations. SMN may regulate synapse formation partially via
co-regulation of the candidate plasticity-related gene 15 (cpg15),
an activity-regulated protein with key functions during branch-
ing and synaptogenesis in the NMJ. SMN can interact with HuD
(Akten et al., 2011; Fallini et al., 2011), an RBP known to bind to
and regulate cpg15 expression (Wang et al., 2011), and both SMN
and HuD co-localize with cpg15 in axons. Disruption of SMN
function reduces the amount of cpg15 mRNA, and overexpres-
sion of cpg15 partially rescues the SMA phenotype in a zebrafish
model (Akten et al., 2011). Together these studies suggest a cru-
cial role for SMN and HuD mediated cpg15 mRNA regulation in
axons during synapse formation at the NMJ.

TDP-43 has also been shown to cause defects in axonal branch-
ing and synapse formation at the NMJ. Depletion of TDP-43
causes an increase in synaptic boutons at the NMJ in Drosophila
(Lin et al., 2011), and immature and excessive branching in
zebrafish (Kabashi et al., 2010). In Drosophila, the defects are
associated with a decrease in the microtubule stabilizing protein
futsch, a MAP1B ortholog. dTDP-43 can interact directly with
futsch mRNA, and dTDP-43s RNA-binding property is essen-
tial for its function in synapse formation (Godena et al., 2011).
Furthermore, dTDP-43 depletion decreases futsch protein in dis-
tal boutons, but futsch mRNA levels was unchanged, suggesting
a role for dTDP-43 in translational regulation of futsch (Godena
et al., 2011).

TRANSLATIONAL REGULATION BY RBPs IN THE AXON AND
GROWTH CONE
How do RBPs repress translation in the GC, and how is trans-
lation activated? Translational repressors are found in RNPs
(Kim-Ha et al., 1995; Nakamura et al., 2004; Paquin et al., 2007)
and when bound to their targets these repressors can regulate
translation by either blocking translation elongation, or, most
often, translational initiation. ZBP1 can block translation initi-
ation by inhibiting recruitment of the 60S subunit (Huttelmaier
et al., 2005), FMRP is thought to block translation elongation by
recruiting the eIF4E-binding protein CYFIP1 (Napoli et al., 2008)
and the post-synaptic RBP, Pumilio, regulates the abundance of
eIF4E at the NMJ (Menon et al., 2004).

RBPs may also regulate translation via modulating the length
of the poly(A) tail of mRNA. CPEB controls translation by
polyadenylation and directly binds the CPE sequence in the
3′UTR of its target mRNAs (Richter, 2007). Blocking polyadeny-
lation attenuates the collapse response to Sema3A in Xenopus
retinal axons (Lin et al., 2009), and blocking CPEB1’s func-
tion in hippocampal neurons causes a reduction in NT3-induced
β-actin translation in the GC, possible via Ca2+ mediated inos-
itol triphosphate (IP3) and Ca2+/calmodulin-dependent pro-
tein kinsase II (CamKII) activation (Kundel et al., 2009). This
suggests that regulation of poly(A) tail length may be a com-
mon way for guidance cues to regulate translation of specific
mRNAs.

Stimulation of GCs with protein synthesis-inducing guidance
cues, such as Netrin-1 and Sema3A, leads to the activation of
global translation, as indicated by 4EBP1 and mTOR activation,
yet they each stimulate the translation of a distinct set of mRNAs
(Wu et al., 2005; Leung et al., 2006). Furthermore, guidance cues
can stimulate translation globally while repressing specific tran-
scripts (Yoon et al., 2012), and both translation reporters and
newly synthesized protein can be localized to specific compart-
ments in the GC (Leung et al., 2006; Yao et al., 2006). How
translational specificity is achieved and how it is spatially localized
in the GC is largely unknown.

Signal-mediated phosphorylation of RBPss present in the GC
may provide a way to regulate translation of specific mRNAs.
BDNF induces Src-mediated phosphorylation of ZBP1, and
blocking this step attenuates local β-actin translation and GC
turning (Sasaki et al., 2010). Src is activated asymmetrically
toward the BDNF source (Yao et al., 2006), indicating that local-
ized activation of distinct set of RBPs may provide both spatial
and temporal control over translation. FMRP activity is also reg-
ulated by phosphorylation (Narayanan et al., 2008; Muddashetty
et al., 2011; Coffee et al., 2012), suggesting that phosphoryla-
tion could be a common mechanism for releasing RBP-mediated
repression upon cue stimulation.

RBPs can also mediate translational regulation via small non-
coding RNAs such as microRNAs (miRNAs). miRNAs can asso-
ciate with RBPs (Schratt et al., 2006; Edbauer et al., 2010),
and RBPs are known to regulate the abundance of miRNAs
(Michlewski et al., 2008; Xu et al., 2008, 2011; Xu and Hecht,
2011). In dendrites, there is evidence that miRNAs can act locally
as translational repressors (Schratt et al., 2006). miRNAs and
RNA-induced silencing complex (RISC) components have been
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found to associate with FMRP (Caudy et al., 2002; Jin et al., 2004;
Muddashetty et al., 2011), and FMRP may depend on miRNAs to
repress some of its targets (Muddashetty et al., 2011). HuR can
interfere with miRNA-mediated repression in cell culture, both as
an antagonist of miRNA repression (Bhattacharyya et al., 2006)
and in a cooperative manner to help facilitate repression (Kim
et al., 2009). Interaction studies suggest that HuR may regulate
the efficiency of several miRNAs (Mukherjee et al., 2011), and it
would be interesting to see if its neuronal family member, HuD,
can act in a similar fashion. miRNAs have been found in the
distal axon (Natera-Naranjo et al., 2010; Han et al., 2011; Dajas-
Bailador et al., 2012), and seem to play a role in guidance cue
responses. Knockdown of Dicer leads to axon guidance defects
in the visual system in mice (Pinter and Hindges, 2010), and
knockdown of the miRNA miR-124 leads to guidance defects of
RGC axons caused by an attenuated response to Sema3A (Baudet
et al., 2012). However, miRNA-RBP mediated regulation is a rela-
tively novel concept and whether or not RBPs can regulate miRNA
repression in axons and GCs is not yet known.

Another intriguing possibility is that receptor-ribosome inter-
actions may be used to restrict translation spatially and confer
additional translation specificity. The Netrin-1 receptor, DCC,
can interact directly with the translational machinery by forming
complexes with ribosomal subunits. This interaction is disas-
sociated upon Netrin-1 stimulation to promote DCC-mediated
translation (Tcherkezian et al., 2010), suggesting a possible mech-
anism to spatially restrict cue-induced translation to a specific
subcellular compartment.

FUTURE PERSPECTIVES
RBPs are beginning to emerge as important players in the pre-
synaptic compartment during the building of neuronal circuits,
but many questions still remain. The list of axonal RPBs is
still incomplete, and little is known of their mRNA targets in
axons. New techniques such as crosslinking immunoprecipita-
tion (CLIP) (Ule et al., 2005) and high throughput sequencing-
CLIP (HITS-CLIP) (Licatalosi et al., 2008) will be valuable in
future studies for identifying RBP-mRNA complexes in differ-
ent axon populations and developmental time points. Moreover,
further studies on the interactions of RBPs with other post-
transcriptional regulatory pathways are needed to help gain
insight into how translational specificity is achieved in the GC.
For example, it will be important to investigate if guidance recep-
tor coupling to the translational machinery (Tcherkezian et al.,

2010) is a common way of restricting translation locally, and
to understand the interplay between other pathways such as
miRNAs, RBP phosphorylation and mRNA polyadenylation in
regulating the spatiotemporal control of local protein synthesis
in response to extrinsic cues.

The observation that many axonal RBPs are best known for
their nuclear roles suggests that some axonal RBPs may have dual
functions in the nucleus and cytosol. Nuclear mRNA process-
ing is important for subsequent cytosolic localization (Giorgi and
Moore, 2007), and the axonal and nuclear localization of some
RBPs may provide a platform to coordinate pre-mRNA process-
ing and cytosolic translational regulation (Bava et al., 2013). The
presence of splice-regulating RBPs in axons suggests the intrigu-
ing possibility that some pre-mRNA processing may occur locally
in axons. Indeed, cytoplasmic splicing has been identified in
neurons (Bell et al., 2010), and splice components localized to
dendrites retain their ability to splice RNA (Bell et al., 2010).
Splice factors have been found in GCs (Estrada-Bernal et al.,
2012), but whether they are involved in splicing or other processes
is not known.

Finally, although it is increasingly clear that local translation
occurs in navigating axons and post-synaptic compartments, its
role in target-arrived axons is much less understood. Transcripts
of synapse-associated proteins are commonly present in axons
(Zivraj et al., 2010), and pre-synaptic translation has been impli-
cated in synapse development (Taylor et al., 2013), synaptic
plasticity (Yin et al., 2006; Deng et al., 2011; Je et al., 2011;
Johnstone and Raymond, 2011; Till et al., 2011) and arborization
(Dajas-Bailador et al., 2012; Donnelly et al., 2013). Translational
dysregulation is thought to underlie several neurodevelopmental
and neurodegenerative disorders (Bear et al., 2004; Liu-Yesucevitz
et al., 2011; Santini et al., 2013; Taylor et al., 2013). RBPs such as
FMRP, SMN and TDP-43 have all been linked to neurological dis-
eases, and their presence in axons suggests that axonal translation
may play a role in disease pathology. Elucidating how presynap-
tic translation influences synapse formation and the role RBPs
play in this process will further deepen our understanding of how
neuronal circuits are formed and maintained in the developing
brain.
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